Avoiding Circular Repetitions

Hamoon Mousavi and Jeffrey Shallit

School of Computer Science University of Waterloo sh2mousa@uwaterloo.ca

Challenges in Combinatorics on Words Fields Institute

April 25, 2013

- Is ABCBABC avoidable?
- Is it 3-avoidable?
- Smallest *n* for which *P* is *n*-avoidable?
- Decidability
- Over circular words (necklaces)
- Smallest avoidable exponent (repetition threshold)

Repetitions are popular patterns

- k-power: x^k
- x^2 is 3-avoidable but not 2-avoidable (Thue).
- α -power: $y = x^{\lfloor \alpha \rfloor} x'$ such that $\frac{|y|}{|x|} = \alpha$. We then write

$$y = x^{\alpha}$$
.

Examples

• hotshots = $(hots)^2$

•
$$alfalfa = (alf)^2 a = (alf)^{rac{7}{3}}$$

Definition

- w is α -power-free if none of its factors is a β -power for any $\beta \ge \alpha$.
- w is α^+ -power-free if none of its factors is a β -power for any $\beta > \alpha$.

Circular repetition

x and all its conjugates are α -power-free.

Example

w = dividingx = dividi

a conjugate of x is

vididi

which has a $\frac{5}{2}$ -power: ididi = (id)^{$\frac{5}{2}$}

So w is not circularly ⁵/₂-power-free.
In fact, w is circularly (⁵/₂)⁺-power-free.

Circular repetition

• *w* is circularly α -power-free if for every pair of factors *x* and *y*

$$w = \boxed{\begin{array}{c|c} x \\ y \\ \end{array}}$$

yx is α -power-free.

• (x, y) is a circular α -power if yx is α -power.

Definition

The *repetition threshold*, RT(n), is the smallest α for which there exists an infinite α^+ -power-free word over Σ_n .

Dejean's conjecture

Thue, Dejean, Pansiot, Moulin Ollagnier, Carpi, Currie, Mohammad-Noori, Rampersad, and Rao:

$$\mathsf{RT}(n) = \begin{cases} \frac{7}{4}, & \text{if } n = 3; \\ \frac{7}{5}, & \text{if } n = 4; \\ \frac{n}{n-1}, & \text{if } n \neq 3, 4 \end{cases}$$

Repetition threshold for circular factors

Definition

The repetition threshold for circular factors, RTC(n), is the smallest α for which there exists an infinite circularly α^+ -power-free word over Σ_n .

n	RT(<i>n</i>)	RTC(n)
2	2	4
3	$\frac{7}{4}$	$\frac{13}{4}$
4	$\frac{7}{5}$	<u>5</u> 2
5	<u>5</u> 4	<u>105</u> 46
6	<u>6</u> 5	$1 + \frac{6}{5} = \frac{11}{6}$
:	:	:
k	$\frac{k}{k-1}$	$1 + RT(k) = \frac{2k-1}{k-1}$

Bounds on RTC(n)

Theorem $1 + RT(n) \le RTC(n) \le 2RT(n)$

H. Mousavi (University of Waterloo)

• Thue morphism

$$h(0) = 01$$

 $h(1) = 10.$

• The Thue-Morse word

$$\mathbf{t}=h^{\omega}(0)=01101001\cdots$$

is 2⁺-power-free.

Theorem

t is circularly 4⁺-power-free.

Theorem

t is circularly 4⁺-power-free.

Proof.

• Suppose (x, y) is a circular 4⁺-power of **t**, i.e.,

	$\mathbf{t} =$		X		у		
--	----------------	--	---	--	---	--	--

and yx is a 4⁺-power.

• Then either y or x is a 2^+ -power, a contradiction.

RTC(2) = 4

Theorem

RTC(2) = 4.

Proof.

• Since t is circularly 4⁺-power-free, we have

 $RTC(2) \leq 4.$

• No binary word of length 12 is circularly 4-power-free, so

 $RTC(2) \ge 4.$

Overview of the proof:

- A finite search shows that $RTC(3) \ge \frac{13}{4}$.
- So to prove RTC(3) = $\frac{13}{4}$, we just need to construct an infinite word that is circularly $(\frac{13}{4})^+$ -power-free.
- We give a pair of morphisms:

$$\psi: \Sigma_6^* \to \Sigma_6^*$$
$$\mu: \Sigma_6^* \to \Sigma_3^*$$

• We prove $\mu(\psi^{\omega}(0))$ is circularly $(\frac{13}{4})^+$ -power-free.

Pair of morphisms

$$\psi(0) = 0435$$

 $\psi(1) = 2341$
 $\psi(2) = 3542$
 $\psi(3) = 3540$
 $\psi(4) = 4134$
 $\psi(5) = 4105.$

$$\begin{split} \mu(0) &= 012102120102012\\ \mu(1) &= 201020121012021\\ \mu(2) &= 012102010212010\\ \mu(3) &= 201210212021012\\ \mu(4) &= 102120121012021\\ \mu(5) &= 102010212021012. \end{split}$$

Theorem

$$\mu(\psi^{\omega}(\mathsf{0}))$$
 is circularly $(rac{13}{4})^+$ -power-free.

Proof idea

The proof has two parts

- $\mathbf{r} = \psi^{\omega}(\mathbf{0})$ is circularly cubefree.
- **2** $\mathbf{s} = \mu(\mathbf{r})$ is circularly $(\frac{13}{4})^+$ -power-free.
 - s has no short circular $(\frac{13}{4})^+$ -power. (This is checked by computer)
 - **2** s has no long circular $(\frac{13}{4})^+$ -power.

