### Discovering Hidden Repetitions

Florin Manea<sup>a</sup>

Joint work with Paweł Gawrychowski<sup>b</sup>, Robert Mercaș<sup>c</sup>, Dirk Nowotka<sup>a</sup>

<sup>a</sup>Christian-Albrechts-Universität zu Kiel <sup>b</sup>Max-Planck-Institute für Informatik Saarbrücken <sup>c</sup>Otto-von-Guericke-Universität Magdeburg

Toronto, April 2013

A word *w* is

- repetition: w = t<sup>n</sup>, for some proper prefix t (called root) primitive word: not a repetition.
- *f*-repetition: w ∈ t{t, f(t)}\*, for some proper prefix t (called root)
   *f*-primitive word: not an *f*-repetition.

A word w is

- repetition: w = t<sup>n</sup>, for some proper prefix t (called root) primitive word: not a repetition.
- *f*-repetition: w ∈ t{t, f(t)}\*, for some proper prefix t (called root)
   *f*-primitive word: not an *f*-repetition.



A word w is

- repetition: w = t<sup>n</sup>, for some proper prefix t (called root) primitive word: not a repetition.
- *f*-repetition: w ∈ t{t, f(t)}\*, for some proper prefix t (called root)
   *f*-primitive word: not an *f*-repetition.



A word w is

- repetition: w = t<sup>n</sup>, for some proper prefix t (called root) primitive word: not a repetition.
- *f*-repetition: w ∈ t{t, f(t)}\*, for some proper prefix t (called root)
   *f*-primitive word: not an *f*-repetition.

ACGTAC

# Example

- primitive from the classical point of view
- **f**-primitive for morphism f with f(A) = T, f(C) = G
- f-power for antimorphism f with f(A) = T, f(C) = G:

$$ACGTAC = AC \cdot f(AC) \cdot AC$$

Repetitions: central in combinatorics on words and applications!

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.] Originated from computational biology:

- Watson-Crick complement: an antimorphic involution
- a single-stranded DNA and its complement encode the same information.

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.] Originated from computational biology:

- Watson-Crick complement: an antimorphic involution
- a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.] Originated from computational biology:

- Watson-Crick complement: an antimorphic involution
- a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure. Such structures appear also in music: ternary song form.

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.] Originated from computational biology:

- Watson-Crick complement: an antimorphic involution
- a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure. Such structures appear also in music: ternary song form.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

### Finding Pseudo-repetitions

#### Problem

#### Given $w \in V^*$ and f, decide whether this word is an f-repetition.

### Finding Pseudo-repetitions

#### Problem

Given  $w \in V^*$  and f, decide whether this word is an f-repetition.

#### Problem

Given  $w \in V^+$ , decide whether there exists an  $f : V^* \to V^*$  and a prefix t of w such that  $w \in t\{t, f(t)\}^+$ .

#### Problem

Given  $w \in V^*$  and f, decide whether this word is an f-repetition.

#### Problem

Given  $w \in V^+$ , decide whether there exists an  $f : V^* \to V^*$  and a prefix t of w such that  $w \in t\{t, f(t)\}^+$ .

#### Problem

Given a word  $w \in V^*$  and f, (1) Enumerate all  $(i, j, \ell)$ ,  $1 \le i, j, \ell \le |w|$ , such that there exists t with  $w[i..j] \in \{t, f(t)\}^{\ell}$ . (2) Given k, enumerate all (i, j),  $1 \le i, j \le |w|$ , so there exists t with  $w[i..j] \in \{t, f(t)\}^k$ . Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over  $|V| \in \mathcal{O}(n^c)$ .

Build in linear time:

- suffix array data structure for *u*;

– data structures allowing us to answer in  $\mathcal{O}(1)$  queries:

"How long is the longest common prefix of u[i..n] and u[j..n]?", denoted  $LCPref_u(i,j)$ .

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over  $|V| \in \mathcal{O}(n^c)$ .

