
Christol’s theorem and its analogue
for generalized power series, part 2

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego
kedlaya@ucsd.edu

http://math.ucsd.edu/~kedlaya/slides/

Challenges in Combinatorics on Words
Fields Institute, Toronto, April 26, 2013

This part based on: K.S. Kedlaya, “Finite automata and algebraic extensions of function fields”, Journal de Théorie des
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Christol’s theorem is not enough

Recap: Christol’s theorem

Theorem (Christol, 1979)

Let Fq be a finite field of characteristic p. A formal power series

f =
∞∑

n=0

fntn ∈ FqJtK

is algebraic over the rational function field Fq(t) if and only if it is
automatic: for all c ∈ Fq, the set of base-p expansions of those n ≥ 0
with fn = c form a regular language on the alphabet {0, . . . , p − 1}.
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Christol’s theorem is not enough

Why Christol’s theorem is not enough

Theorem (Puiseux, 1850 for K = C)

For K a field of characteristic 0, every finite extension of the field K ((t))
is contained in some extension of the form L((t1/m)) for L a finite
extension of K and m a positive integer.

This fails in positive characteristic as noted by Chevalley.

Proposition

The polynomial
zp − z − t−1 ∈ Fq((t))[z ]

has no root in Fq′((t1/m)) for any power q′ of q and any positive integer
m. (Proof on next slide.)
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Christol’s theorem is not enough

Why Christol’s theorem is not enough (continued)

Proof of the Proposition.

Suppose z =
∑

n zntn were such a root. Then

zp =
∑

n

zp
n tnp =

∑
n

zp
n/ptn

and so
t−1 =

∑
n

(zp
n/p − zn)tn.

Since z is a (nonzero) formal power series in t1/m for some m, there must
be a smallest index i for which zi 6= 0. If i < −1/p, then 0 = zp

i − zpi and
so zpi 6= 0, contradiction. Therefore z−1 = 0, which forces

1 = z−1/p = z−1/p2 = · · ·

and precludes z ∈ Fq′((t1/m)) for any m, contradiction.
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Generalized power series

Generalized power series

Definition (Hahn, 1905)

A generalized power series over a field K is a formal expression
f =

∑
n∈Q fntn with fn ∈ K whose support

Supp(f ) = {n ∈ Q : fn 6= 0}

is a well-ordered subset of Q, i.e., one containing no infinite decreasing
sequence. (Equivalently, every nonempty subset has a least element.)

We will write K ((tQ)) for the set of generalized power series. To be
precise, these are really generalized Laurent series; we write KJtQK to pick
out those series whose supports are contained in [0,+∞).

Variants: Hahn allows Q to be replaced by a totally ordered abelian group.
There is even a noncommutative version due to Mal’cev and Neumann
(independently).
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Generalized power series

Arithmetic for generalized power series

It is easy to see that generalized power series can be added formally: the
point is that the union of two well-ordered sets is again well-ordered.

Multiplication is less clear: given f =
∑

n∈Q fntn, g =
∑

n∈Q gntn, note
first that for any n ∈ Q the formal sum∑

i ,j∈Q:i+j=n

fi gj

only contains finitely many nonzero terms. Then check that the support of

f + g =
∑
n∈Q

 ∑
i ,j∈Q:i+j=n

fi gj

 tn

is well-ordered.
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Generalized power series

Arithmetic for generalized power series (continued)

It follows that KJtQK and K ((tQ)) are both rings under formal addition
and multiplication. The ring K ((tQ)) is also a field: any nonzero element
can be written as atm(1− f ) where a ∈ K ∗, m ∈ Q, f ∈ KJtQK, and
f0 = 0. But then the sum

∞∑
n=0

f n

makes sense and defines an inverse of 1− f .

What “the sum makes sense” really means here is that K ((tQ)) is
complete for the t-adic valuation

vt(f ) = min Supp(f ).
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Generalized power series

Algebraic closures

Theorem (Hahn, 1905)

If K is an algebraically closed field, then so is K ((tQ)).

