Mix-Automatic Sequences

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Fields Workshop on Combinatorics on Words Toronto, April 22, 2013

Zipping sequences

$$u = a_0 : a_1 : a_2 : \dots$$

 $v = b_0 : b_1 : b_2 : \dots$

results in

 $zip(u, v) = a_0 : b_0 : a_1 : b_1 : a_2 : b_2 : \dots$

Operationally:

 $zip(a: u, v) \rightarrow a: zip(v, u)$

 $\begin{aligned} \text{Peaks} &= \wedge : \text{Peaks} \\ \text{Valleys} &= \lor : \text{Valleys} \\ \text{Tyrol} &= \text{zip}(\text{Peaks}, \text{Valleys}) \\ \text{Folds} &= \text{zip}(\text{Tyrol}, \text{Folds}) \end{aligned}$

- Peaks = \land : Peaks Valleys = \lor : Valleys Tyrol = zip(Peaks, Valleys) Folds = zip(Tyrol, Folds)
- $= \land : \land : \land : \ldots$ $= \lor : \lor : \lor : \ldots$

- $Peaks = \Lambda$: Peaks Valleys = \vee : Valleys $Tyrol = zip(Peaks, Valleys) = \land : \lor : \land : \lor : \land : \lor : \land$ Folds = zip(Tyrol, Folds)
- $= \wedge : \wedge : \wedge : \dots$
 - $= \vee : \vee : \vee : \ldots$

Peaks = \land : Peaks= \land : \land : \land : \land :Valleys = \lor : Valleys= \lor : \lor : \lor : \lor : \land :Tyrol = zip(Peaks, Valleys)= \land : \lor : \lor : \land : \lor : \lor : \lor : \land : \lor : \lor : \land : \land : \lor : \land : \land : \lor : \land : \lor : \land : \land : \land : \lor : \land : \land : \land : \lor : \land : \land : \land : \land : \land : \lor : \land : \land

Peaks = \land : Peaks= \land : \land : \land : . . .Valleys = \lor : Valleys= \lor : \lor : \lor : \lor : . . .Tyrol = zip(Peaks, Valleys)= \land : \lor : \land : \lor : \land : \lor : . . .Folds = zip(Tyrol, Folds)= \land : \lor : \land : \lor : \land : : \lor : . . .

Peaks = \land : Peaks= \land : \land : \land : \land : \land Valleys = \lor : Valleys= \lor : \lor : \lor : \lor : \land : \lor : \land Tyrol = zip(Peaks, Valleys)= \land : \lor : : \lor : \lor : \lor : \land : \lor :

Peaks = \land : Peaks= \land : \land : \land : \land : \land Valleys = \lor : Valleys= \lor : \lor : \lor : \lor : \land : \lor : \land Tyrol = zip(Peaks, Valleys)= \land : \lor : : \lor : \lor : \lor : \land : \lor : \lor : \lor : \lor : \lor : \land : \lor : \lor : \land : \lor : \lor : \lor : \lor : \lor : \land : \lor : \lor : \lor : \lor : \lor : \land : \lor : \lor : \land : \lor : \lor : \lor : \lor : \lor : \land : \lor : \lor : \lor : \lor : \lor : \land : \lor : \lor : \lor : \lor : \lor : \land : \lor :

Peaks = \land : Peaks= \land : \land : \land : \land : \land Valleys = \lor : Valleys= \lor : \lor : \lor : \lor : \land : \lor : \land Tyrol = zip(Peaks, Valleys)= \land : \lor : \land : \land : \land : \lor : \land : \land : \land : \land : \lor : \land : \land : \land : \land : \land : \lor : \land : \land : \land : \land : \land : \lor : \land : \land : \lor : \land : \land : \land : \land : \land : \lor : \land : \land : \lor : \land :

A **zip-specification** over $\langle A, \mathcal{X} \rangle$ is a system of equations X = t where the right-hand sides *t* are terms defined by the grammar

 $t ::= \mathsf{X} \mid a : t \mid \mathsf{zip}(t, t) \qquad (\mathsf{X} \in \mathcal{X}, a \in A)$

Well-definedness of zip-specifications

Productivity (implies unique solvability) for a zip-specification is easy to check: at least one guard on every leftmost cycle.

Well-definedness of zip-specifications

Productivity (implies unique solvability) for a zip-specification is easy to check: at least one guard on every leftmost cycle.

Initial Questions

- Is equivalence of zip-specifications decidable? (L.S. Moss)
- What is the class of sequences that can be defined by zip-specifications?

