Avoiding Circular Repetitions

Hamoon Mousavi and Jeffrey Shallit

School of Computer Science University of Waterloo sh2mousa@uwaterloo.ca

Challenges in Combinatorics on Words Fields Institute

April 25, 2013

- Is ABCBABC avoidable?
- \bullet Is it 3-avoidable?
- \bullet Smallest *n* for which *P* is *n*-avoidable?
- Decidability
- Over circular words (necklaces)
- Smallest avoidable exponent (repetition threshold)

Repetitions are popular patterns

- k -power: x^k
- x^2 is 3-avoidable but not 2-avoidable (Thue).
- α -power: $y = x^{\lfloor \alpha \rfloor} x'$ such that $\frac{|y|}{|x|} = \alpha$. We then write

$$
y=x^{\alpha}.
$$

Examples

 $\texttt{hotshots} = (\texttt{hots})^2$

$$
\bullet \text{ alfalfa} = (\text{alf})^2 a = (\text{alf})^{\frac{7}{3}}
$$

Definition

• w is α -power-free if none of its factors is a β -power for any $\beta \geq \alpha$.

w is α^+ -power-free if none of its factors is a β -power for any $\beta > \alpha$.

Circular repetition

Example

 $w =$ dividing $x = \text{dividi}$

a conjugate of x is

vididi

which has a $\frac{5}{2}$ -power: $\mathtt{ididi} = (\mathtt{id})^{\frac{5}{2}}$

So *w* is not circularly $\frac{5}{2}$ -power-free. In fact, w is circularly $(\frac{5}{2})^+$ -power-free.

Circular repetition

• w is circularly α -power-free if for every pair of factors x and y

w = x y

 yx is $α$ -power-free.

 \bullet (x, y) is a circular α -power if yx is α -power.

Definition

The repetition threshold, RT(n), is the smallest α for which there exists an infinite α^+ -power-free word over $\mathsf{\Sigma}_n.$

Dejean's conjecture

Thue, Dejean, Pansiot, Moulin Ollagnier, Carpi, Currie, Mohammad-Noori, Rampersad, and Rao:

RT(*n*) =
$$
\begin{cases} \frac{7}{4}, & \text{if } n = 3; \\ \frac{7}{5}, & \text{if } n = 4; \\ \frac{n}{n-1}, & \text{if } n \neq 3, 4. \end{cases}
$$

Repetition threshold for circular factors

Definition

The repetition threshold for circular factors, RTC(n), is the smallest α for which there exists an infinite circularly α^+ -power-free word over $\mathsf{\Sigma}_n.$

Bounds on $RTC(n)$

Theorem $1 + RT(n) \leq RTC(n) \leq 2RT(n)$

H. Mousavi (University of Waterloo) [Circular Repetitions](#page-0-0) April 25 9/28

• Thue morphism

$$
h(0) = 01
$$

$$
h(1) = 10.
$$

• The Thue-Morse word

$$
\mathbf{t}=h^\omega(0)=01101001\cdots
$$

is 2^+ -power-free.

Theorem

 ${\sf t}$ is circularly 4^+ -power-free.

Theorem

 ${\sf t}$ is circularly 4 $^+$ -power-free.

Proof.

• Suppose (x, y) is a circular 4⁺-power of **t**, i.e.,

and yx is a 4⁺-power.

• Then either y or x is a 2^+ -power, a contradiction.

$RTC(2) = 4$

Theorem

 $RTC(2) = 4.$

Proof.

 \bullet Since **t** is circularly 4⁺-power-free, we have

RTC $(2) \leq 4$.

No binary word of length 12 is circularly 4-power-free, so

RTC $(2) \geq 4$.

Overview of the proof:

- A finite search shows that RTC(3) $\geq \frac{13}{4}$ $\frac{13}{4}$.
- So to prove RTC(3) = $\frac{13}{4}$, we just need to construct an infinite word that is circularly $(\frac{13}{4})^+$ -power-free.
- We give a pair of morphisms:

$$
\psi : \Sigma_6^* \to \Sigma_6^*
$$

$$
\mu : \Sigma_6^* \to \Sigma_3^*
$$

We prove $\mu(\psi^{\omega}(0))$ is circularly $(\frac{13}{4})^{+}$ -power-free.

