Application of entropy compression in pattern avoidance

Pascal Ochem, Alexandre Pinlou

LIRMM, Université Montpellier 2

24 avril 2013

Definitions

- p : a pattern over the alphabet $\{A, B, C, \ldots\}$
- ► w : a word over the alphabet $\Sigma_k = \{0, 1, ..., k 1\}$

$$
p = ABA
$$
 $w = 0112101120$

$\blacktriangleright \lambda(p)$: avoidability index of p

$$
\lambda(AA) = 3 \qquad \lambda(AAA) = 2
$$

Results

Theorem (Bell & Goh, 2007 ; Rampersad, 2011) Let p be a pattern over k variables

 \blacktriangleright If $|p|\geq 2^k$, then $\lambda(p)\leq 4$ [Bell & Goh, 2007]

- ► If $|p| \geq 3^k$, then $\lambda(p) \leq 3$ [Rampersad, 2011]
- ► If $|p| \geq 4^k$, then $\lambda(p) = 2$ [Rampersad, 2011]

Theorem (O. & Pinlou, 2013; Blanchet-Sadri & Woodhouse, 2013)

Let p be a pattern over k variables

1. If
$$
|p| \ge 2^k
$$
, then $\lambda(p) \le 3$
2. If $|p| \ge 3 \times 2^{k-1}$, then $\lambda(p) = 2$

Optimality

Let p be a pattern over k variables

- 1. If $|p| \geq 2^k$, then $\lambda(p) \leq 3$
- 2. If $|p| \geq 3 \times 2^{k-1}$, then $\lambda(p) = 2$

 $\forall k > 1$:

- 1. there exists an unavoidable pattern of size $2^k 1$ ${A, ABA, ABACABA, ABACABADABACABA, \dots}$
- 2. there exists a 2-unavoidable pattern of size $3 \times 2^{k-1} 1$ {AA, AABAA, AABAACAABAA, AABAACAABAADAABAACAABA

Known results

Let p be a pattern over k variables

1. If
$$
|p| \ge 2^k
$$
, then $\lambda(p) \le 3$
2. If $|p| \ge 3 \times 2^{k-1}$, then $\lambda(p) = 2$

Patterns with at most 3 variables

$$
\blacktriangleright k = 1 : \lambda(AA) = 3 \text{ et } \lambda(AAA) = 2
$$

$$
\blacktriangleright k = 2 : \text{For a pattern } p \in \{A, B\}^*
$$

- if $|p| \geq 4$, then p contains a square, so $\lambda(p) \leq 3$
- if $|p| > 6$, then $\lambda(p) = 2$ (Roth, 1992)
- ► $k = 3$: For a pattern $p \in \{A, B, C\}^*$
	- if $|p| > 8$, then $\lambda(p) < 3$
	- if $|p| > 12$, then $\lambda(p) = 2$

pattern, occurrence, factor

 \triangleright An occurrence y of a pattern p forms a factor

Example :
$$
p = ABA
$$

 $y = (A = 00; B = 1) \rightarrow$ forms the factor 00100

pattern, occurrence, factor

An occurrence y of a pattern p forms a factor

Example :
$$
p = ABA
$$

\n $y = (A = 00; B = 1) \rightarrow$ forms the factor 00100
\n $y = (A = 0; B = 010) \rightarrow$ forms the factor 00100

doubled pattern: every variable appears at least twice.

balanced pattern: every variable appears both in the prefix and the suffix of length $\left|\frac{|p|}{2}\right|$ $\frac{p|}{2}$.

Proposition

For every pattern p on k variables and every $a > 2$, if $|p| \ge a \times 2^{k-1}$, then p contains a balanced pattern p' with $k' \geq 1$ variables such that $|p'| \geq a \times 2^{k'-1}$.

Proof by contradiction

Let p be pattern over $k > 4$ variables 1. If $|p| \geq 2^k$, then $\lambda(p) \leq 3$

2. If $|p| \geq 3 \times 2^{k-1}$, then $\lambda(p) = 2$

We show that: If $|p| \geq 3 \times 2^{k-1}$ and p is doubled, then $\lambda(p) = 2$.

Suppose that ρ is a doubled pattern with k variables, $|p| \geq 3 \times 2^{k-1}$, and $\lambda(p) > 2$.

 \Rightarrow There exists *n* such that every word in Σ_2^n contains p .