Build in linear time:

- suffix array data structure for u;

– data structures allowing us to answer in  $\mathcal{O}(1)$  queries:

"How long is the longest common prefix of u[i..n] and u[j..n]?", denoted  $LCPref_u(i,j)$ .

In our case:

- w is the input word,
- f a fixed anti-/morphism,
- $u = wf(w), |u| \in \mathcal{O}(|w|).$

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over  $|V| \in \mathcal{O}(n^c)$ .

Build in linear time:

- suffix array data structure for *u*;

– data structures allowing us to answer in  $\mathcal{O}(1)$  queries:

"How long is the longest common prefix of u[i..n] and u[j..n]?", denoted  $LCPref_u(i,j)$ .

In our case:

- w is the input word,
- f a fixed anti-/morphism,
- u = wf(w),  $|u| \in \mathcal{O}(|w|)$ .
- Constant time: does w[i..j] / f(w[i..j]) occur at position s in w?

#### [Fine, Wilf: Uniqueness theorem for periodic functions (1965).]

#### Theorem

If  $\alpha \in u\{u, v\}^*$  and  $\beta \in v\{u, v\}^*$  have a common prefix of length at least  $|u| + |v| - \gcd(|u|, |v|)$ , then u and v are powers of a common word.

Basic structure of pseudo-repetitions (used for y = f(x)).

#### Lemma (Uniqueness-1)

x, y words over V; x, y not powers of the same word,  $w \in \{x, y\}^*$ . There exists a unique decomposition of w in factors x, y. Basic structure of pseudo-repetitions (used for y = f(x)).

#### Lemma (Uniqueness-1)

x, y words over V; x, y not powers of the same word,  $w \in \{x, y\}^*$ . There exists a unique decomposition of w in factors x, y.

#### Lemma (Uniqueness-2)

f non-erasing anti-/morphism, x, y, z words over V, f(x) = f(z) = y,  $\{x, y\}^* x \{x, y\}^* \cap \{z, y\}^* z \{z, y\}^* \neq \emptyset$ . Then x = z.

### Basic tools

How to find the unique decomposition? (Take y to be the longest of x and f(x).)

#### Lemma (Shifts)

 $x, y \in V^+$ ,  $w \in \{x, y\}^* \setminus \{x\}^*$ ,  $|x| \le |y|$ , x, y not powers of some word.  $M = \max\{p \mid x^p \text{ is a prefix of } w\}$  and  $N = \max\{p \mid x^p \text{ is a prefix of } y\}$ .

We have:

•  $M \ge N$ .

### Basic tools

How to find the unique decomposition? (Take y to be the longest of x and f(x).)

#### Lemma (Shifts)

 $x, y \in V^+$ ,  $w \in \{x, y\}^* \setminus \{x\}^*$ ,  $|x| \le |y|$ , x, y not powers of some word.  $M = \max\{p \mid x^p \text{ is a prefix of } w\}$  and  $N = \max\{p \mid x^p \text{ is a prefix of } y\}$ .

We have:

- $M \ge N$ .
- If M = N then  $w \in y\{x, y\}^*$  holds.

### Basic tools

How to find the unique decomposition? (Take y to be the longest of x and f(x).)

#### Lemma (Shifts)

 $x, y \in V^+$ ,  $w \in \{x, y\}^* \setminus \{x\}^*$ ,  $|x| \le |y|$ , x, y not powers of some word.  $M = \max\{p \mid x^p \text{ is a prefix of } w\}$  and  $N = \max\{p \mid x^p \text{ is a prefix of } y\}$ .

We have:

- $M \ge N$ .
- If M = N then  $w \in y\{x, y\}^*$  holds.

• If M > N then exactly one of the following holds:  $-w \in x^{M-N}y\{x, y\}^* \setminus x^{M-N-1}yxV^*,$  $-w \in x^{M-N-1}y\{x, y\}^+ \setminus x^{M-N}yV^*$  and N > 0.

