
Discovering Hidden Repetitions

Florin Maneaa

Joint work with Pawe l Gawrychowskib, Robert Mercaşc , Dirk Nowotkaa

aChristian-Albrechts-Universität zu Kiel
bMax-Planck-Institute für Informatik Saarbrücken

cOtto-von-Guericke-Universität Magdeburg

Toronto, April 2013

F. Manea Hidden Repetitions Toronto, April 2013

Pseudo-repetitions

A word w is

repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

primitive from the classical point of view

f -primitive for morphism f with f (A) = T , f (C) = G

f -power for antimorphism f with f (A) = T , f (C) = G :

ACGTAC = AC · f (AC) · AC

F. Manea Hidden Repetitions Toronto, April 2013 1

Pseudo-repetitions

A word w is

repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

primitive from the classical point of view

f -primitive for morphism f with f (A) = T , f (C) = G

f -power for antimorphism f with f (A) = T , f (C) = G :

ACGTAC = AC · f (AC) · AC

F. Manea Hidden Repetitions Toronto, April 2013 1

Pseudo-repetitions

A word w is

repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

primitive from the classical point of view

f -primitive for morphism f with f (A) = T , f (C) = G

f -power for antimorphism f with f (A) = T , f (C) = G :

ACGTAC = AC · f (AC) · AC

F. Manea Hidden Repetitions Toronto, April 2013 1

Pseudo-repetitions

A word w is

repetition: w = tn, for some proper prefix t (called root)
primitive word: not a repetition.

f -repetition: w ∈ t{t, f (t)}∗, for some proper prefix t (called root)
f -primitive word: not an f -repetition.

Example

ACGTAC

primitive from the classical point of view

f -primitive for morphism f with f (A) = T , f (C) = G

f -power for antimorphism f with f (A) = T , f (C) = G :

ACGTAC = AC · f (AC) · AC

F. Manea Hidden Repetitions Toronto, April 2013 1

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and
its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and
its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.

Such structures appear also in music: ternary song form.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and
its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and
its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

F. Manea Hidden Repetitions Toronto, April 2013 2

Why Pseudo-repetitions?

Repetitions: central in combinatorics on words and applications!

[Czeizler, Kari, Seki. On a special class of primitive words. TCS, 2010.]
Originated from computational biology:
– Watson-Crick complement: an antimorphic involution
– a single-stranded DNA and its complement encode the same information.

Generally: strings with intrinsic (yet, hidden) repetitive structure.
Such structures appear also in music: ternary song form.

[Kari, Seki. An improved bound for an extension of Fine and Wilf theorem, and
its optimality. Fundam. Informat. 2010.]
[Chiniforooshan, Kari, Xu. Pseudopower avoidance. Fundam. Informat., 2012.]
[Blondin Massé, Gaboury, Hallé. Pseudoperiodic words. DLT 2012]
[M., Müller, Nowotka. The avoidability of cubes under permutations. DLT 2012.]
[M., Mercas, Nowotka. F & W theorem and pseudo-repetitions. MFCS 2012.]
[Gawrychowski, M., Mercas, Nowotka, Tiseanu. Finding Pseudo-Repetitions.
STACS 2013.]

[Gawrychowski, M., Nowotka. Discovering Hidden Repetitions. CiE 2013.]

F. Manea Hidden Repetitions Toronto, April 2013 2

Finding Pseudo-repetitions

Problem

Given w ∈ V ∗ and f , decide whether this word is an f -repetition.

Problem

Given w ∈ V +, decide whether there exists an f : V ∗ → V ∗ and a prefix t
of w such that w ∈ t{t, f (t)}+.

Problem

Given a word w ∈ V ∗ and f ,
(1) Enumerate all (i , j , `), 1 ≤ i , j , ` ≤ |w |, such that there exists t with
w [i ..j] ∈ {t, f (t)}`.
(2) Given k, enumerate all (i , j), 1 ≤ i , j ≤ |w |, so there exists t with
w [i ..j] ∈ {t, f (t)}k .

F. Manea Hidden Repetitions Toronto, April 2013 3

Finding Pseudo-repetitions

Problem

Given w ∈ V ∗ and f , decide whether this word is an f -repetition.

Problem

Given w ∈ V +, decide whether there exists an f : V ∗ → V ∗ and a prefix t
of w such that w ∈ t{t, f (t)}+.

