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Definitions

◮ p : a pattern over the alphabet {A,B,C, . . .}
◮ w : a word over the alphabet Σk = {0,1, . . . , k − 1}

p = ABA w = 0112101120

◮ λ(p) : avoidability index of p

λ(AA) = 3 λ(AAA) = 2



Results

Theorem (Bell & Goh, 2007 ; Rampersad, 2011)
Let p be a pattern over k variables

◮ If |p| ≥ 2k , then λ(p) ≤ 4 [Bell & Goh, 2007]
◮ If |p| ≥ 3k , then λ(p) ≤ 3 [Rampersad, 2011]
◮ If |p| ≥ 4k , then λ(p) = 2 [Rampersad, 2011]

Theorem (O. & Pinlou, 2013; Blanchet-Sadri &
Woodhouse, 2013)
Let p be a pattern over k variables

1. If |p| ≥ 2k , then λ(p) ≤ 3

2. If |p| ≥ 3× 2k−1, then λ(p) = 2



Optimality
Let p be a pattern over k variables

1. If |p| ≥ 2k , then λ(p) ≤ 3

2. If |p| ≥ 3× 2k−1, then λ(p) = 2

∀k ≥ 1 :

1. there exists an unavoidable pattern of size 2k − 1
{A,ABA,ABACABA,ABACABADABACABA, . . .}

2. there exists a 2-unavoidable pattern of size 3× 2k−1 − 1
{AA,AABAA,AABAACAABAA,AABAACAABAADAABAACAABAA



Known results
Let p be a pattern over k variables

1. If |p| ≥ 2k , then λ(p) ≤ 3

2. If |p| ≥ 3× 2k−1, then λ(p) = 2

Patterns with at most 3 variables
◮ k = 1 : λ(AA) = 3 et λ(AAA) = 2

◮ k = 2 : For a pattern p ∈ {A,B}∗
◮ if |p| ≥ 4, then p contains a square, so λ(p) ≤ 3
◮ if |p| ≥ 6, then λ(p) = 2 (Roth, 1992)

◮ k = 3 : For a pattern p ∈ {A,B,C}∗
◮ if |p| ≥ 8, then λ(p) ≤ 3
◮ if |p| ≥ 12, then λ(p) = 2



pattern, occurrence, factor
◮ An occurrence y of a pattern p forms a factor

Example : p = ABA
y = (A = 00;B = 1) → forms the factor 00100



pattern, occurrence, factor
◮ An occurrence y of a pattern p forms a factor

Example : p = ABA
y = (A = 00;B = 1) → forms the factor 00100
y = (A = 0;B = 010) → forms the factor 00100



Preliminary result

doubled pattern: every variable appears at least twice.

balanced pattern: every variable appears both in the prefix and

the suffix of length
⌊
|p|
2

⌋

.

Proposition
For every pattern p on k variables and every a ≥ 2, if
|p| ≥ a× 2k−1, then p contains a balanced pattern p′ with
k ′ ≥ 1 variables such that |p′| ≥ a× 2k ′−1.



Proof by contradiction
Let p be pattern over k ≥ 4 variables

1. If |p| ≥ 2k , then λ(p) ≤ 3

2. If |p| ≥ 3× 2k−1, then λ(p) = 2

We show that:
If |p| ≥ 3× 2k−1 and p is doubled, then λ(p) = 2.

Suppose that p is a doubled pattern with k variables,
|p| ≥ 3× 2k−1, and λ(p) > 2.

⇒ There exists n such that every word in Σn
2 contains p.



Algorithm

Algorithm 1: AVOIDP

Input : V = {0,1}t .
Output: w (a word avoiding p) and R (a data-structure

recording stuff).