1. Test whether there exists x such that  $w = x^k$ , with  $k \ge 2$ .

- 1. Test whether there exists x such that  $w = x^k$ , with  $k \ge 2$ .
- 2. For all t = w[1..i],  $|f(t)| \ge 1$ , t, f(t) not powers of some  $x \in V^*$  do 3&4.
- 3. Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemma!

- 1. Test whether there exists x such that  $w = x^k$ , with  $k \ge 2$ .
- 2. For all t = w[1..i],  $|f(t)| \ge 1$ , t, f(t) not powers of some  $x \in V^*$  do 3&4.
- 3. Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemma!
- 4. We construct a maximal prefix  $w[i+1..s-1] \in \{x, y\}^*$  of w[i+1..n]: - Initially, s = i + 1.
  - Let  $M = \max\{p \mid x^p \text{ prefix of } w[s..n]\}$ ,  $N = \max\{p \mid x^p \text{ prefix of } y\}$ ;
  - If  $w[s..n] = x^{M}$ , we are done! - If  $x^{M-N}y$  occurs at position *s*, shift s + = (M - N)|x| + |y|, iterate; - If M > N and  $x^{M-N-1}yx$  occurs at *s*, shift s + = (M - N - 1)|x| + |y|, iterate;

- 1. Test whether there exists x such that  $w = x^k$ , with  $k \ge 2$ .
- 2. For all t = w[1..i],  $|f(t)| \ge 1$ , t, f(t) not powers of some  $x \in V^*$  do 3&4.
- 3. Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemma!
- 4. We construct a maximal prefix  $w[i+1..s-1] \in \{x, y\}^*$  of w[i+1..n]: - Initially, s = i + 1.
  - Let  $M = \max\{p \mid x^p \text{ prefix of } w[s..n]\}, N = \max\{p \mid x^p \text{ prefix of } y\};$
  - If  $w[s..n] = x^{M}$ , we are done! - If  $x^{M-N}y$  occurs at position *s*, shift s + = (M - N)|x| + |y|, iterate; - If M > N and  $x^{M-N-1}yx$  occurs at *s*, shift s + = (M - N - 1)|x| + |y|, iterate;

Time complexity:

- f general 
$$\mathcal{O}(\sum_{1 \le i \le n} \lfloor \frac{n}{i} \rfloor) \subseteq \mathcal{O}(n \log n).$$

- 1. Test whether there exists x such that  $w = x^k$ , with  $k \ge 2$ .
- 2. For all t = w[1..i],  $|f(t)| \ge 1$ , t, f(t) not powers of some  $x \in V^*$  do 3&4.
- 3. Let x be the shortest of t and f(t), and y the longest. Apply Shifts Lemma!
- 4. We construct a maximal prefix  $w[i+1..s-1] \in \{x, y\}^*$  of w[i+1..n]: - Initially. s = i + 1.
  - Let  $M = \max\{p \mid x^p \text{ prefix of } w[s..n]\}$ ,  $N = \max\{p \mid x^p \text{ prefix of } y\}$ ;
  - If  $w[s..n] = x^{M}$ , we are done! - If  $x^{M-N}y$  occurs at position s, shift s + = (M - N)|x| + |y|, iterate; - If M > N and  $x^{M-N-1}yx$  occurs at s, shift s + = (M - N - 1)|x| + |y|, iterate;

Time complexity:

- f general 
$$\mathcal{O}(\sum_{1 \le i \le n} \lfloor \frac{n}{i} \rfloor) \subseteq \mathcal{O}(n \log n).$$

- *f* uniform:  $\mathcal{O}(\sum_{i|n} \lfloor \frac{n}{i} \rfloor) \subseteq \mathcal{O}(n \log \log n)$ .

 In the algorithm: y = f(t) and x = t. Each shift: |t<sup>k</sup> f(t)|. But k can be 0...

- In the algorithm: y = f(t) and x = t. Each shift:  $|t^k f(t)|$ . But k can be 0...
- Idea: shift with a word from {t, f(t)}<sup>α</sup>, for some fixed α depending on n but not on t.