Algorithm

Algorithm 1: AVOIDP

Input : $V = \{0, 1\}^t$. **Output:** w (a word avoiding p) and R (a data-structure recording stuff).

- **¹** w ← ε
- **²** R ← ∅
- **³ for** i ← 1 **to** t **do**
- **4** | Append $V[i]$ to w
- **5** Record in R that a letter has been added to w
- **6 if** w contains an occurrence y of p **then**
- **7** Record y in R
- **8** | Erase the factor f corresponding to y in w
- **9** | Record in R that |y| letters have been erased in w

10 return w, R

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- $V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]$

$$
W_0 = \varepsilon
$$

\n
$$
R_0 = \begin{cases} D & = \varepsilon \\ L & = \begin{bmatrix} 1 \\ X & = \varepsilon \end{bmatrix} \end{cases}
$$

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- $V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]$

$$
W_1 = 0
$$

\n
$$
R_1 = \begin{cases} D = 0 \\ L = [] \\ X = \varepsilon \end{cases}
$$

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- $V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]$

$$
W_2 = 00
$$

\n
$$
R_2 = \begin{cases} D & = 00 \\ L & = [] \\ X & = \varepsilon \end{cases}
$$

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- $V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]$

$$
W_3 = 001
$$

\n
$$
R_3 = \begin{cases} D = 000 \\ L = [] \\ X = \varepsilon \end{cases}
$$

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- $V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]$

$$
\blacktriangleright w_4=0010
$$

$$
\triangleright R_4 = \left\{ \begin{array}{rcl} D & = & 0000 \\ L & = & [] \\ X & = & \varepsilon \end{array} \right.
$$

 \blacktriangleright $k = 3$

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- $V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, \frac{1}{1}, 1, 0]$

$W_{24} = 001001100111001101110001$

◮ R²⁴ = D = 000000000000000000000000 = 0 24 L = [] X = ε

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- ◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1 ↑ , 0]

$$
\triangleright \ w_{25} = 0010011001110011011100011
$$

◮ R²⁵ = D = 0000000000000000000000000 = 0 25 L = [] X = ε

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- ◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1 ↑ , 0]

◮ w²⁵ = 0010 011001110011011100011 | {z } ℓ=21 ◮ R²⁵ = D = 0000000000000000000000000 = 0 25 L = [] X = ε Occurrence y = (A = 01;B = 1; C = 100) of p

 \blacktriangleright $k = 3$

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- ◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1 ↑ , 0]

$$
\triangleright \ w_{25} = 0010041004110041011100011
$$

$$
R_{25} = \begin{cases} D = 0^{25}1^{21} \\ L = [\{|A|; |A \cdot B|\}] \\ X = A \cdot B \cdot C \end{cases}
$$

Occurrence $y = (A = 01; B = 1; C = 100)$ of p

 \blacktriangleright $k = 3$

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- ◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1 ↑ , 0]

$$
w_{25} = 0010041004110041011100041 = 0010
$$

$$
R_{25} = \begin{cases} D = 0^{25}1^{21} \\ L = [\{|A|; |A \cdot B|\}] = [\{2, 3\}] \\ X = A \cdot B \cdot C \end{cases}
$$

Occurrence $y = (A = 01; B = 1; C = 100)$ of p

- Arbitrary order on the variables : (A, B, C)
- \blacktriangleright $p = ACBBCBBABCAB$
- ◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1 ↑ , 0]

$$
\blacktriangleright \ w_{25}=0010
$$

$$
R_{25} = \begin{cases} D = 0^{25}1^{21} \\ L = [{2,3}] \\ X = 011100 \end{cases}
$$

 \blacktriangleright $k = 3$

- Arbitrary order on the variables : (A, B, C)
- \rightharpoonup p = ACBBCBBABCAB
- ◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0 ↑]

 $W_{26} = 00100$

$$
R_{26} = \begin{cases} D = 0^{25}1^{21}0 \\ L = [\{2,3\}] \\ X = 011100 \end{cases}
$$

Sketch of proof

- $\triangleright \; \mathcal{V}$: set of entry vectors $V = \{0, 1\}^t$
- \triangleright R : set of records R produced by the algorithm
- \triangleright \emptyset : set of couples (w, R) produced by the algorithm

We have :

- \blacktriangleright $|w_t| \leq n \Rightarrow 2^n$ possible words
- \blacktriangleright $|\mathcal{V}| = 2^t$
- \blacktriangleright $|\mathscr{O}| \leq 2^n \times |\mathcal{R}|$