Using 'zip-destructors'

$$even(w) = w(0) : w(2) : w(4) : ...$$

odd $(w) = w(1) : w(3) : w(5) : ...$

unzipping can be done:

even(zip(u, v)) = uodd(zip(u, v)) = v

Operational definition:

even(a: u) = a: odd(u)odd(a: u) = even(u)

Idea: use even, odd to **observe** zip-specs and check bisimilarity of the resulting graphs.

Observation graph of Folds zip-specification

Finite automaton generating the paperfolding sequence

Finite automaton generating the paperfolding sequence

 $((9)_2)_{\mathsf{Folds}} = (1001)_{\mathsf{Folds}} \xrightarrow{1} (100)_{\mathsf{Folds}} \xrightarrow{0} (10)_{\mathsf{Tyrol}} \xrightarrow{0} (1)_{\mathsf{Peaks}} \xrightarrow{1} ()_{\mathsf{Peaks}}$

Generalization to k-automatic sequences

A **zip**-*k* **specification** over $\langle A, \mathcal{X} \rangle$ is a system of equations X = t where the right-hand sides *t* are terms defined by

 $t ::= \mathsf{X} \mid a : t \mid \mathsf{zip}_k(t, \dots, t) \qquad (\mathsf{X} \in \mathcal{X}, a \in A)$

where zip_k shuffles k sequences

$$zip_k(u_0, u_1, \dots, u_{k-1})(kn+i) = u_i(n)$$
 ($0 \le i < k$)

Operationally:

$$\operatorname{zip}_k(a:u_0,u_1,\ldots,u_{k-1})=a:\operatorname{zip}_k(u_1,\ldots,u_{k-1},u_0)$$

Theorem

A sequence *k*-automatic if and only if it has a *zip-k specification*.

Hence equivalence of zip-k specifications is decidable.

Mix-automatic sequences

Motivating question

What about zips of different arities in one specification?

Mix-automatic sequences

Zip-mix specifications: now we allow zips of different arities zip_2 , zip_3 , zip_4 , ... in the same specification.

Zip-mix specifications: now we allow zips of different arities zip_2 , zip_3 , zip_4 , ... in the same specification.

Zip-mix specifications: now we allow zips of different arities zip_2 , zip_3 , zip_4 , ... in the same specification.

We call the corresponding sequences mix-automatic sequences.

Zip-mix specifications: now we allow zips of different arities zip_2 , zip_3 , zip_4 , ... in the same specification.

Example $M = a: X \qquad X = b: zip_2(X, Y) \qquad Y = b: zip_3(M, Y, Y)$ $M \rightarrow^{\omega} a: b: b: b: b: a: b: b: b: a: b: b: a: b: a: a: \dots$

We call the corresponding sequences mix-automatic sequences.

- What is the relation to automatic or morphic sequences?
- What about subword complexity?
- What is the corresponding notion of automaton?

Theorem

The class of mix-automatic sequences properly extends the class of automatic sequences.

Proof: Let u and v be 2 and 3-automatic, but not ultimately periodic. If the sequence zip(u, v) would be m-automatic, then so would be u and v. By Cobham's Theorem there are a, b, c, d > 0 such that

- ▶ $2^a = m^b$, and
- ▶ $3^c = m^d$.

But then $2^{ad} = m^{bd} = 3^{cb}$ yields a contradiction.

Theorem (Cobham's Theorem)

Let $k, \ell \ge 2$ such that $k^a \ne \ell^b$ for all a, b > 0. If a sequence u is both k-and ℓ -automatic, then u is ultimately periodic.

The automata corresponding to mix-automatic sequences are **mix-DFAOs** with a **state-dependent input alphabet**.

The automata corresponding to mix-automatic sequences are **mix-DFAOs** with a **state-dependent input alphabet**.

Example M = a : X $X = b : zip_2(X, Y)$ $Y = b : zip_3(M, Y, Y)$

The specification corresponds to the mix-DFAO

The input alphabet of q_0 is $\{0,1\}$ and of q_1 is $\{0,1,2\}$.

The automata corresponding to mix-automatic sequences are **mix-DFAOs** with a **state-dependent input alphabet**.

Example M = a : X $X = b : zip_2(X, Y)$ $Y = b : zip_3(M, Y, Y)$

The specification corresponds to the mix-DFAO

The input alphabet of q_0 is $\{0,1\}$ and of q_1 is $\{0,1,2\}$.