- In the algorithm: y = f(t) and x = t. Each shift:  $|t^k f(t)|$ . But k can be 0...
- Idea: shift with a word from {t, f(t)}<sup>α</sup>, for some fixed α depending on n but not on t.
- Consequence: for each t we do  $\frac{n}{\alpha|t|}$  steps...
- ... the overall complexity  $\mathcal{O}(\frac{n\log\log n}{\alpha})$ .

- In the algorithm: y = f(t) and x = t. Each shift:  $|t^k f(t)|$ . But k can be 0...
- Idea: shift with a word from {t, f(t)}<sup>α</sup>, for some fixed α depending on n but not on t.
- Consequence: for each t we do  $\frac{n}{\alpha|t|}$  steps...
- ... the overall complexity  $\mathcal{O}(\frac{n\log\log n}{\alpha})$ .
- Linear time:  $\alpha = \lceil \log \log n \rceil$ .

- In the algorithm: y = f(t) and x = t. Each shift:  $|t^k f(t)|$ . But k can be 0...
- Idea: shift with a word from {t, f(t)}<sup>α</sup>, for some fixed α depending on n but not on t.
- Consequence: for each t we do  $\frac{n}{\alpha|t|}$  steps...
- ... the overall complexity  $\mathcal{O}(\frac{n\log\log n}{\alpha})$ .
- Linear time:  $\alpha = \lceil \log \log n \rceil$ .
- Doable: preprocessing + careful organisation of data ...

#### Theorem (STACS 2013)

Given  $w \in V^*$  and  $f : V^* \to V^*$  be a constant size anti-/morphism. One can decide whether  $w \in t\{t, f(t)\}^+$  in  $\mathcal{O}(n \log n)$  time. If f is uniform we only need  $\mathcal{O}(n)$  time.

#### Theorem (STACS 2013)

Given  $w \in V^*$  and  $f : V^* \to V^*$  be a constant size anti-/morphism. One can decide whether  $w \in t\{t, f(t)\}^+$  in  $\mathcal{O}(n \log n)$  time. If f is uniform we only need  $\mathcal{O}(n)$  time.

#### Theorem (STACS 2013)

Given  $w \in V^*$  and  $f : V^* \to V^*$  be a constant size anti-/morphism, we decide whether  $w \in \{t, f(t)\}\{t, f(t)\}^+$  in  $\mathcal{O}(n^{1+\frac{1}{\log \log n}} \log n)$  time. If f is non-erasing we solve the problem in  $\mathcal{O}(n \log n)$  time, while when f is uniform we only need  $\mathcal{O}(n)$  time.

### The second problem

Given  $w \in V^+$ , decide whether there exists an anti-/morphism  $f: V^* \to V^*$  and a prefix t of w such that  $w \in t\{t, f(t)\}^+$ .

#### Theorem (CiE 2013)

Given a word w and a vector T of |V| numbers, we decide whether there exists an anti-/morphism f of length type T such that  $w \in t\{t, f(t)\}^+$  in  $\mathcal{O}(n(\log n)^2)$  time. If T defines uniform anti-/morphisms:  $\mathcal{O}(n)$  time.

### The second problem

Given  $w \in V^+$ , decide whether there exists an anti-/morphism  $f: V^* \to V^*$  and a prefix t of w such that  $w \in t\{t, f(t)\}^+$ .

#### Theorem (CiE 2013)

Given a word w and a vector T of |V| numbers, we decide whether there exists an anti-/morphism f of length type T such that  $w \in t\{t, f(t)\}^+$  in  $\mathcal{O}(n(\log n)^2)$  time. If T defines uniform anti-/morphisms:  $\mathcal{O}(n)$  time.

#### Theorem (CiE 2013)

For a word  $w \in V^+$ , deciding the existence of  $f: V^* \to V^*$  and a prefix t of w such that  $w \in t\{t, f(t)\}^+$  with  $|t| \ge 2$  (respectively,  $w \in t\{t, f(t)\}\{t, f(t)\}^+$ ) takes linear time (respectively, is NP-complete) in the general case, is NP-complete for f non-erasing, and takes  $\mathcal{O}(n^2)$  time for f uniform.