We will show that :

 \blacktriangleright $|\mathcal{V}|$ \lt $|\mathcal{O}|$

$$
\blacktriangleright |\mathcal{R}| = o(2^t)
$$

► 2^t = $|V|$ \leq $|\mathscr{O}|$ \leq 2ⁿ \times $|\mathcal{R}|$ = $o(2^t)$ \rightarrow Contradiction

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\,], [\,])$, $V_0 = \varepsilon$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\,], [\,])$, $V_0 = \varepsilon$

 \triangleright Step *i* :

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :

If D ends with 0 $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{24} = 001001100111001101110001$ $R_{24} =$ $\sqrt{ }$ J \mathcal{L} D = 000000000000000000000000 = 0 24 $L = []$ $X = [$

By induction, (R_{i-1}, W_{i-1}) gives V_{i-1} . $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :

If D ends with 0 $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{23} = 00100110011100110111000/$ $R_{23} =$ $\sqrt{ }$ J \mathcal{L} D = 000000000000000000000000✁ = 0 23 $L = []$ $X = [$]

By induction, (R_{i-1}, w_{i-1}) gives V_{i-1} . $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :
	- \blacktriangleright If D ends with 0
	- If D ends with 01 ℓ

 $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{25} = 0010$ $R_{25} =$ $\sqrt{ }$ J \mathcal{L} $D = 0^{24}01^{21}$ $L = [\{2, 3\}]$ $X = [011100]$

By induction, (w_{i-1}, R_{i-1}) gives V_{i-1} . $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :
	- \blacktriangleright If D ends with 0
	- If D ends with 01 ℓ $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{25} = 0010$ $R_{25} =$ $\sqrt{ }$ J \mathcal{L} $D = 0^{24}01^{21}$ $L = \left[\{2, 3\} \right]$ |A|=2 |B|=1 |C|= $\frac{21-3\times2-6\times1}{3}$ =3 $X = [011100]$ By induction, (w_{i-1}, R_{i-1}) gives V_{i-1} .

 $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :
	- \blacktriangleright If D ends with 0
	- If D ends with 01 ℓ $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{25} = 0010$ $R_{25} =$ $\sqrt{ }$ J \mathcal{L} $D = 0^{24}01^{21}$ $L = \left[\{2,3\}\right]$ |A|=2 |B|=1 |C|= $\frac{21-3\times2-6\times1}{3}$ =3 $X = [011100]$ By induction, (w_{i-1}, R_{i-1}) gives V_{i-1} .

 $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :
	- \blacktriangleright If D ends with 0
	- If D ends with 01 ℓ

 $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{24} = 0010011001110011011100011$ $R_{24} =$ $\sqrt{ }$ J \mathcal{L} $D = 0^{24}0.121$ $L = \left[\{2,3\}\right]$ |A|=2 |B|=1 |C|= $\frac{21-3\times2-6\times1}{3}$ =3 $X = [011100]$ By induction, (w_{i-1}, R_{i-1}) gives V_{i-1} .

 $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :
	- \blacktriangleright If D ends with 0
	- If D ends with 01 ℓ

 $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{24} = 0010011001110011011100011/$ $R_{24} =$ $\sqrt{ }$ J \mathcal{L} $D = 0^{24}$ Ø $L = \left[\{2,3\}\right]$ |A|=2 |B|=1 |C|= $\frac{21-3\times2-6\times1}{3}$ =3 $X = [011100]$

By induction, (w_{i-1}, R_{i-1}) gives V_{i-1} . $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :
	- \blacktriangleright If D ends with 0
	- If D ends with 01 ℓ

 $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{24} = 001001100111001101110001$ $R_{24} =$ $\sqrt{ }$ J \mathcal{L} $D = 0^{24}$ $L =$ [] $X = \begin{bmatrix} 1 \end{bmatrix}$

By induction, (w_{i-1}, R_{i-1}) gives V_{i-1} . $V_i = V_{i-1} \cdot V[i]$

Lemme

After i steps, V_i can be recovered from the couple (w_i, R_i) .