Problem

Given a word w ∈ V ∗ and f ,
(1) Enumerate all (i , j , `), 1 ≤ i , j , ` ≤ |w |, such that there exists t with
w [i ..j] ∈ {t, f (t)}`.
(2) Given k, enumerate all (i , j), 1 ≤ i , j ≤ |w |, so there exists t with
w [i ..j] ∈ {t, f (t)}k .

F. Manea Hidden Repetitions Toronto, April 2013 3

Finding Pseudo-repetitions

Problem

Given w ∈ V ∗ and f , decide whether this word is an f -repetition.

Problem

Given w ∈ V +, decide whether there exists an f : V ∗ → V ∗ and a prefix t
of w such that w ∈ t{t, f (t)}+.

Problem

Given a word w ∈ V ∗ and f ,
(1) Enumerate all (i , j , `), 1 ≤ i , j , ` ≤ |w |, such that there exists t with
w [i ..j] ∈ {t, f (t)}`.
(2) Given k, enumerate all (i , j), 1 ≤ i , j ≤ |w |, so there exists t with
w [i ..j] ∈ {t, f (t)}k .

F. Manea Hidden Repetitions Toronto, April 2013 3

Basic tools

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over |V | ∈ O(nc).

Build in linear time:
– suffix array data structure for u;
– data structures allowing us to answer in O(1) queries:
“How long is the longest common prefix of u[i ..n] and u[j ..n]?”, denoted
LCPref u(i , j).

In our case:

w is the input word,

f a fixed anti-/morphism,

u = wf (w), |u| ∈ O(|w |).

Constant time: does w [i ..j] / f (w [i ..j]) occur at position s in w?

F. Manea Hidden Repetitions Toronto, April 2013 4

Basic tools

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over |V | ∈ O(nc).

Build in linear time:
– suffix array data structure for u;
– data structures allowing us to answer in O(1) queries:
“How long is the longest common prefix of u[i ..n] and u[j ..n]?”, denoted
LCPref u(i , j).

In our case:

w is the input word,

f a fixed anti-/morphism,

u = wf (w), |u| ∈ O(|w |).

Constant time: does w [i ..j] / f (w [i ..j]) occur at position s in w?

F. Manea Hidden Repetitions Toronto, April 2013 4

Basic tools

Computational model: RAM with logarithmic word size.

A word u, with |u| = n, over |V | ∈ O(nc).

Build in linear time:
– suffix array data structure for u;
– data structures allowing us to answer in O(1) queries:
“How long is the longest common prefix of u[i ..n] and u[j ..n]?”, denoted
LCPref u(i , j).

In our case:

w is the input word,

f a fixed anti-/morphism,

u = wf (w), |u| ∈ O(|w |).

Constant time: does w [i ..j] / f (w [i ..j]) occur at position s in w?

F. Manea Hidden Repetitions Toronto, April 2013 4

Basic tool: Fine and Wilf Theorem

[Fine, Wilf: Uniqueness theorem for periodic functions (1965).]

Theorem

If α ∈ u{u, v}∗ and β ∈ v{u, v}∗ have a common prefix of length at least
|u|+ |v | − gcd(|u|, |v |), then u and v are powers of a common word.

F. Manea Hidden Repetitions Toronto, April 2013 5

Basic tools

Basic structure of pseudo-repetitions (used for y = f (x)).

Lemma (Uniqueness-1)

x, y words over V ; x, y not powers of the same word, w ∈ {x , y}∗.
There exists a unique decomposition of w in factors x , y.

Lemma (Uniqueness-2)

f non-erasing anti-/morphism, x , y , z words over V , f (x) = f (z) = y,
{x , y}∗x{x , y}∗ ∩ {z , y}∗z{z , y}∗ 6= ∅.
Then x = z.

F. Manea Hidden Repetitions Toronto, April 2013 6

Basic tools

Basic structure of pseudo-repetitions (used for y = f (x)).

Lemma (Uniqueness-1)

x, y words over V ; x, y not powers of the same word, w ∈ {x , y}∗.
There exists a unique decomposition of w in factors x , y.

Lemma (Uniqueness-2)

f non-erasing anti-/morphism, x , y , z words over V , f (x) = f (z) = y,
{x , y}∗x{x , y}∗ ∩ {z , y}∗z{z , y}∗ 6= ∅.
Then x = z.

