Christol's theorem and its analogue for generalized power series, part 2

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego kedlaya@ucsd.edu http://math.ucsd.edu/~kedlaya/slides/

Challenges in Combinatorics on Words Fields Institute, Toronto, April 26, 2013

This part based on: K.S. Kedlaya, "Finite automata and algebraic extensions of function fields", Journal de Théorie des Nombres de Bordeaux 18 (2006), 379–420.

Supported by NSF (grant DMS-1101343), UCSD (Warschawski chair).

Contents

- Christol's theorem is not enough

Recap: Christol's theorem

Theorem (Christol, 1979)

Let \mathbb{F}_q be a finite field of characteristic p. A formal power series

$$f = \sum_{n=0}^{\infty} f_n t^n \in \mathbb{F}_q[\![t]\!]$$

is algebraic over the rational function field $\mathbb{F}_q(t)$ if and only if it is **automatic**: for all $c \in \mathbb{F}_q$, the set of base-*p* expansions of those $n \ge 0$ with $f_n = c$ form a regular language on the alphabet $\{0, \ldots, p-1\}$.

Why Christol's theorem is not enough

Theorem (Puiseux, 1850 for $K = \mathbb{C}$)

For K a field of characteristic 0, every finite extension of the field K((t)) is contained in some extension of the form $L((t^{1/m}))$ for L a finite extension of K and m a positive integer.

This fails in positive characteristic as noted by Chevalley.

Proposition

The polynomial

$$z^p - z - t^{-1} \in \mathbb{F}_q((t))[z]$$

has no root in $\mathbb{F}_{q'}((t^{1/m}))$ for any power q' of q and any positive integer m. (Proof on next slide.)

Why Christol's theorem is not enough (continued)

Proof of the Proposition.

Suppose $z = \sum_{n} z_{n} t^{n}$ were such a root. Then

$$z^{p} = \sum_{n} z^{p}_{n} t^{np} = \sum_{n} z^{p}_{n/p} t^{n}$$

and so

$$t^{-1}=\sum_n(z_{n/p}^p-z_n)t^n.$$

Since z is a (nonzero) formal power series in $t^{1/m}$ for some m, there must be a smallest index i for which $z_i \neq 0$. If i < -1/p, then $0 = z_i^p - z_{pi}$ and so $z_{pi} \neq 0$, contradiction. Therefore $z_{-1} = 0$, which forces

$$1 = z_{-1/p} = z_{-1/p^2} = \cdots$$

and precludes $z \in \mathbb{F}_{q'}((t^{1/m}))$ for any m, contradiction.

Contents

2 Generalized power series

3 Christol's theorem for generalized power series

Proof of Christol's theorem for generalized power series

5 Final questions

Generalized power series

Definition (Hahn, 1905)

A generalized power series over a field K is a formal expression $f = \sum_{n \in \mathbb{Q}} f_n t^n$ with $f_n \in K$ whose support

$$\mathsf{Supp}(f) = \{n \in \mathbb{Q} : f_n \neq 0\}$$

is a **well-ordered** subset of \mathbb{Q} , i.e., one containing no infinite decreasing sequence. (Equivalently, every nonempty subset has a least element.)

We will write $K((t^{\mathbb{Q}}))$ for the set of generalized power series. To be precise, these are really generalized Laurent series; we write $K[t^{\mathbb{Q}}]$ to pick out those series whose supports are contained in $[0, +\infty)$.

Variants: Hahn allows \mathbb{Q} to be replaced by a totally ordered abelian group. There is even a noncommutative version due to Mal'cev and Neumann (independently).

Generalized power series

Definition (Hahn, 1905)

A generalized power series over a field K is a formal expression $f = \sum_{n \in \mathbb{Q}} f_n t^n$ with $f_n \in K$ whose support

$$\mathsf{Supp}(f) = \{n \in \mathbb{Q} : f_n \neq 0\}$$

is a **well-ordered** subset of \mathbb{Q} , i.e., one containing no infinite decreasing sequence. (Equivalently, every nonempty subset has a least element.)

We will write $K((t^{\mathbb{Q}}))$ for the set of generalized power series. To be precise, these are really generalized Laurent series; we write $K[t^{\mathbb{Q}}]$ to pick out those series whose supports are contained in $[0, +\infty)$.

Variants: Hahn allows \mathbb{Q} to be replaced by a totally ordered abelian group. There is even a noncommutative version due to Mal'cev and Neumann (independently).