Pair of morphisms

$$
\psi(0) = 0435\n\psi(1) = 2341\n\psi(2) = 3542\n\psi(3) = 3540\n\psi(4) = 4134\n\psi(5) = 4105.
$$

 $\mu(0) = 012102120102012$ $\mu(1) = 201020121012021$ $\mu(2) = 012102010212010$ $\mu(3) = 201210212021012$ μ (4) = 102120121012021 μ (5) = 102010212021012.

Theorem

$$
\mu(\psi^{\omega}(0))
$$
 is circularly $(\frac{13}{4})^+$ -power-free.

Proof idea

The proof has two parts

- **1** $\mathbf{r} = \psi^{\omega}(0)$ is circularly cubefree.
- **2** $\mathbf{s} = \mu(\mathbf{r})$ is circularly $(\frac{13}{4})^+$ -power-free.
	- **D** s has no short circular $(\frac{13}{4})^+$ -power. (This is checked by computer)
	- **3** s has no long circular $(\frac{13}{4})^+$ -power.

μ is well-behaved!

 $\mu: \Sigma_6^* \to \Sigma_3^*$ is 15-uniform

 $|\mu(a)| = 15$ for all $a \in \Sigma_6$.

• μ is synchronizing, i.e., for no a, b, $c \in \Sigma_6$

$$
\begin{array}{c|c}\n\mu(a) & \mu(b) \\
\hline\n\mu(c) & \n\end{array}
$$

 μ is strongly synchronizing, i.e., for all $a,b,c\in \Sigma_6$ and $x,y\in \Sigma_3^*$ if

$$
\mu(a) = \boxed{x}
$$

$$
\mu(b) = \boxed{\qquad \qquad y \qquad \qquad }
$$

$$
\mu(c) = \begin{array}{|c|c|} \hline x & y \\ \hline \end{array}
$$

either $c = a$ or $c = b$.

Lemma

- Let ϕ be a strongly synchronizing q-uniform morphism.
- Let w be a circularly cubefree word.

• If
$$
(x_1, x_2)
$$
 is a circular $(\frac{13}{4})^+$ -power in $\phi(w)$, i.e.,

Main lemma: proof

- Proof is by contradiction.
- Suppose (x_1, x_2) is a circular $(\frac{13}{4})^+$ -power of $\phi(w)$, and $|x_2x_1| \geq 22q$.

Main lemma: proof

- Proof is by contradiction.
- Suppose (x_1, x_2) is a circular $(\frac{13}{4})^+$ -power of $\phi(w)$, and $|x_2x_1| \geq 22q$.

Main lemma: proof

$$
\phi(w) = \frac{\begin{vmatrix} y_1 & y_2 & y_3 & y_4 \end{vmatrix}}{\begin{vmatrix} \mu & \mu & \mu \\ \mu & \mu & \mu \end{vmatrix}}}{\begin{vmatrix} x_1 & \mu & \mu \\ \mu & \mu & \mu \end{vmatrix}} \times 2 \longrightarrow
$$

\n
$$
x_1 = \frac{\begin{vmatrix} y_1 & \phi(w_1) & y_2 \end{vmatrix}}{\begin{vmatrix} \phi(w_2) & \phi(w_2) \end{vmatrix}}}{\begin{vmatrix} x_1 \end{vmatrix}} \times 2 = \frac{\begin{vmatrix} y_3 & \phi(w_2) & y_4 \end{vmatrix}}{\begin{vmatrix} x_1 \end{vmatrix}} \times \frac{\begin{vmatrix} x_1 & \phi(w_1) & y_2 \end{vmatrix}}{\begin{vmatrix} x_2 \end{vmatrix}}
$$