μ is well-behaved!

• $\mu: \Sigma_6^* \to \Sigma_3^*$ is 15-uniform

 $|\mu(a)| = 15$ for all $a \in \Sigma_6$.

• μ is synchronizing, i.e., for <u>no</u> $a, b, c \in \Sigma_6$

$$\begin{array}{c|c} \mu(a) & \mu(b) \\ \hline & \mu(c) \end{array}$$

• μ is strongly synchronizing, i.e., for all $a, b, c \in \Sigma_6$ and $x, y \in \Sigma_3^*$ if

$$\mu(a) = \boxed{x}$$

$$\mu(b) = \boxed{\qquad \qquad} y$$

$$\mu(c) = \boxed{x \qquad y}$$

either c = a or c = b.

Lemma

- Let ϕ be a strongly synchronizing q-uniform morphism.
- Let w be a circularly cubefree word.
- If (x_1, x_2) is a circular $(\frac{13}{4})^+$ -power in $\phi(w)$, i.e.,

Main lemma: proof

- Proof is by contradiction.
- Suppose (x_1, x_2) is a circular $(\frac{13}{4})^+$ -power of $\phi(w)$, and $|x_2x_1| \ge 22q$.

Main lemma: proof

- Proof is by contradiction.
- Suppose (x_1, x_2) is a circular $(\frac{13}{4})^+$ -power of $\phi(w)$, and $|x_2x_1| \ge 22q$.

Main lemma: proof

$$x_1 = \begin{vmatrix} y_1 & \phi(w_1) & y_2 \end{vmatrix}$$

$$x_2 = \begin{array}{|c|c|} y_3 & \phi(w_2) & y_4 \end{array}$$

$$z^{\alpha} = x_2 x_1 = \begin{bmatrix} y_3 & \phi(w_2) & y_4 & y_1 & \phi(w_1) & y_2 \end{bmatrix}$$

Here z is a word and $\alpha > \frac{13}{4}$. There are two cases to consider:

$$y_4 y_1 = \epsilon 2 y_4 y_1 \neq \epsilon$$

H. Mousavi (University of Waterloo)

Case 1 is $y_4y_1 = \epsilon$. Therefore we have

$$x_1 = \phi(w_1)y_2,$$

 $x_2 = y_3\phi(w_2).$

- Note that $\alpha > \frac{13}{4} = 3.25$.
- We get that $\phi(w_2w_1)$ contains a cube.
- w₂w₁ contains a cube. (synchronizing)
- w contains a circular cube, a contradiction.

• We would like to show that by shrinking x_1 and enlarging x_2 we can get another circular $(\frac{13}{4})^+$ -power of the same length:

• Then clearly (x'_1, x'_2) falls into case 1.

• We just need to show that $\phi(d) = y_4 y_1$.

• Let $s = \phi(e)y_4y_1\phi(f)$, where e is the last letter of w_2 and f is the first letter of w_1 .

$$z^{\alpha} = x_2 x_1 = \begin{bmatrix} y_3 & \phi(w_2) & y_4 & y_1 & \phi(w_1) & y_2 \end{bmatrix}$$

⊢____ s ____

- s — — —

• s also appears in $\phi(w_1)$:

$$z^{\alpha} = x_2 x_1 = \begin{bmatrix} y_3 & \phi(w_2) & y_4 & y_1 & \phi(w_1) & y_2 \end{bmatrix}$$

• Since ϕ is synchronizing, the word y_4y_1 is the complete image of a letter:

$$s = \phi(e) \qquad y_4 y_1 \qquad \phi(f)$$

$$\phi(w) = \phi(w[0]) \qquad \cdots \qquad \phi(w[i]) \qquad \phi(w[i+1])\phi(w[i+2]) \qquad \cdots$$

• Recall that y_4 is a prefix of $\phi(d)$ and y_1 is suffix of $\phi(a)$.

$$\phi(d) = \begin{array}{c} y_4 \\ \phi(a) = \end{array}$$

$$\phi(w[i+1]) = \qquad y_4 \qquad y_1$$

 \bullet Since ϕ is strongly synchronizing, we have either

$$y_4y_1=\phi(d)$$
 or $y_4y_1=\phi(a).$

• Without loss of generality, we can assume $y_4y_1 = \phi(d)$.

- So we can write $x'_2x'_1 = x_2x_1$.
- (x'_1, x'_2) falls into case 1.
- So we get a contradiction.

• Prove or disprove

$$RTC(4) = \frac{5}{2},$$

$$RTC(5) = \frac{105}{46}, \text{ and}$$

$$RTC(n) = 1 + RT(n) = \frac{2n - 1}{n - 1} \text{ for } n \ge 6.$$

Open problem 2: generalized circular repetitions

- We can study repetition avoidance in the products of factors of words.
- Let RT_k denote the repetition threshold for this new problem, where k is the number of factors we take into consideration.
- We can easily prove

$$\mathsf{RT}_k(2) = 2k.$$

- It would be interesting to obtain more values of $RT_k(n)$.
- Conjecture:

$$\mathsf{RT}_2(n) = \mathsf{RTC}(n)$$

• For large integers n, we conjecture that

$$\mathsf{RT}_k(n) = k - 1 + \mathsf{RT}(n).$$

• For a finite word w, define the circular exponent, exp(w), to be

 $cexp(w) = max\{\alpha : w \text{ has a circular } \alpha\text{-power}\}.$

Is cexp(w) computable in linear time?

 Given α and w, can we compute in linear time whether w avoids circular α-powers?