Generalized power series

Definition (Hahn, 1905)

A generalized power series over a field K is a formal expression $f = \sum_{n \in \mathbb{Q}} f_n t^n$ with $f_n \in K$ whose support

$$\mathsf{Supp}(f) = \{n \in \mathbb{Q} : f_n \neq 0\}$$

is a **well-ordered** subset of \mathbb{Q} , i.e., one containing no infinite decreasing sequence. (Equivalently, every nonempty subset has a least element.)

We will write $K((t^{\mathbb{Q}}))$ for the set of generalized power series. To be precise, these are really generalized Laurent series; we write $K[t^{\mathbb{Q}}]$ to pick out those series whose supports are contained in $[0, +\infty)$.

Variants: Hahn allows \mathbb{Q} to be replaced by a totally ordered abelian group. There is even a noncommutative version due to Mal'cev and Neumann (independently).

Arithmetic for generalized power series

It is easy to see that generalized power series can be added formally: the point is that the union of two well-ordered sets is again well-ordered.

Multiplication is less clear: given $f = \sum_{n \in \mathbb{Q}} f_n t^n$, $g = \sum_{n \in \mathbb{Q}} g_n t^n$, note first that for any $n \in \mathbb{Q}$ the formal sum

only contains finitely many nonzero terms. Then check that the support of

$$f + g = \sum_{n \in \mathbb{Q}} \left(\sum_{i,j \in \mathbb{Q}: i+j=n} f_i g_j \right) t^n$$

is well-ordered.

Arithmetic for generalized power series

It is easy to see that generalized power series can be added formally: the point is that the union of two well-ordered sets is again well-ordered.

Multiplication is less clear: given $f = \sum_{n \in \mathbb{Q}} f_n t^n$, $g = \sum_{n \in \mathbb{Q}} g_n t^n$, note first that for any $n \in \mathbb{Q}$ the formal sum

only contains finitely many nonzero terms. Then check that the support of

$$f + g = \sum_{n \in \mathbb{Q}} \left(\sum_{i,j \in \mathbb{Q}: i+j=n} f_i g_j \right) t^n$$

is well-ordered.

Arithmetic for generalized power series (continued)

It follows that $K[t^{\mathbb{Q}}]$ and $K((t^{\mathbb{Q}}))$ are both rings under formal addition and multiplication. The ring $K((t^{\mathbb{Q}}))$ is also a field: any nonzero element can be written as $at^m(1-f)$ where $a \in K^*$, $m \in \mathbb{Q}$, $f \in K[t^{\mathbb{Q}}]$, and $f_0 = 0$. But then the sum

makes sense and defines an inverse of 1 - f.

What "the sum makes sense" really means here is that $K((t^{\mathbb{Q}}))$ is complete for the *t*-adic valuation

$$v_t(f) = \min \operatorname{Supp}(f).$$

Arithmetic for generalized power series (continued)

It follows that $K[t^{\mathbb{Q}}]$ and $K((t^{\mathbb{Q}}))$ are both rings under formal addition and multiplication. The ring $K((t^{\mathbb{Q}}))$ is also a field: any nonzero element can be written as $at^m(1-f)$ where $a \in K^*$, $m \in \mathbb{Q}$, $f \in K[t^{\mathbb{Q}}]$, and $f_0 = 0$. But then the sum

makes sense and defines an inverse of 1 - f.

What "the sum makes sense" really means here is that $K((t^{\mathbb{Q}}))$ is complete for the *t*-adic valuation

 $v_t(f) = \min \operatorname{Supp}(f).$

Algebraic closures

Theorem (Hahn, 1905)

If K is an algebraically closed field, then so is $K((t^{\mathbb{Q}}))$.

Sketch of proof.

Given a nonconstant polynomial P over $K((t^{\mathbb{Q}}))$, one can build a root by a *transfinite* sequence of successive approximations (one indexed by some countable ordinal).

In particular, if K is an algebraic closure of \mathbb{F}_q , then $K((t^{\mathbb{Q}}))$ contains an algebraic closure of $\mathbb{F}_q(t)$. Our goal (inspired by a suggestion of Abhyankar) is to identify this algebraic closure explicitly.

More on algebraic closures

Let $\mathbb{Z}[p^{-1}]$ denote the subring of \mathbb{Q} generated by p^{-1} , i.e., the ring of rational numbers with only powers of p in their denominators.

Proposition (easy)

Let K be an algebraic closure of \mathbb{F}_q . Then every element f of the algebraic closure of $\mathbb{F}_q((t))$ within $\mathbb{F}_q((t^{\mathbb{Q}}))$ has the following properties.