F. Manea Hidden Repetitions Toronto, April 2013 6

Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and f (x).)

Lemma (Shifts)

x , y ∈ V +, w ∈ {x , y}∗ \ {x}∗, |x | ≤ |y |, x, y not powers of some word.
M = max{p | xp is a prefix of w} and N = max{p | xp is a prefix of y}.

We have:

M ≥ N.

If M = N then w ∈ y{x , y}∗ holds.

If M > N then exactly one of the following holds:
– w ∈ xM−Ny{x , y}∗ \ xM−N−1yxV ∗,
– w ∈ xM−N−1y{x , y}+ \ xM−NyV ∗ and N > 0.

F. Manea Hidden Repetitions Toronto, April 2013 7

Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and f (x).)

Lemma (Shifts)

x , y ∈ V +, w ∈ {x , y}∗ \ {x}∗, |x | ≤ |y |, x, y not powers of some word.
M = max{p | xp is a prefix of w} and N = max{p | xp is a prefix of y}.

We have:

M ≥ N.

If M = N then w ∈ y{x , y}∗ holds.

If M > N then exactly one of the following holds:
– w ∈ xM−Ny{x , y}∗ \ xM−N−1yxV ∗,
– w ∈ xM−N−1y{x , y}+ \ xM−NyV ∗ and N > 0.

F. Manea Hidden Repetitions Toronto, April 2013 7

Basic tools

How to find the unique decomposition?
(Take y to be the longest of x and f (x).)

Lemma (Shifts)

x , y ∈ V +, w ∈ {x , y}∗ \ {x}∗, |x | ≤ |y |, x, y not powers of some word.
M = max{p | xp is a prefix of w} and N = max{p | xp is a prefix of y}.

We have:

M ≥ N.

If M = N then w ∈ y{x , y}∗ holds.

If M > N then exactly one of the following holds:
– w ∈ xM−Ny{x , y}∗ \ xM−N−1yxV ∗,
– w ∈ xM−N−1y{x , y}+ \ xM−NyV ∗ and N > 0.

F. Manea Hidden Repetitions Toronto, April 2013 7

Deciding whether w is an f -repetition

1. Test whether there exists x such that w = xk , with k ≥ 2.

2. For all t = w [1..i], |f (t)| ≥ 1, t, f (t) not powers of some x ∈ V ∗ do 3&4.

3. Let x be the shortest of t and f (t), and y the longest. Apply Shifts Lemma!

4. We construct a maximal prefix w [i + 1..s − 1] ∈ {x , y}∗ of w [i + 1..n]:
– Initially, s = i + 1.
– Let M = max{p | xp prefix of w [s..n]}, N = max{p | xp prefix of y};
– If w [s..n] = xM , we are done!
– If xM−Ny occurs at position s, shift s+ = (M − N)|x |+ |y |, iterate;
– If M > N and xM−N−1yx occurs at s, shift s+ = (M − N − 1)|x |+ |y |,
iterate;

Time complexity:
– f general O(

∑
1≤i≤nb

n
i c) ⊆ O(n log n).

– f uniform: O(
∑

i|nb
n
i c) ⊆ O(n log log n).

F. Manea Hidden Repetitions Toronto, April 2013 8

Deciding whether w is an f -repetition

1. Test whether there exists x such that w = xk , with k ≥ 2.

2. For all t = w [1..i], |f (t)| ≥ 1, t, f (t) not powers of some x ∈ V ∗ do 3&4.

3. Let x be the shortest of t and f (t), and y the longest. Apply Shifts Lemma!

4. We construct a maximal prefix w [i + 1..s − 1] ∈ {x , y}∗ of w [i + 1..n]:
– Initially, s = i + 1.
– Let M = max{p | xp prefix of w [s..n]}, N = max{p | xp prefix of y};
– If w [s..n] = xM , we are done!
– If xM−Ny occurs at position s, shift s+ = (M − N)|x |+ |y |, iterate;
– If M > N and xM−N−1yx occurs at s, shift s+ = (M − N − 1)|x |+ |y |,
iterate;

Time complexity:
– f general O(

∑
1≤i≤nb

n
i c) ⊆ O(n log n).

– f uniform: O(
∑

i|nb
n
i c) ⊆ O(n log log n).