Sketch of proof.

Given a nonconstant polynomial P over K ((tQ)), one can build a root by a
transfinite sequence of successive approximations (one indexed by some
countable ordinal).

In particular, if K is an algebraic closure of Fq, then K ((tQ)) contains an
algebraic closure of Fq(t). Our goal (inspired by a suggestion of
Abhyankar) is to identify this algebraic closure explicitly.
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Generalized power series

More on algebraic closures

Let Z[p−1] denote the subring of Q generated by p−1, i.e., the ring of
rational numbers with only powers of p in their denominators.

Proposition (easy)

Let K be an algebraic closure of Fq. Then every element f of the algebraic
closure of Fq((t)) within Fq((tQ)) has the following properties.

(a) We have Supp(f ) ⊂ m−1Z[p−1] for some positive integer m coprime
to p (depending on f ).

(b) The coefficients of f belong to some finite subfield Fq′ of K .

The same is then true of the algebraic closure of Fq(t) within Fq((tQ)).
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Christol’s theorem for generalized power series

Comments on base-p expansions

Elements of Q≥0 have well-defined base-p expansions, but only elements
of Z[p−1]≥0 have finite expansions. Such expansions are words on the
alphabet {0, . . . , p − 1, .}, where the last symbol is the radix point.

We will allow arbitrary leading and trailing zeroes, but we will insist that
to be valid, expansions must have exactly one radix point.

Warning: this is a different convention than in the paper (where no leading
or trailing zeroes are allowed), but the results are equivalent.

Kiran S. Kedlaya (UCSD) Christol’s theorem, part 2 Toronto, April 26, 2013 13 / 28



Christol’s theorem for generalized power series

Comments on base-p expansions

Elements of Q≥0 have well-defined base-p expansions, but only elements
of Z[p−1]≥0 have finite expansions. Such expansions are words on the
alphabet {0, . . . , p − 1, .}, where the last symbol is the radix point.

We will allow arbitrary leading and trailing zeroes, but we will insist that
to be valid, expansions must have exactly one radix point.

Warning: this is a different convention than in the paper (where no leading
or trailing zeroes are allowed), but the results are equivalent.

Kiran S. Kedlaya (UCSD) Christol’s theorem, part 2 Toronto, April 26, 2013 13 / 28



Christol’s theorem for generalized power series

Comments on base-p expansions

Elements of Q≥0 have well-defined base-p expansions, but only elements
of Z[p−1]≥0 have finite expansions. Such expansions are words on the
alphabet {0, . . . , p − 1, .}, where the last symbol is the radix point.

We will allow arbitrary leading and trailing zeroes, but we will insist that
to be valid, expansions must have exactly one radix point.

Warning: this is a different convention than in the paper (where no leading
or trailing zeroes are allowed), but the results are equivalent.

Kiran S. Kedlaya (UCSD) Christol’s theorem, part 2 Toronto, April 26, 2013 13 / 28



Christol’s theorem for generalized power series

Automatic generalized power series

Suppose f ∈ Fq((tQ)) has support in Z[p−1]≥0. We say that f is
automatic if the function n 7→ fn is induced by some finite automaton on
the alphabet {0, . . . , p − 1, .} by identifying n with its base-p expansion.

Lemma (relatively easy)

For m a positive integer and a ∈ Z[p−1]≥0,
∑

n fntn is automatic if and
only if

∑
n fntmn+a is.

For a general f ∈ Fq((tQ)), we say that f is automatic if there exist a
positive integer m and some a ∈ Z[p−1]≥0 such that

∑
n fntmn+a has

support in Z[p−1]≥0 and is automatic in the above sense. By the lemma,
this specializes back to the previous definition. (In the paper, the second
condition is called quasi-automatic.)
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Christol’s theorem for generalized power series

Constraints on automata

For any automatic f ∈ Fq((tQ)) with support in Z[p−1]≥0, the function
f : Z[p−1]≥0 → Fq has the form h ◦ g∆ for some finite automaton
∆ = (S , s0, δ) and some function h : S → Fq. We may also ensure that
h ◦ g∆ sends all invalid strings to 0 and is constant over all expansions of a
given n (with varying leading and trailing zeroes).