Proof

- Step 0 : $w_0 = \varepsilon$, $R_0 = (\varepsilon, [\ . \ . \ . \] \ . \ V_0 = \varepsilon$
- \triangleright Step *i* :
	- \blacktriangleright If D ends with 0
	- If D ends with 01 $^{\ell}$

 $p = ACBBCBBABCAB$, variable order : (A, B, C) $w_{24} = 001001100111001101110001$ $R_{24} =$ $\sqrt{ }$ J \mathcal{L} $D = 0^{24}$ $L =$ [] $X = \begin{bmatrix} 1 \end{bmatrix}$

By induction, (w_{i-1}, R_{i-1}) gives V_{i-1} . $V_i = V_{i-1} \cdot V[i]$

Distinct entry vectors produce distinct outputs (w, R).

We show that $|\mathcal{R}| = o(2^t)$

Keep in mind :

- $R = R_t = (D, L, X)$
- $\blacktriangleright |\mathcal{R}| \leq |\mathcal{D}| \times |\mathcal{L}| \times |\mathcal{X}|$
- ► t letters are added, $t |w_t|$ letters are erased
- \blacktriangleright Let m be the number erased factors
- (1) _{1 $\lt i\lt m$} is the set of m erased factors

$$
\blacktriangleright |f_i| \geq 3 \times 2^{k-1}
$$

$$
\sum_{1\leq i\leq m}|f_i|=t-|w_t|\leq t
$$

Analysis of D

- $|D| = t + t |W_t| = 2t n$
- \triangleright D is a partial Dyck word.
- ► The length of a descent (consecutive 1's) is $\geq 3 \times 2^{k-1}$.
- \triangleright C_{t,d}: number of Dyck words of length 2t with descents of length $\geq d$.

Let
$$
\phi_d(x) = 1 + \sum_{i \geq d} x^i = 1 + \frac{x^d}{1-x}
$$
.

Lemme (Esperet & Parreau, 2013)

Let d be an integer such that the equation $\phi_d(x) - x\phi_d'(x) = 0$ has a solution τ with $0 < \tau < r$, where r is the radius of convergence of ϕ_d . Then τ is the unique solution of the equation in the open interval $(0, r)$. Moreover, there exists a constant c_d such that $C_{t,d}\leq c_d\gamma_d^t t^{-\frac{3}{2}}$ where $\gamma_d=\phi_d'(\tau)=\frac{\phi_d(\tau)}{\tau}.$

Analysis of D

- $|D| = t + t |W_t| = 2t n$
- \triangleright D is a partial Dyck word.
- ► The length of a descent (consecutive 1's) is $\geq 3 \times 2^{k-1}$.
- \triangleright C_{t,d}: number of Dyck words of length 2t with descents of length $\geq d$.

- ► $|\mathcal{D}| \leq 1.27575^t$ if $d \geq 24$
- ► $|\mathcal{D}| \leq 1.15685^t$ if $d \geq 48$
- ► $|\mathcal{D}| \leq 1.08603^t$ if $d \geq 100$

Analysis of X

For every erased factor f_i , we add at most $\left| \frac{ |f_i| }{2} \right|$ $\frac{|f_i|}{2}$ letters to X \blacktriangleright $|X| \leq \left\lfloor \frac{|f_1|}{2} \right\rfloor$ $\left\lfloor\frac{f_1\vert}{2}\right\rfloor+\left\lfloor\frac{\vert f_2\vert}{2}\right\rfloor$ $\frac{|f_2|}{2}\Big| + \ldots + \Big|\frac{|f_m|}{2}\Big|$ $\frac{|f_m|}{2}$ $\leq \frac{1}{2}$ 2 $\blacktriangleright |\mathcal{X}| \leq 2^{\frac{t}{2}}$

Analysis of L

 $\blacktriangleright \{A, B, C, \ldots\}$

Analysis of L

 $\blacktriangleright \{\underline{A}, \underline{B}, \underline{C}, \ldots, A_1\}$

Analysis of L

$$
\blacktriangleright \{\underline{A}, \underline{B}, \underline{C}, \ldots\} \{A_1, A_2, \ldots, A_k\}
$$