F. Manea Hidden Repetitions Toronto, April 2013 8

Deciding whether w is an f -repetition

1. Test whether there exists x such that w = xk , with k ≥ 2.

2. For all t = w [1..i], |f (t)| ≥ 1, t, f (t) not powers of some x ∈ V ∗ do 3&4.

3. Let x be the shortest of t and f (t), and y the longest. Apply Shifts Lemma!

4. We construct a maximal prefix w [i + 1..s − 1] ∈ {x , y}∗ of w [i + 1..n]:
– Initially, s = i + 1.
– Let M = max{p | xp prefix of w [s..n]}, N = max{p | xp prefix of y};
– If w [s..n] = xM , we are done!
– If xM−Ny occurs at position s, shift s+ = (M − N)|x |+ |y |, iterate;
– If M > N and xM−N−1yx occurs at s, shift s+ = (M − N − 1)|x |+ |y |,
iterate;

Time complexity:
– f general O(

∑
1≤i≤nb

n
i c) ⊆ O(n log n).

– f uniform: O(
∑

i|nb
n
i c) ⊆ O(n log log n).

F. Manea Hidden Repetitions Toronto, April 2013 8

Deciding whether w is an f -repetition

1. Test whether there exists x such that w = xk , with k ≥ 2.

2. For all t = w [1..i], |f (t)| ≥ 1, t, f (t) not powers of some x ∈ V ∗ do 3&4.

3. Let x be the shortest of t and f (t), and y the longest. Apply Shifts Lemma!

4. We construct a maximal prefix w [i + 1..s − 1] ∈ {x , y}∗ of w [i + 1..n]:
– Initially, s = i + 1.
– Let M = max{p | xp prefix of w [s..n]}, N = max{p | xp prefix of y};
– If w [s..n] = xM , we are done!
– If xM−Ny occurs at position s, shift s+ = (M − N)|x |+ |y |, iterate;
– If M > N and xM−N−1yx occurs at s, shift s+ = (M − N − 1)|x |+ |y |,
iterate;

Time complexity:
– f general O(

∑
1≤i≤nb

n
i c) ⊆ O(n log n).

– f uniform: O(
∑

i|nb
n
i c) ⊆ O(n log log n).

F. Manea Hidden Repetitions Toronto, April 2013 8

Deciding whether w is an f -repetition

1. Test whether there exists x such that w = xk , with k ≥ 2.

2. For all t = w [1..i], |f (t)| ≥ 1, t, f (t) not powers of some x ∈ V ∗ do 3&4.

3. Let x be the shortest of t and f (t), and y the longest. Apply Shifts Lemma!

4. We construct a maximal prefix w [i + 1..s − 1] ∈ {x , y}∗ of w [i + 1..n]:
– Initially, s = i + 1.
– Let M = max{p | xp prefix of w [s..n]}, N = max{p | xp prefix of y};
– If w [s..n] = xM , we are done!
– If xM−Ny occurs at position s, shift s+ = (M − N)|x |+ |y |, iterate;
– If M > N and xM−N−1yx occurs at s, shift s+ = (M − N − 1)|x |+ |y |,
iterate;

Time complexity:
– f general O(

∑
1≤i≤nb

n
i c) ⊆ O(n log n).

– f uniform: O(
∑

i|nb
n
i c) ⊆ O(n log log n).

F. Manea Hidden Repetitions Toronto, April 2013 8

Optimal time for f uniform

In the algorithm: y = f (t) and x = t.
Each shift: |tk f (t)|. But k can be 0...

Idea: shift with a word from {t, f (t)}α, for some fixed α depending
on n but not on t.

Consequence: for each t we do n
α|t| steps...

... the overall complexity O(n log log nα).

Linear time: α = dlog log ne.
Doable: preprocessing + careful organisation of data ...

F. Manea Hidden Repetitions Toronto, April 2013 9

Optimal time for f uniform

In the algorithm: y = f (t) and x = t.
Each shift: |tk f (t)|. But k can be 0...

Idea: shift with a word from {t, f (t)}α, for some fixed α depending
on n but not on t.

Consequence: for each t we do n
α|t| steps...

... the overall complexity O(n log log nα).

Linear time: α = dlog log ne.
Doable: preprocessing + careful organisation of data ...

F. Manea Hidden Repetitions Toronto, April 2013 9

Optimal time for f uniform

In the algorithm: y = f (t) and x = t.
Each shift: |tk f (t)|. But k can be 0...