### Repetitive factors

Given a word  $w \in V^*$  and f, (1) Enumerate all  $(i, j, \ell)$ ,  $1 \le i, j, \ell \le |w|$ , such that there exists t with  $w[i..j] \in \{t, f(t)\}^{\ell}$ . (2) Given  $\ell$ , enumerate all (i, j),  $1 \le i, j \le |w|$ , so there exists t with  $w[i..j] \in \{t, f(t)\}^k$ .

### Repetitive factors

Given a word  $w \in V^*$  and f, (1) Enumerate all  $(i, j, \ell)$ ,  $1 \le i, j, \ell \le |w|$ , such that there exists t with  $w[i..j] \in \{t, f(t)\}^{\ell}$ . (2) Given  $\ell$ , enumerate all (i, j),  $1 \le i, j \le |w|$ , so there exists t with  $w[i..j] \in \{t, f(t)\}^k$ .

General approach:

Construct data structures enabling us to answer in constant time queries  $rep(i, j, \ell)$ : "Is there  $t \in V^*$  such that  $w[i..j] \in \{t, f(t)\}^{\ell}$ ?", for all  $1 \le i \le j \le |w|$  and  $1 \le \ell \le |w|$ .

### Repetitive factors

Given a word  $w \in V^*$  and f, (1) Enumerate all  $(i, j, \ell)$ ,  $1 \le i, j, \ell \le |w|$ , such that there exists t with  $w[i..j] \in \{t, f(t)\}^{\ell}$ . (2) Given  $\ell$ , enumerate all (i, j),  $1 \le i, j \le |w|$ , so there exists t with  $w[i..j] \in \{t, f(t)\}^k$ .

General approach:

Construct data structures enabling us to answer in constant time queries  $rep(i, j, \ell)$ : "Is there  $t \in V^*$  such that  $w[i..j] \in \{t, f(t)\}^{\ell}$ ?", for all  $1 \le i \le j \le |w|$  and  $1 \le \ell \le |w|$ .

Second question: we answer queries  $rep(i, j, \ell)$  for a fixed  $\ell$ , given as input together with w.

Building the data structures (answer queries for all  $\ell$ , resp. for given  $\ell$ )

- f general:  $\mathcal{O}(n^{3.5})$ , resp.  $\mathcal{O}(n^2\ell)$ .
- f non-erasing:  $\mathcal{O}(n^3)$ , resp.  $\mathcal{O}(n^2)$ .
- f literal:  $\mathcal{O}(n^2)$ , resp.  $\mathcal{O}(n^2)$ .

Tools: combinatorics on words (the Uniqueness Lemmas) + number theoretic algorithms + data structures.

Building the data structures (answer queries for all  $\ell$ , resp. for given  $\ell$ )

- f general:  $\mathcal{O}(n^{3.5})$ , resp.  $\mathcal{O}(n^2\ell)$ .
- f non-erasing:  $\mathcal{O}(n^3)$ , resp.  $\mathcal{O}(n^2)$ .
- f literal:  $\mathcal{O}(n^2)$ , resp.  $\mathcal{O}(n^2)$ .

Tools: combinatorics on words (the Uniqueness Lemmas) + number theoretic algorithms + data structures.

Finding the set of all  $\ell$ -repetitive factors (for all  $\ell$ , resp. for a given  $\ell$ ):

- f general:  $\mathcal{O}(n^{3.5})$ , resp.  $\mathcal{O}(n^2\ell)$ .
- f non-erasing:  $\underline{\Theta(n^3)}$ , resp.  $\underline{\Theta(n^2)}$ .
- f literal:  $\Theta(n^2 \log n)$ , resp.  $\Theta(n^2)$ .

Highlighted bounds: no other algorithm performs better in the worst case.

## THANK YOU!