- $L = \{L_1, L_2, \ldots, L_m\}$
- Every L_i in L corresponds to an erased factor f_i
- \blacktriangleright $L_i = \{ |A_1|, |A_1 \cdot A_2|, \ldots, |A_1 \cdot A_2 \cdot \ldots \cdot A_{k-1}|\}$
- \blacktriangleright h_k (ℓ) : number of $(k 1)$ -sets corresponding to a factor of length ℓ
- $\blacktriangleright |\mathcal{L}| < h_k(|f_1|) \times h_k(|f_2|) \times \ldots \times h_k(|f_m|)$
- \blacktriangleright $g_k(\ell) = h_k(\ell)^{\frac{1}{\ell}}$
- $\blacktriangleright |\mathcal{L}| \leq g_k (|f_1|)^{|f_1|} \times g_k (|f_2|)^{|f_2|} \times \ldots \times g_k (|f_m|)^{|f_m|}$
- If we show that $g_k(\ell) < c$, then $|\mathcal{L}| \leq c^{|f_1|} \times c^{|f_2|} \times \ldots \times c^{|f_m|} \leq c^t$

Bound on $g_k(\ell)$ for $k = 4, \ell \ge 100$ or $k \ge 5, \ell \ge 48$

$$
L_i = \{ |A_1|, |A_1 \cdot A_2|, |A_1 \cdot A_2 \cdot A_3|, \ldots, |A_1 \cdot A_2 \cdot \ldots \cdot A_{k-1}| \} \leq |A_1 \cdot A_2 \cdot \ldots \cdot A_{k-1}|
$$

► L_i is a $(k-1)$ -set of distinct integers between 1 and $\left\lfloor \frac{|f_i|}{2} \right\rfloor$ $\frac{f_i|}{2}$

$$
\begin{array}{lll} \star & h_k(\ell) \leq {\lfloor \frac{\ell}{2} \rfloor} \\ \star & g_k(\ell) \leq \frac{{\lfloor \frac{\ell}{2} \rfloor}}{(k-1)} \end{array} \Rightarrow & g_k(\ell) \leq {\lfloor \frac{\ell}{2} \rfloor} \\ \star & g_k(\ell) \leq \overline{g_k}(I) = {\left(\frac{{\lfloor \frac{\ell}{2} \rfloor}\right)}^{k-1}}^{\frac{1}{\ell}} & (\text{decreasing for } \ell \geq 3 \times 2^{k-1})
$$

$$
\begin{array}{l}\blacktriangleright \forall \ell \geq 100, \ \overline{g_4}(\ell) \leq \overline{g_4}(100) \leq 1.10456\\ \blacktriangleright \forall k \geq 5, \ \forall \ell \geq 48, \ \overline{g_k}(\ell) \leq \overline{g_5}(48) \leq 1.21973\end{array}
$$

Bound on $g_4(\ell)$ for $24 \leq \ell \leq 99$

- $\blacktriangleright k = 4$. Variables : A_1, A_2, A_3, A_4 .
- ► a_i : # appearance of A_i in p . $a_i \ge 2$.
- $\blacktriangleright \sum a_i = |p|$ \blacktriangleright $L_i = \{ |A_1|, |A_1 \cdot A_2|, |A_1 \cdot A_2 \cdot A_3| \}.$ Gives $\{ \ell_1, \ell_2, \ell_3, \ell_4 \}$ $\blacktriangleright \mathcal{A}_{|\rho|} = \sum b_i x^i$ (generating function) $i>|p|$ b_i : # 4-uplets $(\ell_1, \ell_2, \ell_3, \ell_4)$ with $\ell_i \ge 1$ such that $a_1 \times \ell_1 + a_2 \times \ell_2 + a_3 \times \ell_3 + a_4 \times \ell_4 = i$ By definition : $h_4(\ell)=b_\ell$, and then $g_4(\ell)=(b_\ell)^{\frac{1}{\ell}}.$

Pennies, nickels, dimes, quarters, and half dollars

$$
\begin{array}{lll}\n\mathbf{C} &= \sum_{i \geq 1} c_i x^i & (c_i \text{ : number of ways to change } i \text{ cents}) \\
\mathbf{C} &= \frac{1}{1 - x} \times \frac{1}{1 - x^2} \times \frac{1}{1 - x^5} \times \frac{1}{1 - x^{10}} \times \frac{1}{1 - x^{20}} \times \frac{1}{1 - x^{50}}\n\end{array}
$$

- \blacktriangleright In our case :
	- ► Four coins with (possibly the same) values a_i
	- \blacktriangleright Every coin appears at least once.

$$
\blacktriangleright \ \mathcal{A}_{|p|} = \sum_{i \geq |p|} b_i \ x^i = \frac{x^{a_1}}{1 - x^{a_1}} \times \frac{x^{a_2}}{1 - x^{a_2}} \times \frac{x^{a_3}}{1 - x^{a_3}} \times \frac{x^{a_4}}{1 - x^{a_4}}
$$