Idea: shift with a word from {t, f (t)}α, for some fixed α depending
on n but not on t.

Consequence: for each t we do n
α|t| steps...

... the overall complexity O(n log log nα).

Linear time: α = dlog log ne.
Doable: preprocessing + careful organisation of data ...

F. Manea Hidden Repetitions Toronto, April 2013 9

Optimal time for f uniform

In the algorithm: y = f (t) and x = t.
Each shift: |tk f (t)|. But k can be 0...

Idea: shift with a word from {t, f (t)}α, for some fixed α depending
on n but not on t.

Consequence: for each t we do n
α|t| steps...

... the overall complexity O(n log log nα).

Linear time: α = dlog log ne.

Doable: preprocessing + careful organisation of data ...

F. Manea Hidden Repetitions Toronto, April 2013 9

Optimal time for f uniform

In the algorithm: y = f (t) and x = t.
Each shift: |tk f (t)|. But k can be 0...

Idea: shift with a word from {t, f (t)}α, for some fixed α depending
on n but not on t.

Consequence: for each t we do n
α|t| steps...

... the overall complexity O(n log log nα).

Linear time: α = dlog log ne.
Doable: preprocessing + careful organisation of data ...

F. Manea Hidden Repetitions Toronto, April 2013 9

Summary

Theorem (STACS 2013)

Given w ∈ V ∗ and f : V ∗ → V ∗ be a constant size anti-/morphism. One
can decide whether w ∈ t{t, f (t)}+ in O(n log n) time. If f is uniform we
only need O(n) time.

Theorem (STACS 2013)

Given w ∈ V ∗ and f : V ∗ → V ∗ be a constant size anti-/morphism, we

decide whether w ∈ {t, f (t)}{t, f (t)}+ in O(n1+ 1
log log n log n) time. If f is

non-erasing we solve the problem in O(n log n) time, while when f is
uniform we only need O(n) time.

F. Manea Hidden Repetitions Toronto, April 2013 10

Summary

Theorem (STACS 2013)

Given w ∈ V ∗ and f : V ∗ → V ∗ be a constant size anti-/morphism. One
can decide whether w ∈ t{t, f (t)}+ in O(n log n) time. If f is uniform we
only need O(n) time.

Theorem (STACS 2013)

Given w ∈ V ∗ and f : V ∗ → V ∗ be a constant size anti-/morphism, we

decide whether w ∈ {t, f (t)}{t, f (t)}+ in O(n1+ 1
log log n log n) time. If f is

non-erasing we solve the problem in O(n log n) time, while when f is
uniform we only need O(n) time.

F. Manea Hidden Repetitions Toronto, April 2013 10

The second problem

Given w ∈ V +, decide whether there exists an anti-/morphism
f : V ∗ → V ∗ and a prefix t of w such that w ∈ t{t, f (t)}+.

Theorem (CiE 2013)

Given a word w and a vector T of |V | numbers, we decide whether there
exists an anti-/morphism f of length type T such that w ∈ t{t, f (t)}+ in
O(n(log n)2) time. If T defines uniform anti-/morphisms: O(n) time.

Theorem (CiE 2013)

For a word w ∈ V +, deciding the existence of f : V ∗ → V ∗ and a prefix t
of w such that w ∈ t{t, f (t)}+ with |t| ≥ 2 (respectively,
w ∈ t{t, f (t)}{t, f (t)}+) takes linear time (respectively, is NP-complete)
in the general case, is NP-complete for f non-erasing, and takes O(n2)
time for f uniform.

F. Manea Hidden Repetitions Toronto, April 2013 11

The second problem

Given w ∈ V +, decide whether there exists an anti-/morphism
f : V ∗ → V ∗ and a prefix t of w such that w ∈ t{t, f (t)}+.

Theorem (CiE 2013)

Given a word w and a vector T of |V | numbers, we decide whether there
exists an anti-/morphism f of length type T such that w ∈ t{t, f (t)}+ in
O(n(log n)2) time. If T defines uniform anti-/morphisms: O(n) time.