- (a) We have $\text{Supp}(f) \subset m^{-1}\mathbb{Z}[p^{-1}]$ for some positive integer m coprime to p (depending on f).
- (b) The coefficients of f belong to some finite subfield $\mathbb{F}_{q'}$ of K.

The same is then true of the algebraic closure of $\mathbb{F}_q(t)$ within $\mathbb{F}_q((t^{\mathbb{Q}}))$.

Contents

2) Generalized power series

3 Christol's theorem for generalized power series

Proof of Christol's theorem for generalized power series

5 Final questions

Comments on base-p expansions

Elements of $\mathbb{Q}_{\geq 0}$ have well-defined base-*p* expansions, but only elements of $\mathbb{Z}[p^{-1}]_{\geq 0}$ have finite expansions. Such expansions are words on the alphabet $\{0, \ldots, p-1, .\}$, where the last symbol is the *radix point*.

We will allow arbitrary leading and trailing zeroes, but we will insist that to be *valid*, expansions must have exactly one radix point.

Warning: this is a different convention than in the paper (where no leading or trailing zeroes are allowed), but the results are equivalent.

Comments on base-p expansions

Elements of $\mathbb{Q}_{\geq 0}$ have well-defined base-*p* expansions, but only elements of $\mathbb{Z}[p^{-1}]_{\geq 0}$ have finite expansions. Such expansions are words on the alphabet $\{0, \ldots, p-1, .\}$, where the last symbol is the *radix point*.

We will allow arbitrary leading and trailing zeroes, but we will insist that to be *valid*, expansions must have exactly one radix point.

Warning: this is a different convention than in the paper (where no leading or trailing zeroes are allowed), but the results are equivalent.

Comments on base-p expansions

Elements of $\mathbb{Q}_{\geq 0}$ have well-defined base-*p* expansions, but only elements of $\mathbb{Z}[p^{-1}]_{\geq 0}$ have finite expansions. Such expansions are words on the alphabet $\{0, \ldots, p-1, .\}$, where the last symbol is the *radix point*.

We will allow arbitrary leading and trailing zeroes, but we will insist that to be *valid*, expansions must have exactly one radix point.

Warning: this is a different convention than in the paper (where no leading or trailing zeroes are allowed), but the results are equivalent.

Automatic generalized power series

Suppose $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ has support in $\mathbb{Z}[p^{-1}]_{\geq 0}$. We say that f is *automatic* if the function $n \mapsto f_n$ is induced by some finite automaton on the alphabet $\{0, \ldots, p-1, .\}$ by identifying n with its base-p expansion.

Lemma (relatively easy)

For m a positive integer and $a \in \mathbb{Z}[p^{-1}]_{\geq 0}$, $\sum_n f_n t^n$ is automatic if and only if $\sum_n f_n t^{mn+a}$ is.

For a general $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$, we say that f is *automatic* if there exist a positive integer m and some $a \in \mathbb{Z}[p^{-1}]_{\geq 0}$ such that $\sum_n f_n t^{mn+a}$ has support in $\mathbb{Z}[p^{-1}]_{\geq 0}$ and is automatic in the above sense. By the lemma, this specializes back to the previous definition. (In the paper, the second condition is called *quasi-automatic*.)

Automatic generalized power series

Suppose $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ has support in $\mathbb{Z}[p^{-1}]_{\geq 0}$. We say that f is *automatic* if the function $n \mapsto f_n$ is induced by some finite automaton on the alphabet $\{0, \ldots, p-1, .\}$ by identifying n with its base-p expansion.

Lemma (relatively easy)

For m a positive integer and $a \in \mathbb{Z}[p^{-1}]_{\geq 0}$, $\sum_n f_n t^n$ is automatic if and only if $\sum_n f_n t^{mn+a}$ is.

For a general $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$, we say that f is *automatic* if there exist a positive integer m and some $a \in \mathbb{Z}[p^{-1}]_{\geq 0}$ such that $\sum_n f_n t^{mn+a}$ has support in $\mathbb{Z}[p^{-1}]_{\geq 0}$ and is automatic in the above sense. By the lemma, this specializes back to the previous definition. (In the paper, the second condition is called *quasi-automatic*.)

Automatic generalized power series

Suppose $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ has support in $\mathbb{Z}[p^{-1}]_{\geq 0}$. We say that f is *automatic* if the function $n \mapsto f_n$ is induced by some finite automaton on the alphabet $\{0, \ldots, p-1, .\}$ by identifying n with its base-p expansion.