Bound on $q_4(\ell)$ for $24 < \ell < 100$

 $\blacktriangleright k = 4$. Variables : A_1, A_2, A_3, A_4 . • a_i : # of appearance of A_i in p . $a_i \ge 2$. $\sum a_i = |p|$ \blacktriangleright $L_i = \{ |A_1|, |A_1 \cdot A_2|, |A_1 \cdot A_2 \cdot A_3| \}.$ Gives $\{ \ell_1, \ell_2, \ell_3, \ell_4 \}$ $\blacktriangleright \mathcal{A}_{|\rho|} = \sum b_i x^i$ (generating function) $i>|p|$ b_i : # 4-uplets $(\ell_1, \ell_2, \ell_3, \ell_4)$ with $\ell_i \ge 1$ such that $a_1 \times \ell_1 + a_2 \times \ell_2 + a_3 \times \ell_3 + a_4 \times \ell_4 = i$ By definition : $h_4(\ell)=b_\ell$ and so $g_4(\ell)=(b_\ell)^{\frac{1}{\ell}}.$ $\blacktriangleright \mathcal{A}_{|p|} = \frac{x^{a_1}}{1-x}$ $\frac{1 - x^{a_1}}{a_1 - a_2}$ × x^{a_2} $\frac{1 - x^{a_2}}{1 - x^{a_2}}$ x^{a_3} $\frac{1 - x^{a_3}}{a_3}$ x^{a_4} $1 - x^{a_4}$ For all 24 \leq $|p|$ \leq 99 and all (a_1, a_2, a_3, a_4) such that $\sum a_i = |p|$, Maple computes $\mathcal{A}_{|p|} = b_{24}x^{24} + b_{25}x^{25} + \ldots + b_{99}x^{99} + O(x^{100}).$ ► $(b_i)^{\frac{1}{i}}$ max for $|p| = 24$, $(a_1, a_2, a_3, a_4) = (2, 2, 2, 18)$, $i = 46$: $b_{46} = 84$

there are 84 4-uplets which correspond to an occurrence f of a pattern p, such that $|f| = 46$ and $|p| = 24$ ► $g_4(\ell) \leq 84^{\frac{1}{46}} < 1.10112$

Analyse of L

- ► $g_4(\ell)$ < 1.10112 for 24 $\leq \ell \leq 99$
- ► $\forall \ell \ge 100, g_4(\ell) \le 1.10456$
- $\blacktriangleright \forall k \geq 5, \forall \ell \geq 48, g_k(\ell) \leq 1.21973$

► If we show that
$$
g_k(\ell) \leq c
$$
 then
 $|\mathcal{L}| \leq c^{|f_1|} \times c^{|f_2|} \times \ldots \times c^{|f_m|} \leq c^t$

- \blacktriangleright $|\mathcal{L}| \leq (1.10456)^t$ if $k=4$
- ► $|\mathcal{L}|$ \leq $(1.21973)^t$ if $k \geq 5$

We show that $|\mathcal{R}| = o(2^t)$

►
$$
|\mathcal{R}| \leq |\mathcal{D}| \times |\mathcal{L}| \times |\mathcal{X}|
$$

\n► If $k \geq 5 : |\mathcal{R}| \leq (1.15685 \times 1.21973 \times \sqrt{2})^t = o(2^t)$
\n▶ If $k = 4 : |\mathcal{R}| \leq (1.27575 \times 1.10456 \times \sqrt{2})^t = o(2^t)$

$$
2^t = |\mathcal{V}| \leq |\mathscr{O}| \leq 2^n \times |\mathcal{R}| = o(2^t)
$$

We have shown that :

$$
\begin{aligned}\n &\triangleright |\mathcal{V}| \leq |\mathscr{O}| \\
 &\triangleright |\mathcal{R}| = o(2^t)\n\end{aligned}
$$

And so :

$$
\blacktriangleright 2^t = |\mathcal{V}| \leq |\mathcal{O}| \leq 2^n \times |\mathcal{R}| = o(2^t)
$$

Questions

- \blacktriangleright Is every doubled pattern 3-avoidable ? remaining cases : $k = 4$ and $k = 5$.
- If Is there a k such that every doubled pattern on at least k variables is 2-avoidable ? Such a k is at least 5 since λ (ABCCBADD) = 3.