
String Matching with Involutions

Florin Manea

Challenges in Combinatorics on Words – April 2013
Fields Institute, Toronto

Open Problem String Matching with Involutions 1

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T .

P = acgttgcacg
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Solution: O(|T |+ |P|), e.g., the Knuth-Morris-Pratt algorithm.

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T .

P = acgttgcacg
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Solution: O(|T |+ |P|), e.g., the Knuth-Morris-Pratt algorithm.

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T .

P = acgttgcacg
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Solution: O(|T |+ |P|), e.g., the Knuth-Morris-Pratt algorithm.

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T .

P = acgttgcacg
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Solution: O(|T |+ |P|), e.g., the Knuth-Morris-Pratt algorithm.

Open Problem String Matching with Involutions 2

String matching

Given two words T (text) and P (pattern), find all occurrences of P in T .

P = acgttgcacg
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaaagcaaggtcgaataatacgttgcacgtttttt

Solution: O(|T |+ |P|), e.g., the Knuth-Morris-Pratt algorithm.

Open Problem String Matching with Involutions 2

String matching with involutions

Antimorphic involution f : V ∗ → V ∗: f -mirroring.
[f (w) = f (w [n])f (w [n − 1]) · · · f (w [1]), f 2 = Id].

Given T and P and an antimorphic involution f : V ∗ → V ∗, find all
factors P ′ of T obtained by non-overlapping f -mirrorings from P.

P = acgttgcacg
f : f (a) = a, f (c) = c, f (g) = g , f (t) = t
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcgtttttt

P = acgttgcacg
f : f (a) = t, f (c) = g , f (g) = c , f (t) = a
T = atatatataacgttgcacgtcgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaacgttagcaacgaataatacgtgcaacgtttttt

Open Problem String Matching with Involutions 3

String matching with involutions

Antimorphic involution f : V ∗ → V ∗: f -mirroring.
[f (w) = f (w [n])f (w [n − 1]) · · · f (w [1]), f 2 = Id].

Given T and P and an antimorphic involution f : V ∗ → V ∗, find all
factors P ′ of T obtained by non-overlapping f -mirrorings from P.

P = acgttgcacg
f : f (a) = a, f (c) = c, f (g) = g , f (t) = t
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcgtttttt

P = acgttgcacg
f : f (a) = t, f (c) = g , f (g) = c , f (t) = a
T = atatatataacgttgcacgtcgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaacgttagcaacgaataatacgtgcaacgtttttt

Open Problem String Matching with Involutions 3

String matching with involutions

Antimorphic involution f : V ∗ → V ∗: f -mirroring.
[f (w) = f (w [n])f (w [n − 1]) · · · f (w [1]), f 2 = Id].

Given T and P and an antimorphic involution f : V ∗ → V ∗, find all
factors P ′ of T obtained by non-overlapping f -mirrorings from P.

P = acgttgcacg
f : f (a) = a, f (c) = c, f (g) = g , f (t) = t
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcgtttttt

P = acgttgcacg
f : f (a) = t, f (c) = g , f (g) = c , f (t) = a
T = atatatataacgttgcacgtcgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaacgttagcaacgaataatacgtgcaacgtttttt

Open Problem String Matching with Involutions 3

String matching with involutions

Antimorphic involution f : V ∗ → V ∗: f -mirroring.
[f (w) = f (w [n])f (w [n − 1]) · · · f (w [1]), f 2 = Id].

Given T and P and an antimorphic involution f : V ∗ → V ∗, find all
factors P ′ of T obtained by non-overlapping f -mirrorings from P.

P = acgttgcacg
f : f (a) = a, f (c) = c, f (g) = g , f (t) = t
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcgtttttt

P = acgttgcacg
f : f (a) = t, f (c) = g , f (g) = c , f (t) = a
T = atatatataacgttgcacgtcgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaacgttagcaacgaataatacgtgcaacgtttttt

Open Problem String Matching with Involutions 3

String matching with involutions

Antimorphic involution f : V ∗ → V ∗: f -mirroring.
[f (w) = f (w [n])f (w [n − 1]) · · · f (w [1]), f 2 = Id].

Given T and P and an antimorphic involution f : V ∗ → V ∗, find all
factors P ′ of T obtained by non-overlapping f -mirrorings from P.

P = acgttgcacg
f : f (a) = a, f (c) = c, f (g) = g , f (t) = t
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcgtttttt

P = acgttgcacg
f : f (a) = t, f (c) = g , f (g) = c , f (t) = a
T = atatatataacgttgcacgtcgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaacgttagcaacgaataatacgtgcaacgtttttt

Open Problem String Matching with Involutions 3

String matching with involutions

Antimorphic involution f : V ∗ → V ∗: f -mirroring.
[f (w) = f (w [n])f (w [n − 1]) · · · f (w [1]), f 2 = Id].

Given T and P and an antimorphic involution f : V ∗ → V ∗, find all
factors P ′ of T obtained by non-overlapping f -mirrorings from P.