Lemma (relatively easy)

For m a positive integer and $a \in \mathbb{Z}[p^{-1}]_{\geq 0}$, $\sum_n f_n t^n$ is automatic if and only if $\sum_n f_n t^{mn+a}$ is.

For a general $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$, we say that f is *automatic* if there exist a positive integer m and some $a \in \mathbb{Z}[p^{-1}]_{\geq 0}$ such that $\sum_n f_n t^{mn+a}$ has support in $\mathbb{Z}[p^{-1}]_{\geq 0}$ and is automatic in the above sense. By the lemma, this specializes back to the previous definition. (In the paper, the second condition is called *quasi-automatic*.)

Constraints on automata

For any automatic $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ with support in $\mathbb{Z}[p^{-1}]_{\geq 0}$, the function $f : \mathbb{Z}[p^{-1}]_{\geq 0} \to \mathbb{F}_q$ has the form $h \circ g_{\Delta}$ for some finite automaton $\Delta = (S, s_0, \delta)$ and some function $h : S \to \mathbb{F}_q$. We may also ensure that $h \circ g_{\Delta}$ sends all invalid strings to 0 and is constant over all expansions of a given n (with varying leading and trailing zeroes).

But the converse fails: such data do not in general define a generalized power series! The trouble is that $\text{Supp}(h \circ g_{\Delta})$ is usually not well-ordered.

However, one can interpret the condition that $\text{Supp}(h \circ g_{\Delta})$ be well-ordered in graph-theoretical terms. See next slide.

Constraints on automata

For any automatic $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ with support in $\mathbb{Z}[p^{-1}]_{\geq 0}$, the function $f : \mathbb{Z}[p^{-1}]_{\geq 0} \to \mathbb{F}_q$ has the form $h \circ g_{\Delta}$ for some finite automaton $\Delta = (S, s_0, \delta)$ and some function $h : S \to \mathbb{F}_q$. We may also ensure that $h \circ g_{\Delta}$ sends all invalid strings to 0 and is constant over all expansions of a given n (with varying leading and trailing zeroes).

But the converse fails: such data do not in general define a generalized power series! The trouble is that $\text{Supp}(h \circ g_{\Delta})$ is usually not well-ordered.

However, one can interpret the condition that $\text{Supp}(h \circ g_{\Delta})$ be well-ordered in graph-theoretical terms. See next slide.

Constraints on automata

For any automatic $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ with support in $\mathbb{Z}[p^{-1}]_{\geq 0}$, the function $f : \mathbb{Z}[p^{-1}]_{\geq 0} \to \mathbb{F}_q$ has the form $h \circ g_{\Delta}$ for some finite automaton $\Delta = (S, s_0, \delta)$ and some function $h : S \to \mathbb{F}_q$. We may also ensure that $h \circ g_{\Delta}$ sends all invalid strings to 0 and is constant over all expansions of a given n (with varying leading and trailing zeroes).

But the converse fails: such data do not in general define a generalized power series! The trouble is that $\text{Supp}(h \circ g_{\Delta})$ is usually not well-ordered.

However, one can interpret the condition that $\text{Supp}(h \circ g_{\Delta})$ be well-ordered in graph-theoretical terms. See next slide.

Graph-theoretic constraints

Form the directed multigraph $\tilde{\Gamma}$ on S with an edge from s to s' labeled i whenever $\delta(s, i) = s'$. We say a vertex or edge is *essential* if it occurs along a path from s_0 to a state in $h^{-1}(0)$, otherwise *inessential*.

Let Γ be obtained from $\tilde{\Gamma}$ by removing all inessential vertices and edges. Each state in Γ can be described as *preradix* and *postradix* depending on whether it occurs before or after a radix point along some (hence any) path from s_0 . Every state in $h^{-1}(0)$ is postradix.

For Supp(f) to be well-ordered, it is necessary and sufficient that for each postradix state $s \in \Gamma$,

- there is at most one directed cycle passing through *s*;
- if so, then the edge on this cycle from *s* has a larger label than any other edge from *s*.

Graph-theoretic constraints

Form the directed multigraph $\tilde{\Gamma}$ on S with an edge from s to s' labeled i whenever $\delta(s, i) = s'$. We say a vertex or edge is *essential* if it occurs along a path from s_0 to a state in $h^{-1}(0)$, otherwise *inessential*.

Let Γ be obtained from $\tilde{\Gamma}$ by removing all inessential vertices and edges. Each state in Γ can be described as *preradix* and *postradix* depending on whether it occurs before or after a radix point along some (hence any) path from s_0 . Every state in $h^{-1}(0)$ is postradix.