Theorem (CiE 2013)

For a word w ∈ V +, deciding the existence of f : V ∗ → V ∗ and a prefix t
of w such that w ∈ t{t, f (t)}+ with |t| ≥ 2 (respectively,
w ∈ t{t, f (t)}{t, f (t)}+) takes linear time (respectively, is NP-complete)
in the general case, is NP-complete for f non-erasing, and takes O(n2)
time for f uniform.

F. Manea Hidden Repetitions Toronto, April 2013 11

Repetitive factors

Given a word w ∈ V ∗ and f ,
(1) Enumerate all (i , j , `), 1 ≤ i , j , ` ≤ |w |, such that there exists t with
w [i ..j] ∈ {t, f (t)}`.
(2) Given `, enumerate all (i , j), 1 ≤ i , j ≤ |w |, so there exists t with
w [i ..j] ∈ {t, f (t)}k .

General approach:

Construct data structures enabling us to answer in constant time queries
rep(i , j , `):
“Is there t ∈ V ∗ such that w [i ..j] ∈ {t, f (t)}`?”,
for all 1 ≤ i ≤ j ≤ |w | and 1 ≤ ` ≤ |w |.

Second question: we answer queries rep(i , j , `) for a fixed `, given as input
together with w .

F. Manea Hidden Repetitions Toronto, April 2013 12

Repetitive factors

Given a word w ∈ V ∗ and f ,
(1) Enumerate all (i , j , `), 1 ≤ i , j , ` ≤ |w |, such that there exists t with
w [i ..j] ∈ {t, f (t)}`.
(2) Given `, enumerate all (i , j), 1 ≤ i , j ≤ |w |, so there exists t with
w [i ..j] ∈ {t, f (t)}k .

General approach:

Construct data structures enabling us to answer in constant time queries
rep(i , j , `):
“Is there t ∈ V ∗ such that w [i ..j] ∈ {t, f (t)}`?”,
for all 1 ≤ i ≤ j ≤ |w | and 1 ≤ ` ≤ |w |.

Second question: we answer queries rep(i , j , `) for a fixed `, given as input
together with w .

F. Manea Hidden Repetitions Toronto, April 2013 12

Repetitive factors

Given a word w ∈ V ∗ and f ,
(1) Enumerate all (i , j , `), 1 ≤ i , j , ` ≤ |w |, such that there exists t with
w [i ..j] ∈ {t, f (t)}`.
(2) Given `, enumerate all (i , j), 1 ≤ i , j ≤ |w |, so there exists t with
w [i ..j] ∈ {t, f (t)}k .

General approach:

Construct data structures enabling us to answer in constant time queries
rep(i , j , `):
“Is there t ∈ V ∗ such that w [i ..j] ∈ {t, f (t)}`?”,
for all 1 ≤ i ≤ j ≤ |w | and 1 ≤ ` ≤ |w |.

Second question: we answer queries rep(i , j , `) for a fixed `, given as input
together with w .

F. Manea Hidden Repetitions Toronto, April 2013 12

Results (STACS 2013)

Building the data structures (answer queries for all `, resp. for given `)

f general: O(n3.5), resp. O(n2`).

f non-erasing: O(n3), resp. O(n2).

f literal: O(n2), resp. O(n2).

Tools: combinatorics on words (the Uniqueness Lemmas) + number
theoretic algorithms + data structures.

Finding the set of all `-repetitive factors (for all `, resp. for a given `):

f general: O(n3.5), resp. O(n2`).

f non-erasing: Θ(n3), resp. Θ(n2).

f literal: Θ(n2 log n), resp. Θ(n2).

Highlighted bounds: no other algorithm performs better in the worst case.

F. Manea Hidden Repetitions Toronto, April 2013 13

Results (STACS 2013)

Building the data structures (answer queries for all `, resp. for given `)

f general: O(n3.5), resp. O(n2`).

f non-erasing: O(n3), resp. O(n2).

f literal: O(n2), resp. O(n2).

Tools: combinatorics on words (the Uniqueness Lemmas) + number
theoretic algorithms + data structures.

Finding the set of all `-repetitive factors (for all `, resp. for a given `):

f general: O(n3.5), resp. O(n2`).

f non-erasing: Θ(n3), resp. Θ(n2).

f literal: Θ(n2 log n), resp. Θ(n2).

Highlighted bounds: no other algorithm performs better in the worst case.

F. Manea Hidden Repetitions Toronto, April 2013 13

THANK YOU!

F. Manea Hidden Repetitions Toronto, April 2013 14