P = acgttgcacg
f : f (a) = a, f (c) = c, f (g) = g , f (t) = t
T = atatatataacgttgcacgttgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaagcatacgtcgaataatacgacgttcgtttttt

P = acgttgcacg
f : f (a) = t, f (c) = g , f (g) = c , f (t) = a
T = atatatataacgttgcacgtcgcacgaaaaaaacgttgcacgaataatacgttgcacg

acacacacaacgttgcacgaaaaaacgttagcaacgaataatacgtgcaacgtttttt

Open Problem String Matching with Involutions 3

Why string matching with involutions?

Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

Bio-inspired operations: affect the pattern on a larger scale, e.g.,
mirroring of factors, translocations, etc.
[Cantone, Cristofaro, Faro, Giaquinta, Grabowski, 2009 - 2011]: string
matching with rotations and translocations,
[Czeizler, Czeizler, Kari, Seki, 2008 - 2011]: combinatorics on words
for repetitions with involutions: xf (x)xxf (x) . . .,
[Gawrychowski, Manea, Müller, Mercaş, Nowotka, 2012 - 2013]:
algorithmics and combinatorics on words for general
pseudo-repetitions.

Open Problem String Matching with Involutions 4

Why string matching with involutions?

Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

Bio-inspired operations: affect the pattern on a larger scale, e.g.,
mirroring of factors, translocations, etc.
[Cantone, Cristofaro, Faro, Giaquinta, Grabowski, 2009 - 2011]: string
matching with rotations and translocations,

[Czeizler, Czeizler, Kari, Seki, 2008 - 2011]: combinatorics on words
for repetitions with involutions: xf (x)xxf (x) . . .,
[Gawrychowski, Manea, Müller, Mercaş, Nowotka, 2012 - 2013]:
algorithmics and combinatorics on words for general
pseudo-repetitions.

Open Problem String Matching with Involutions 4

Why string matching with involutions?

Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

Bio-inspired operations: affect the pattern on a larger scale, e.g.,
mirroring of factors, translocations, etc.
[Cantone, Cristofaro, Faro, Giaquinta, Grabowski, 2009 - 2011]: string
matching with rotations and translocations,
[Czeizler, Czeizler, Kari, Seki, 2008 - 2011]: combinatorics on words
for repetitions with involutions: xf (x)xxf (x) . . .,

[Gawrychowski, Manea, Müller, Mercaş, Nowotka, 2012 - 2013]:
algorithmics and combinatorics on words for general
pseudo-repetitions.

Open Problem String Matching with Involutions 4

Why string matching with involutions?

Approximate string matching: find all the factors of T obtained from
P by a series of simple operations (e.g., edit operations).

Bio-inspired operations: affect the pattern on a larger scale, e.g.,
mirroring of factors, translocations, etc.
[Cantone, Cristofaro, Faro, Giaquinta, Grabowski, 2009 - 2011]: string
matching with rotations and translocations,
[Czeizler, Czeizler, Kari, Seki, 2008 - 2011]: combinatorics on words
for repetitions with involutions: xf (x)xxf (x) . . .,
[Gawrychowski, Manea, Müller, Mercaş, Nowotka, 2012 - 2013]:
algorithmics and combinatorics on words for general
pseudo-repetitions.

Open Problem String Matching with Involutions 4

Known results

|T | = n, |P| = m

Mirroring: O(nm) time in the worst case, O(m2) space complexity
[Cantone et al., CPM 2011].

Translocations are allowed: O(nm2) time in the worst case, O(m)
space, O(n) average time (subject to some artificial restriction).
[Grabowski et al., Inf. Proc. Lett. 2011]

Open problem: linear average time, with O(nm) or better time in
worst case, O(m2) or better space complexity.
[Cantone et al., CPM 2011].

Open Problem String Matching with Involutions 5

Known results

|T | = n, |P| = m

Mirroring: O(nm) time in the worst case, O(m2) space complexity
[Cantone et al., CPM 2011].

Translocations are allowed: O(nm2) time in the worst case, O(m)
space, O(n) average time (subject to some artificial restriction).
[Grabowski et al., Inf. Proc. Lett. 2011]

Open problem: linear average time, with O(nm) or better time in
worst case, O(m2) or better space complexity.
[Cantone et al., CPM 2011].

Open Problem String Matching with Involutions 5

Known results

|T | = n, |P| = m

Mirroring: O(nm) time in the worst case, O(m2) space complexity
[Cantone et al., CPM 2011].

Translocations are allowed: O(nm2) time in the worst case, O(m)
space, O(n) average time (subject to some artificial restriction).
[Grabowski et al., Inf. Proc. Lett. 2011]

Open problem: linear average time, with O(nm) or better time in
worst case, O(m2) or better space complexity.
[Cantone et al., CPM 2011].

Open Problem String Matching with Involutions 5

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?),
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?),
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?),
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?),
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?),
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?)

,
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?),
use also translocations

, simpler solutions.

Open Problem String Matching with Involutions 6

(our) Latest Results:

Antimorphic involutions: generalized mirroring.

Novel (simpler) strategy: greedy (but with complex data structures)
vs. dynamic programming.

O(nm) worst case time complexity, O(m) space complexity.

O(n) average time (subject to some simple restrictions on the input
alphabet, depending on the involution).

Online algorithm.

Open problems: better complexities (for what kind of alphabets?),
use also translocations, simpler solutions.

Open Problem String Matching with Involutions 6