For Supp(f) to be well-ordered, it is necessary and sufficient that for each postradix state $s \in \Gamma$,

- there is at most one directed cycle passing through *s*;
- if so, then the edge on this cycle from *s* has a larger label than any other edge from *s*.

Graph-theoretic constraints

Form the directed multigraph $\tilde{\Gamma}$ on S with an edge from s to s' labeled i whenever $\delta(s, i) = s'$. We say a vertex or edge is *essential* if it occurs along a path from s_0 to a state in $h^{-1}(0)$, otherwise *inessential*.

Let Γ be obtained from $\tilde{\Gamma}$ by removing all inessential vertices and edges. Each state in Γ can be described as *preradix* and *postradix* depending on whether it occurs before or after a radix point along some (hence any) path from s_0 . Every state in $h^{-1}(0)$ is postradix.

For Supp(f) to be well-ordered, it is necessary and sufficient that for each postradix state $s \in \Gamma$,

- there is at most one directed cycle passing through *s*;
- if so, then the edge on this cycle from *s* has a larger label than any other edge from *s*.

An example

Take p = 3. All unlabeled transitions map to a dummy state labeled 0 which only transitions to itself (and is hence inessential).

In base 3, the support consists of

.1, .21, .221, . . .

(omitting leading and trailing zeroes). If the 1 and 2 were reversed we would instead get a decreasing sequence

.2, .12, .112, . . .

Theorem (Kedlaya, 2006)

An element $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is algebraic over $\mathbb{F}_q(t)$ if and only if it is automatic.

Some sample corollaries:

Corollary

If $f = \sum_{n \in \mathbb{Q}} f_n t^n$, $g = \sum_{n \in \mathbb{Q}} g_n t^n \in \mathbb{F}_q((t^{\mathbb{Q}}))$ are algebraic over $\mathbb{F}_q(t)$, then so is the Hadamard product $f \odot g = \sum_{n \in \mathbb{Q}} f_n g_n t^n$.

Corollary

Theorem (Kedlaya, 2006)

An element $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is algebraic over $\mathbb{F}_q(t)$ if and only if it is automatic.

Some sample corollaries:

Corollary

If $f = \sum_{n \in \mathbb{Q}} f_n t^n$, $g = \sum_{n \in \mathbb{Q}} g_n t^n \in \mathbb{F}_q((t^{\mathbb{Q}}))$ are algebraic over $\mathbb{F}_q(t)$, then so is the Hadamard product $f \odot g = \sum_{n \in \mathbb{Q}} f_n g_n t^n$.

Corollary

Theorem (Kedlaya, 2006)

An element $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is algebraic over $\mathbb{F}_q(t)$ if and only if it is automatic.

Some sample corollaries:

Corollary

If $f = \sum_{n \in \mathbb{Q}} f_n t^n$, $g = \sum_{n \in \mathbb{Q}} g_n t^n \in \mathbb{F}_q((t^{\mathbb{Q}}))$ are algebraic over $\mathbb{F}_q(t)$, then so is the Hadamard product $f \odot g = \sum_{n \in \mathbb{Q}} f_n g_n t^n$.

Corollary

Theorem (Kedlaya, 2006)

An element $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is algebraic over $\mathbb{F}_q(t)$ if and only if it is automatic.

Some sample corollaries:

Corollary

If $f = \sum_{n \in \mathbb{Q}} f_n t^n$, $g = \sum_{n \in \mathbb{Q}} g_n t^n \in \mathbb{F}_q((t^{\mathbb{Q}}))$ are algebraic over $\mathbb{F}_q(t)$, then so is the Hadamard product $f \odot g = \sum_{n \in \mathbb{Q}} f_n g_n t^n$.

Corollary

The example of Chevalley

The polynomial

$$z^p - z - t^{-1}$$

over $\mathbb{F}_q(t)$ has in $\mathbb{F}_q((t^{\mathbb{Q}}))$ the root

$$f = t^{-1/p} + t^{-1/p^2} + t^{-1/p^3} + \cdots$$

Note that tf has support in $\mathbb{Z}[p^{-1}]$ which is accepted by the regular expression

0*.@*0*

where @ represents the digit p - 1. Hence f is automatic.