Input: representation of $i \in \mathbb{N}$ Output: *i*-th element of the sequence

The automata corresponding to mix-automatic sequences are **mix-DFAOs** with a **state-dependent input alphabet**.

Example M = a : X $X = b : zip_2(X, Y)$ $Y = b : zip_3(M, Y, Y)$

The specification corresponds to the mix-DFAO

The input alphabet of q_0 is $\{0,1\}$ and of q_1 is $\{0,1,2\}$.

Input: representation of $i \in \mathbb{N}$ Output: *i*-th element of the sequence What is this representation?

Mix-DFAOs are known:

- ▶ intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Mix-DFAOs are known:

- intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Abstract numeration systems

Let *L* be the language accepted as input by the automaton. Then $i \in \mathbb{N}$ is represented by the *i*-th word of *L* in the shortlex order.

Mix-DFAOs are known:

- intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Abstract numeration systems

Let *L* be the language accepted as input by the automaton. Then $i \in \mathbb{N}$ is represented by the *i*-th word of *L* in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

Mix-DFAOs are known:

- intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Abstract numeration systems

Let *L* be the language accepted as input by the automaton. Then $i \in \mathbb{N}$ is represented by the *i*-th word of *L* in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Mix-DFAOs are known:

- intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Abstract numeration systems

Let *L* be the language accepted as input by the automaton. Then $i \in \mathbb{N}$ is represented by the *i*-th word of *L* in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems

Mix-DFAOs are known:

- intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Abstract numeration systems

Let *L* be the language accepted as input by the automaton. Then $i \in \mathbb{N}$ is represented by the *i*-th word of *L* in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems

generalizes usual base-k representation

Mix-DFAOs are known:

- intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Abstract numeration systems

Let *L* be the language accepted as input by the automaton. Then $i \in \mathbb{N}$ is represented by the *i*-th word of *L* in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems

- generalizes usual base-k representation
- generalizes Knuth's mixed radix numeration system

Mix-DFAOs are known:

- intensively studied by Rigo, Maes, ...
- used with abstract numeration systems

Abstract numeration systems

Let *L* be the language accepted as input by the automaton. Then $i \in \mathbb{N}$ is represented by the *i*-th word of *L* in the shortlex order.

Mix-DFAOs + abstract numeration systems = morphic sequences

For mix-automatic sequences we need another numeration system.

Dynamic radix numeration systems

- generalizes usual base-k representation
- generalizes Knuth's mixed radix numeration system

The base of a digit depends on the values of the less significant digits.

We write $(n)_M = (n)_{q_0}$ for the representation of $n \in \mathbb{N}$ as input for M. The automaton reads the least significant digit first:

$$(17)_{M} = (17)_{q_{0}}$$

= (8)_{q1} 1₂
= (2)_{q0} 2₃ 1₂
= (1)_{q0} 0₂ 2₃ 1₂
= (0)_{q1} 1₂ 0₂ 2₃ 1₂
= 1₂ 0₂ 2₃ 1₂

(we write the base of each digit as subscript of the digit)

We write $(n)_M = (n)_{q_0}$ for the representation of $n \in \mathbb{N}$ as input for M. The automaton reads the least significant digit first:

$$(17)_{M} = (17)_{q_{0}} \qquad (16)_{M} = (16)_{q_{0}}$$

$$= (8)_{q_{1}} 1_{2} \qquad = (8)_{q_{0}} 0_{2}$$

$$= (2)_{q_{0}} 2_{3} 1_{2} \qquad = (4)_{q_{0}} 0_{2} 0_{2}$$

$$= (1)_{q_{0}} 0_{2} 2_{3} 1_{2} \qquad = (2)_{q_{0}} 0_{2} 0_{2} 0_{2} 0_{2}$$

$$= (0)_{q_{1}} 1_{2} 0_{2} 2_{3} 1_{2} \qquad = (1)_{q_{0}} 0_{2} 0_{2} 0_{2} 0_{2}$$

$$= 1_{2} 0_{2} 2_{3} 1_{2} \qquad = 1_{2} 0_{2} 0_{2} 0_{2} 0_{2}$$

(we write the base of each digit as subscript of the digit)