But the converse fails: such data do not in general define a generalized
power series! The trouble is that Supp(h ◦ g∆) is usually not well-ordered.

However, one can interpret the condition that Supp(h ◦ g∆) be
well-ordered in graph-theoretical terms. See next slide.
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Christol’s theorem for generalized power series

Graph-theoretic constraints

Form the directed multigraph Γ̃ on S with an edge from s to s ′ labeled i
whenever δ(s, i) = s ′. We say a vertex or edge is essential if it occurs
along a path from s0 to a state in h−1(0), otherwise inessential.

Let Γ be obtained from Γ̃ by removing all inessential vertices and edges.
Each state in Γ can be described as preradix and postradix depending on
whether it occurs before or after a radix point along some (hence any)
path from s0. Every state in h−1(0) is postradix.

For Supp(f ) to be well-ordered, it is necessary and sufficient that for each
postradix state s ∈ Γ,

there is at most one directed cycle passing through s;

if so, then the edge on this cycle from s has a larger label than any
other edge from s.
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Christol’s theorem for generalized power series

An example

Take p = 3. All unlabeled transitions map to a dummy state labeled 0
which only transitions to itself (and is hence inessential).

start // 0

0

==
. // 0

1 //

2

>> 1

0

??

In base 3, the support consists of

.1, .21, .221, . . .

(omitting leading and trailing zeroes). If the 1 and 2 were reversed we
would instead get a decreasing sequence

.2, .12, .112, . . . .
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Christol’s theorem for generalized power series

An extension of Christol’s theorem

Theorem (Kedlaya, 2006)

An element f ∈ Fq((tQ)) is algebraic over Fq(t) if and only if it is
automatic.

Some sample corollaries:

Corollary

If f =
∑

n∈Q fntn, g =
∑

n∈Q gntn ∈ Fq((tQ)) are algebraic over Fq(t),
then so is the Hadamard product f � g =

∑
n∈Q fngntn.

Corollary

If f =
∑

n∈Q fntn is algebraic over Fq(t), then so is
∑

n∈Q∩I fntn for any
interval I in R.
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Christol’s theorem for generalized power series

The example of Chevalley

The polynomial
zp − z − t−1

over Fq(t) has in Fq((tQ)) the root

f = t−1/p + t−1/p2
+ t−1/p3

+ · · · .

Note that tf has support in Z[p−1] which is accepted by the regular
expression

0∗.@∗0∗

where @ represents the digit p − 1. Hence f is automatic.
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Proof of Christol’s theorem for generalized power series
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Proof of Christol’s theorem for generalized power series

Automatic implies algebraic

Suppose f ∈ Fq((tQ)) is automatic. To check that f is algebraic, we may
assume Supp(f ) ⊂ Z[p−1]≥0. Write f = h ◦ g∆ for some finite automaton
∆ = (S , s0, δ) and some function h : S → Fq. Put

es =
∑

n∈Z,g∆(n)=s

tn, gs =
∑

n∈Z[p−1]∩[0,1),g∆(n)=s

tn.

Note that es 6= 0 (resp. gs 6= 0) only if s is essential and preradix (resp.
postradix). Moreover, f =

∑
s esgδ(s,.) and

es =
∑

s′,i :δ(s′,i)=s

ep
s′t

i , gs =

p−1∑
i=0

g
1/p
δ(s,i)t i/p.

For m ≥ 0, g pm

s belongs to the Fq(t)-span of the gs , so the gs are
algebraic. Similarly (as before) the es are algebraic. Hence f is algebraic.
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Automatic implies algebraic
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Proof of Christol’s theorem for generalized power series

Automaticity and arithmetic operations

For “algebraic implies automatic,” we can’t use decimations because
Frobenius is bijective on Fq((tQ)). Instead, we use field theory.