Contents

- Christol's theorem is not enough
- 2 Generalized power series
- 3 Christol's theorem for generalized power series
- Proof of Christol's theorem for generalized power series

5 Final questions

Automatic implies algebraic

Suppose $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is automatic. To check that f is algebraic, we may assume $\operatorname{Supp}(f) \subset \mathbb{Z}[p^{-1}]_{\geq 0}$. Write $f = h \circ g_{\Delta}$ for some finite automaton $\Delta = (S, s_0, \delta)$ and some function $h : S \to \mathbb{F}_q$. Put

$$e_s = \sum_{n \in \mathbb{Z}, g_\Delta(n) = s} t^n, \qquad g_s = \sum_{n \in \mathbb{Z}[p^{-1}] \cap [0,1), g_\Delta(n) = s} t^n$$

Note that $e_s \neq 0$ (resp. $g_s \neq 0$) only if s is essential and preradix (resp. postradix). Moreover, $f = \sum_s e_s g_{\delta(s,.)}$ and

$$e_{s} = \sum_{s',i:\delta(s',i)=s} e_{s'}^{p} t^{i}, \qquad g_{s} = \sum_{i=0}^{p-1} g_{\delta(s,i)}^{1/p} t^{i/p}.$$

For $m \ge 0$, $g_s^{p^{m}}$ belongs to the $\mathbb{F}_q(t)$ -span of the g_s , so the g_s are algebraic. Similarly (as before) the e_s are algebraic. Hence f is algebraic.

Automatic implies algebraic

Suppose $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is automatic. To check that f is algebraic, we may assume $\operatorname{Supp}(f) \subset \mathbb{Z}[p^{-1}]_{\geq 0}$. Write $f = h \circ g_{\Delta}$ for some finite automaton $\Delta = (S, s_0, \delta)$ and some function $h : S \to \mathbb{F}_q$. Put

$$e_s = \sum_{n \in \mathbb{Z}, g_\Delta(n) = s} t^n, \qquad g_s = \sum_{n \in \mathbb{Z}[p^{-1}] \cap [0,1), g_\Delta(n) = s} t^n$$

Note that $e_s \neq 0$ (resp. $g_s \neq 0$) only if s is essential and preradix (resp. postradix). Moreover, $f = \sum_s e_s g_{\delta(s,.)}$ and

$$e_{s} = \sum_{s',i:\delta(s',i)=s} e_{s'}^{p} t^{i}, \qquad g_{s} = \sum_{i=0}^{p-1} g_{\delta(s,i)}^{1/p} t^{i/p}.$$

For $m \ge 0$, $g_s^{p^{m}}$ belongs to the $\mathbb{F}_q(t)$ -span of the g_s , so the g_s are algebraic. Similarly (as before) the e_s are algebraic. Hence f is algebraic.

Automatic implies algebraic

Suppose $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is automatic. To check that f is algebraic, we may assume $\operatorname{Supp}(f) \subset \mathbb{Z}[p^{-1}]_{\geq 0}$. Write $f = h \circ g_{\Delta}$ for some finite automaton $\Delta = (S, s_0, \delta)$ and some function $h : S \to \mathbb{F}_q$. Put

$$e_s = \sum_{n \in \mathbb{Z}, g_\Delta(n) = s} t^n, \qquad g_s = \sum_{n \in \mathbb{Z}[p^{-1}] \cap [0,1), g_\Delta(n) = s} t^n$$

Note that $e_s \neq 0$ (resp. $g_s \neq 0$) only if s is essential and preradix (resp. postradix). Moreover, $f = \sum_s e_s g_{\delta(s,.)}$ and

$$e_{s} = \sum_{s',i:\delta(s',i)=s} e_{s'}^{p} t^{i}, \qquad g_{s} = \sum_{i=0}^{p-1} g_{\delta(s,i)}^{1/p} t^{i/p}.$$

For $m \ge 0$, $g_s^{p'''}$ belongs to the $\mathbb{F}_q(t)$ -span of the g_s , so the g_s are algebraic. Similarly (as before) the e_s are algebraic. Hence f is algebraic.

Automaticity and arithmetic operations

For "algebraic implies automatic," we can't use decimations because Frobenius is bijective on $\mathbb{F}_q((t^{\mathbb{Q}}))$. Instead, we use field theory.

Lemma

The set of automatic elements of $\mathbb{F}_q((t^{\mathbb{Q}}))$ is a subfield.

Sketch of proof.

We check that automatic elements form a subring using some explicit constructions of automata. For $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ nonzero automatic, we know f is algebraic:

$$f^d + h_{d-1}f^{d-1} + \dots + h_0 = 0$$

for some $h_0,\ldots,h_{d-1}\in \mathbb{F}_q(t)$ with $h_0
eq 0.$ Then

$$f^{-1} = -h_0^{-1}(f^{d-1} + h_{d-1}f^{d-2} + \dots + h_1)$$

belongs to the subring of automatic elements, which is thus a subfield. $\hfill\square$

Automaticity and arithmetic operations

For "algebraic implies automatic," we can't use decimations because Frobenius is bijective on $\mathbb{F}_q((t^{\mathbb{Q}}))$. Instead, we use field theory.