Here z is a word and $\alpha > \frac{13}{4}$. There are two cases to consider:

 \bullet y₄y₁ = ϵ 2 $y_4y_1 \neq \epsilon$

 z^{α}

H. Mousavi (University of Waterloo) [Circular Repetitions](#page-0-0) April 25 19 / 28

Case 1 is $y_4y_1 = \epsilon$. Therefore we have

$$
x_1 = \phi(w_1)y_2,
$$

$$
x_2 = y_3\phi(w_2).
$$

- Note that $\alpha > \frac{13}{4} = 3.25$.
- We get that $\phi(w_2w_1)$ contains a cube.
- \bullet w₂w₁ contains a cube. (synchronizing)
- w contains a circular cube, a contradiction.

H. Mousavi (University of Waterloo) [Circular Repetitions](#page-0-0) April 25 20 / 28

φ(w) = x¹ x² φ(a) φ(w1) φ(b) φ(c) φ(w2) φ(d)

• We would like to show that by shrinking x_1 and enlarging x_2 we can get another circular $(\frac{13}{4})^+$ -power of the same length:

φ(w) = x¹ x² φ(a) φ(w1) φ(b) φ(c) φ(w2) φ(d) x 0 1 x 0 2

Then clearly (x'_1, x'_2) falls into case 1.

• We just need to show that $\phi(d) = y_4y_1$.

• Let $s = \phi(e) y_4 y_1 \phi(f)$, where e is the last letter of w_2 and f is the first letter of w_1 .

$$
z^{\alpha} = x_2 x_1 = \begin{bmatrix} y_3 & \phi(w_2) & y_4 & y_1 \end{bmatrix} \qquad \phi(w_1) \qquad y_2
$$

 $-s$ $-$

• s also appears in $\phi(w_1)$:

$$
z^{\alpha} = x_2 x_1 = \begin{bmatrix} y_3 & \phi(w_2) & y_4 & y_1 \end{bmatrix} \qquad \phi(w_1) \qquad y_2
$$

Y.

• Since ϕ is synchronizing, the word y_4y_1 is the complete image of a letter:

• Recall that y_4 is a prefix of $\phi(d)$ and y_1 is suffix of $\phi(a)$.

$$
\phi(d) = \boxed{y_4}
$$
\n
$$
\phi(a) = \boxed{y_1}
$$
\nLet f be a function of f is a function of f .

 \bullet Since ϕ is strongly synchronizing, we have either

$$
y_4y_1 = \phi(d) \text{ or}
$$

$$
y_4y_1 = \phi(a).
$$

• Without loss of generality, we can assume $y_4y_1 = \phi(d)$.

- So we can write $x'_2x'_1 = x_2x_1$.
- (x'_1, x'_2) falls into case 1.
- So we get a contradiction.

• Prove or disprove

$$
RTC(4) = \frac{5}{2},
$$

$$
RTC(5) = \frac{105}{46}, \text{ and}
$$

$$
RTC(n) = 1 + RT(n) = \frac{2n - 1}{n - 1} \text{ for } n \ge 6.
$$

Open problem 2: generalized circular repetitions

- We can study repetition avoidance in the products of factors of words.
- \bullet Let RT_k denote the repetition threshold for this new problem, where k is the number of factors we take into consideration.
- We can easily prove

$$
\mathsf{RT}_k(2)=2k.
$$

- **It** would be interesting to obtain more values of $RT_k(n)$.
- **·** Conjecture:

$$
\mathsf{RT}_2(n)=\mathsf{RTC}(n)
$$

• For large integers n, we conjecture that

$$
\mathsf{RT}_k(n) = k - 1 + \mathsf{RT}(n).
$$

• For a finite word w, define the circular exponent, $cexp(w)$, to be

 $cexp(w) = max\{\alpha : w \text{ has a circular } \alpha\text{-power}\}.$

Is $cexp(w)$ computable in linear time?

• Given α and w, can we compute in linear time whether w avoids circular α -powers?