Lemma

The set of automatic elements of Fq((tQ)) is a subfield.

Sketch of proof.

We check that automatic elements form a subring using some explicit
constructions of automata. For f ∈ Fq((tQ)) nonzero automatic, we know
f is algebraic:

f d + hd−1f d−1 + · · ·+ h0 = 0

for some h0, . . . , hd−1 ∈ Fq(t) with h0 6= 0. Then

f −1 = −h−1
0 (f d−1 + hd−1f d−2 + · · ·+ h1)

belongs to the subring of automatic elements, which is thus a subfield.
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Proof of Christol’s theorem for generalized power series

Input from field theory: Artin-Schreier extensions

Lemma (standard)

Let F be a field of characteristic p. Then the Z/pZ-extensions of F
coincide with the Artin-Schreier extensions, i.e., those generated by
roots of polynomials of the form

zp − z − c (c ∈ F ).

Note that the Galois action is generated by z 7→ z + 1.

Proposition (standard)

Let K be a finite extension of Fq(t). Then there exist a power q′ of q, a
positive integer m, and a finite extension L of Fq′(t1/m) containing K such
that L/Fq(t) can be written as a tower of Artin-Schreier field extensions.
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Proof of Christol’s theorem for generalized power series

Automaticity and Artin-Schreier extensions

Lemma

If f ∈ Fq((tQ)) is automatic and

g p − g = f ,

then g is automatic.

Sketch of proof.

We may separate the cases where f is supported in (−∞, 0) and (0,∞).
In these cases we have respectively

g = c + f −1/p + f −1/p2
+ · · ·

g = c − f − f p − · · ·

for some c ∈ Fp. In both cases, we may explicitly construct an automaton
producing g from one that produces f .

Kiran S. Kedlaya (UCSD) Christol’s theorem, part 2 Toronto, April 26, 2013 24 / 28



Proof of Christol’s theorem for generalized power series

Automaticity and Artin-Schreier extensions

Lemma

If f ∈ Fq((tQ)) is automatic and

g p − g = f ,

then g is automatic.

Sketch of proof.

We may separate the cases where f is supported in (−∞, 0) and (0,∞).
In these cases we have respectively

g = c + f −1/p + f −1/p2
+ · · ·

g = c − f − f p − · · ·

for some c ∈ Fp. In both cases, we may explicitly construct an automaton
producing g from one that produces f .

Kiran S. Kedlaya (UCSD) Christol’s theorem, part 2 Toronto, April 26, 2013 24 / 28



Proof of Christol’s theorem for generalized power series

Algebraicity implies automaticity

We now know that for K an algebraic closure of Fq,

for q′ varying over powers of q, the automatic elements of⋃
q′ Fq′((tQ)) form a subfield of the algebraic closure of Fq(t) in

K ((tQ));

this subfield contains Fq′(t1/m) for any power q′ of q and any positive
integer m;

this subfield is closed under extraction of roots of Artin-Schreier
polynomials.

It therefore is the whole algebraic closure of Fq(t). The theorem follows.
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Final questions
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Final questions

Automata and explicit computations

When making machine computations in an algebraic closure of Q, it is
often inefficient to work exactly because one is forced to keep track of
algebraic number fields of large degree. It is sometimes more practical to
keep track of approximations in C of sufficient accuracy, i.e., to do interval
arithmetic.

It should be possible to similarly compute in an algebraic closure of Fq(t)
using automata. The tricky part is to describe a sensible notion of
approximation; this is needed because exact computation is usually
infeasible.
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Final questions

Relative algebraicity

For K an algebraic closure of Fq, it makes sense to ask whether
x1, . . . , xn ∈ K ((tQ)) are algebraically dependent over Fq(t), i.e., whether
P(x1, . . . , xn) = 0 for some nonzero n-variate polynomial P over Fq(t).

Problem

Is there an automata-theoretic characterization of algebraic dependence?

Already the case of ordinary power series is of interest.
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