Lemma

The set of automatic elements of $\mathbb{F}_q((t^{\mathbb{Q}}))$ is a subfield.

Sketch of proof.

We check that automatic elements form a subring using some explicit constructions of automata. For $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ nonzero automatic, we know f is algebraic:

$$f^d + h_{d-1}f^{d-1} + \dots + h_0 = 0$$

for some $h_0,\ldots,h_{d-1}\in \mathbb{F}_q(t)$ with $h_0
eq 0$. Then

$$f^{-1} = -h_0^{-1}(f^{d-1} + h_{d-1}f^{d-2} + \dots + h_1)$$

belongs to the subring of automatic elements, which is thus a subfield. $\hfill\square$

Automaticity and arithmetic operations

For "algebraic implies automatic," we can't use decimations because Frobenius is bijective on $\mathbb{F}_q((t^{\mathbb{Q}}))$. Instead, we use field theory.

Lemma

The set of automatic elements of $\mathbb{F}_q((t^{\mathbb{Q}}))$ is a subfield.

Sketch of proof.

We check that automatic elements form a subring using some explicit constructions of automata. For $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ nonzero automatic, we know f is algebraic:

$$f^d + h_{d-1}f^{d-1} + \dots + h_0 = 0$$

for some $h_0,\ldots,h_{d-1}\in \mathbb{F}_q(t)$ with $h_0
eq 0$. Then

$$f^{-1} = -h_0^{-1}(f^{d-1} + h_{d-1}f^{d-2} + \dots + h_1)$$

belongs to the subring of automatic elements, which is thus a subfield.

Input from field theory: Artin-Schreier extensions

Lemma (standard)

Let F be a field of characteristic p. Then the $\mathbb{Z}/p\mathbb{Z}$ -extensions of F coincide with the **Artin-Schreier extensions**, i.e., those generated by roots of polynomials of the form

$$z^p-z-c$$
 $(c\in F).$

Note that the Galois action is generated by $z \mapsto z + 1$.

Proposition (standard)

Let K be a finite extension of $\mathbb{F}_q(t)$. Then there exist a power q' of q, a positive integer m, and a finite extension L of $\mathbb{F}_{q'}(t^{1/m})$ containing K such that $L/\mathbb{F}_q(t)$ can be written as a tower of Artin-Schreier field extensions.

Automaticity and Artin-Schreier extensions

Lemma

If $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is automatic and

$$g^{p}-g=f,$$

then g is automatic.

Sketch of proof.

We may separate the cases where f is supported in $(-\infty, 0)$ and $(0, \infty)$. In these cases we have respectively

$$g = c + f^{-1/p} + f^{-1/p^2} + \cdots$$
$$g = c - f - f^p - \cdots$$

for some $c \in \mathbb{F}_p$. In both cases, we may explicitly construct an automaton producing g from one that produces f.

Kiran S. Kedlaya (UCSD)

Christol's theorem, part 2

Automaticity and Artin-Schreier extensions

Lemma

If $f \in \mathbb{F}_q((t^{\mathbb{Q}}))$ is automatic and

$$g^{p}-g=f,$$

then g is automatic.

Sketch of proof.

We may separate the cases where f is supported in $(-\infty, 0)$ and $(0, \infty)$. In these cases we have respectively

$$g = c + f^{-1/p} + f^{-1/p^2} + \cdots$$
$$g = c - f - f^p - \cdots$$

for some $c \in \mathbb{F}_p$. In both cases, we may explicitly construct an automaton producing g from one that produces f.

We now know that for K an algebraic closure of \mathbb{F}_q ,

- for q' varying over powers of q, the automatic elements of $\bigcup_{q'} \mathbb{F}_{q'}((t^{\mathbb{Q}}))$ form a subfield of the algebraic closure of $\mathbb{F}_q(t)$ in $\mathcal{K}((t^{\mathbb{Q}}))$;
- this subfield contains $\mathbb{F}_{q'}(t^{1/m})$ for any power q' of q and any positive integer m;
- this subfield is closed under extraction of roots of Artin-Schreier polynomials.
- It therefore is the whole algebraic closure of $\mathbb{F}_q(t)$. The theorem follows.