We write $(n)_M = (n)_{q_0}$ for the representation of $n \in \mathbb{N}$ as input for M. The automaton reads the least significant digit first:

$$(17)_{M} = (17)_{q_{0}} \qquad (16)_{M} = (16)_{q_{0}}$$

$$= (8)_{q_{1}} 1_{2} \qquad = (8)_{q_{0}} 0_{2}$$

$$= (2)_{q_{0}} 2_{3} 1_{2} \qquad = (4)_{q_{0}} 0_{2} 0_{2}$$

$$= (1)_{q_{0}} 0_{2} 2_{3} 1_{2} \qquad = (2)_{q_{0}} 0_{2} 0_{2} 0_{2} 0_{2}$$

$$= (0)_{q_{1}} 1_{2} 0_{2} 2_{3} 1_{2} \qquad = (1)_{q_{0}} 0_{2} 0_{2} 0_{2} 0_{2}$$

$$= 1_{2} 0_{2} 2_{3} 1_{2} \qquad = 1_{2} 0_{2} 0_{2} 0_{2} 0_{2}$$

(we write the base of each digit as subscript of the digit)

Mix-DFAOs + dynamic radix numeration systems = mix-automatic

For $i, k \in \mathbb{N}$ and sequences w we define

 $\pi_{i,k}(w) = w(i+0k) w(i+1k) w(i+2k) w(i+3k) \dots$

the subsequence of w taking every k-th element starting from the i-th.

Kernel

Let $k \in \mathbb{N}$ and $w \in \Delta^{\omega}$.

The k-kernel $\operatorname{Ker}(k, w)$ is the smallest set $K \subseteq \Delta^{\omega}$ such that:

- $w \in K$, and
- ▶ for all $u \in K$ and all $0 \le i < k$, we have $\pi_{i,k}(u) \in K$.

Theorem

- w is automatic,
- there exists $k \in \mathbb{N}_{>2}$ such that the k-kernel of w is finite.

For $i, k \in \mathbb{N}$ and sequences w we define

 $\pi_{i,k}(w) = w(i+0k) w(i+1k) w(i+2k) w(i+3k) \dots$

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel

Let $k \in \mathbb{N}$ and $w \in \Delta^{\omega}$.

The k-kernel $\operatorname{Ker}(k, w)$ is the smallest set $K \subseteq \Delta^{\omega}$ such that:

- $w \in K$, and
- ▶ for all $u \in K$ and all $0 \le i < k$, we have $\pi_{i,k}(u) \in K$.

Theorem

- w is automatic,
- there exists $k \in \mathbb{N}_{\geq 2}$ such that the k-kernel of w is finite.

For $i, k \in \mathbb{N}$ and sequences w we define

 $\pi_{i,k}(w) = w(i+0k) w(i+1k) w(i+2k) w(i+3k) \dots$

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel

Let $k : \Delta^{\omega} \to \mathbb{N}$ and $w \in \Delta^{\omega}$.

The k-kernel $\operatorname{Ker}(k, w)$ is the smallest set $K \subseteq \Delta^{\omega}$ such that:

- $w \in K$, and
- ▶ for all $u \in K$ and all $0 \le i < k$, we have $\pi_{i,k}(u) \in K$.

Theorem

- w is automatic,
- there exists $k \in \mathbb{N}_{>2}$ such that the k-kernel of w is finite.

For $i, k \in \mathbb{N}$ and sequences w we define

 $\pi_{i,k}(w) = w(i+0k) w(i+1k) w(i+2k) w(i+3k) \dots$

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel

Let $k : \Delta^{\omega} \to \mathbb{N}$ and $w \in \Delta^{\omega}$.

The k-kernel $\operatorname{Ker}(k, w)$ is the smallest set $K \subseteq \Delta^{\omega}$ such that:

- $w \in K$, and
- ▶ for all $u \in K$ and all $0 \le i < k(u)$, we have $\pi_{i,k(u)}(u) \in K$.

Theorem

- w is automatic,
- there exists $k \in \mathbb{N}_{\geq 2}$ such that the k-kernel of w is finite.

For $i, k \in \mathbb{N}$ and sequences w we define

 $\pi_{i,k}(w) = w(i+0k) w(i+1k) w(i+2k) w(i+3k) \dots$

the subsequence of w taking every k-th element starting from the i-th.

Mix-kernel

Let $k : \Delta^{\omega} \to \mathbb{N}$ and $w \in \Delta^{\omega}$.

The k-kernel $\operatorname{Ker}(k, w)$ is the smallest set $K \subseteq \Delta^{\omega}$ such that:

- $w \in K$, and
- ▶ for all $u \in K$ and all $0 \le i < k(u)$, we have $\pi_{i,k(u)}(u) \in K$.

Theorem

- w is mix-automatic,
- there exists $k : \Delta^{\omega} \to \mathbb{N}_{\geq 2}$ such that the k-kernel of w is finite.

Proposition

The class of morphic sequences is not contained in the class of mix-automatic sequences.

For the characteristic sequence squares $= 1100100001\ldots$ of square numbers is morphic but not mix-automatic.

Proposition

The class of morphic sequences is not contained in the class of mix-automatic sequences.

For the characteristic sequence squares $= 1100100001\ldots$ of square numbers is morphic but not mix-automatic.

Corollary

Neither of the classes

- mix-automatic sequences, and
- morphic sequences

subsumes the other.

Subword complexity of mix-automatic sequences

Theorem

For any $k \in \mathbb{N}$ there exists a mix-automatic sequences with subword complexity in $\Omega(n^k)$.

Proof idea: For p a prime number, define the sequence $\gamma_p \in 2^\omega$ by

 $\gamma_p(n) = v_p(n) \mod 2$ where $v_p(n) = \max\{e \mid p^e \text{ divides } n\}$ Then γ_p is *p*-automatic: $\gamma_p = \operatorname{zip}_p(0^{\omega}, 0^{\omega}, \dots, 0^{\omega}, \overline{\gamma_p}).$

Let p_1, p_2, \ldots, p_k pairwise distinct primes. The sequence

 $\sigma = \mathsf{zip}_k(\gamma_{p_1}, \ldots, \gamma_{p_k})$

is mix-automatic. For subword complexity in $\Omega(n^k)$, it suffices that

▶ for all $n \in \mathbb{N}$, and

• for all factors w_1 in $\gamma_{p_1}, \ldots, w_k$ in γ_{p_k} of length n, $zip_k(w_1, \ldots, w_k)$ is a factor in σ .

Subword complexity of mix-automatic sequences

Theorem

For any $k \in \mathbb{N}$ there exists a mix-automatic sequences with subword complexity in $\Omega(n^k)$.

Proof idea: For p a prime number, define the sequence $\gamma_p \in 2^\omega$ by

 $\gamma_p(n) = v_p(n) \mod 2$ where $v_p(n) = \max\{e \mid p^e \text{ divides } n\}$ Then γ_p is *p*-automatic: $\gamma_p = \operatorname{zip}_p(0^{\omega}, 0^{\omega}, \dots, 0^{\omega}, \overline{\gamma_p}).$

Let p_1, p_2, \ldots, p_k pairwise distinct primes. The sequence

 $\sigma = \mathsf{zip}_k(\gamma_{p_1}, \ldots, \gamma_{p_k})$

is mix-automatic. For subword complexity in $\Omega(n^k)$, it suffices that

▶ for all $n \in \mathbb{N}$, and

• for all factors w_1 in $\gamma_{p_1}, \ldots, w_k$ in γ_{p_k} of length n, $zip_k(w_1, \ldots, w_k)$ is a factor in σ .

Corollary

There are mix-automatic sequences that are not morphic.

Results and open questions

Results:

- Characterizations of mix-automatic sequences:
 - via zip-mix specifications
 - 2 via a generalization of k-kernels
 - via mix-DFAOs + dynamic radix numeration systems
- Novel numeration system: dynamic radix numeration systems
- For every polynomial p there exists a mix-automatic sequence whose subword complexity exceeds p.
- ► There exist morphic sequences that are not mix-automatic.

Questions:

- Characterize the intersection of mix-automatic and morphic sequences. (J.-P. Allouche)
- Is equality of mix-automatic sequences decidable? (the sequences are given in terms of their mix-DFAOs)
- Can Cobham's Theorem be generalized to mix-automatic sequences?

Bibliography

- [C69] On the Base-Dependence of Sets of Numbers Recognizable by Finite Automata, MST, 1969
- [C72] Uniform Tag Sequences, Theory of Computing Systems, 1972
- [Rigo00] Generalization of Automatic Sequences for Numeration Systems on a Regular Language, TCS, 2000
 - [AS03] Automatic Sequences: Theory, Applications, Generalizations, CUP, 2003
- [GEHKM12] Automatic Sequences and Zip-Specifications, LICS 2012
 - [KkR12] On the Final Coalgebra of Automatic Sequences, LPS, 2012
 - [EGH13] Mix-Automatic Sequences, LATA 2013

A = J.-P. Allouche, C = A. Cobham, E = J. Endrullis, G = C. Grabmayer, H = D. Hendriks, K = J.W. Klop, Kk = C. Kupke,
M = L. Moss, Rigo = M. Rigo, R = J.J.M.M. Rutten, S = J. Shallit