We now know that for K an algebraic closure of \mathbb{F}_q ,

- for q' varying over powers of q, the automatic elements of $\bigcup_{q'} \mathbb{F}_{q'}((t^{\mathbb{Q}}))$ form a subfield of the algebraic closure of $\mathbb{F}_q(t)$ in $\mathcal{K}((t^{\mathbb{Q}}))$;
- this subfield contains $\mathbb{F}_{q'}(t^{1/m})$ for any power q' of q and any positive integer m;
- this subfield is closed under extraction of roots of Artin-Schreier polynomials.
- It therefore is the whole algebraic closure of $\mathbb{F}_q(t)$. The theorem follows.

We now know that for K an algebraic closure of \mathbb{F}_q ,

- for q' varying over powers of q, the automatic elements of $\bigcup_{q'} \mathbb{F}_{q'}((t^{\mathbb{Q}}))$ form a subfield of the algebraic closure of $\mathbb{F}_q(t)$ in $\mathcal{K}((t^{\mathbb{Q}}))$;
- this subfield contains $\mathbb{F}_{q'}(t^{1/m})$ for any power q' of q and any positive integer m;
- this subfield is closed under extraction of roots of Artin-Schreier polynomials.

It therefore is the whole algebraic closure of $\mathbb{F}_q(t)$. The theorem follows.

We now know that for K an algebraic closure of \mathbb{F}_q ,

- for q' varying over powers of q, the automatic elements of
 ∪_{q'} 𝔽_{q'}((t^ℚ)) form a subfield of the algebraic closure of 𝔽_q(t) in
 K((t^ℚ));
- this subfield contains $\mathbb{F}_{q'}(t^{1/m})$ for any power q' of q and any positive integer m;
- this subfield is closed under extraction of roots of Artin-Schreier polynomials.

It therefore is the whole algebraic closure of $\mathbb{F}_q(t)$. The theorem follows.

We now know that for K an algebraic closure of \mathbb{F}_q ,

- for q' varying over powers of q, the automatic elements of
 ∪_{q'} 𝔽_{q'}((t^ℚ)) form a subfield of the algebraic closure of 𝔽_q(t) in
 K((t^ℚ));
- this subfield contains $\mathbb{F}_{q'}(t^{1/m})$ for any power q' of q and any positive integer m;
- this subfield is closed under extraction of roots of Artin-Schreier polynomials.
- It therefore is the whole algebraic closure of $\mathbb{F}_q(t)$. The theorem follows.

Contents

- Christol's theorem is not enough
- 2 Generalized power series
- 3 Christol's theorem for generalized power series
- Proof of Christol's theorem for generalized power series

Final questions

Automata and explicit computations

When making machine computations in an algebraic closure of \mathbb{Q} , it is often inefficient to work exactly because one is forced to keep track of algebraic number fields of large degree. It is sometimes more practical to keep track of approximations in \mathbb{C} of sufficient accuracy, i.e., to do *interval arithmetic*.

It should be possible to similarly compute in an algebraic closure of $\mathbb{F}_q(t)$ using automata. The tricky part is to describe a sensible notion of *approximation*; this is needed because exact computation is usually infeasible.

Automata and explicit computations

When making machine computations in an algebraic closure of \mathbb{Q} , it is often inefficient to work exactly because one is forced to keep track of algebraic number fields of large degree. It is sometimes more practical to keep track of approximations in \mathbb{C} of sufficient accuracy, i.e., to do *interval arithmetic*.

It should be possible to similarly compute in an algebraic closure of $\mathbb{F}_q(t)$ using automata. The tricky part is to describe a sensible notion of *approximation*; this is needed because exact computation is usually infeasible.

Relative algebraicity

For *K* an algebraic closure of \mathbb{F}_q , it makes sense to ask whether $x_1, \ldots, x_n \in K((t^{\mathbb{Q}}))$ are algebraically dependent over $\mathbb{F}_q(t)$, i.e., whether $P(x_1, \ldots, x_n) = 0$ for some nonzero *n*-variate polynomial *P* over $\mathbb{F}_q(t)$.

Problem

Is there an automata-theoretic characterization of algebraic dependence?

Already the case of ordinary power series is of interest.

Relative algebraicity

For *K* an algebraic closure of \mathbb{F}_q , it makes sense to ask whether $x_1, \ldots, x_n \in K((t^{\mathbb{Q}}))$ are algebraically dependent over $\mathbb{F}_q(t)$, i.e., whether $P(x_1, \ldots, x_n) = 0$ for some nonzero *n*-variate polynomial *P* over $\mathbb{F}_q(t)$.

Problem

Is there an automata-theoretic characterization of algebraic dependence?

Already the case of ordinary power series is of interest.