1 w ← ε

2 R ← ∅
3 for i ← 1 to t do
4 Append V [i] to w
5 Record in R that a letter has been added to w
6 if w contains an occurrence y of p then
7 Record y in R
8 Erase the factor f corresponding to y in w
9 Record in R that |y | letters have been erased in w

10 return w , R



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]

◮ w0 = ε

◮ R0 =







D = ε

L = [ ]
X = ε



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0

↑
, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]

◮ w1 = 0

◮ R1 =







D = 0
L = [ ]
X = ε



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0

↑
, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]

◮ w2 = 00

◮ R2 =







D = 00
L = [ ]
X = ε



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1

↑
, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]

◮ w3 = 001

◮ R3 =







D = 000
L = [ ]
X = ε



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0

↑
, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]

◮ w4 = 0010

◮ R4 =







D = 0000
L = [ ]
X = ε



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1

↑
, 1, 0]

◮ w24 = 001001100111001101110001

◮ R24 =







D = 000000000000000000000000 = 024

L = [ ]
X = ε



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1

↑
, 0]

◮ w25 = 0010011001110011011100011

◮ R25 =







D = 0000000000000000000000000 = 025

L = [ ]
X = ε



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1

↑
, 0]

◮ w25 = 0010 011001110011011100011
︸ ︷︷ ︸

ℓ=21

◮ R25 =







D = 0000000000000000000000000 = 025

L = [ ]
X = ε

Occurrence y = (A = 01;B = 1;C = 100) of p



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1

↑
, 0]

◮ w25 = 0010011001110011011100011

◮ R25 =







D = 025121

L = [{|A|; |A · B|}]
X = A · B · C

Occurrence y = (A = 01;B = 1;C = 100) of p



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1

↑
, 0]

◮ w25 = 0010011001110011011100011= 0010

◮ R25 =







D = 025121

L = [{|A|; |A · B|}] = [{2,3}]
X = A · B · C

Occurrence y = (A = 01;B = 1;C = 100) of p



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1

↑
, 0]

◮ w25 = 0010

◮ R25 =







D = 025121

L = [{2,3}]
X = 011100



Execution

◮ k = 3
◮ Arbitrary order on the variables : (A,B,C)

◮ p = ACBBCBBABCAB
◮ V = [0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0

↑
]

◮ w26 = 00100

◮ R26 =







D = 0251210
L = [{2,3}]
X = 011100



Sketch of proof

◮ V : set of entry vectors V = {0,1}t
◮ R : set of records R produced by the algorithm
◮ O : set of couples (w ,R) produced by the algorithm

We have :
◮ |wt | ≤ n⇒ 2n possible words
◮ |V| = 2t

◮ |O| ≤ 2n × |R|

We will show that :
◮ |V| ≤ |O|
◮ |R| = o(2t)

◮ 2t = |V| ≤ |O| ≤ 2n × |R| = o(2t) → Contradiction



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0

p = ACBBCBBABCAB, variable order : (A,B,C)
w24 = 001001100111001101110001

R24 =







D = 000000000000000000000000 = 024

L = [ ]
X = [ ]

By induction, (Ri−1,wi−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0

p = ACBBCBBABCAB, variable order : (A,B,C)
w23 = 00100110011100110111000�1

R23 =







D = 00000000000000000000000�0 = 023

L = [ ]
X = [ ]

By induction, (Ri−1,wi−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0
◮ If D ends with 01ℓ

p = ACBBCBBABCAB, variable order : (A,B,C)
w25 = 0010

R25 =







D = 0240121

L = [{2, 3}]
X = [011100]

By induction, (wi−1,Ri−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0
◮ If D ends with 01ℓ

p = ACBBCBBABCAB, variable order : (A,B,C)
w25 = 0010

R25 =







D = 0240121

L = [{2, 3}] |A|=2 |B|=1 |C|= 21−3×2−6×1
3 =3

X = [011100]

By induction, (wi−1,Ri−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0
◮ If D ends with 01ℓ

p = ACBBCBBABCAB, variable order : (A,B,C)
w25 = 0010

R25 =







D = 0240121

L = [{2, 3}] |A|=2 |B|=1 |C|= 21−3×2−6×1
3 =3

X = [011100]

By induction, (wi−1,Ri−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0
◮ If D ends with 01ℓ

p = ACBBCBBABCAB, variable order : (A,B,C)
w24 = 0010011001110011011100011

R24 =







D = 0240��121

L = [{2, 3}] |A|=2 |B|=1 |C|= 21−3×2−6×1
3 =3

X = [011100]

By induction, (wi−1,Ri−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0
◮ If D ends with 01ℓ

p = ACBBCBBABCAB, variable order : (A,B,C)
w24 = 001001100111001101110001�1

R24 =







D = 024�0
L = [{2, 3}] |A|=2 |B|=1 |C|= 21−3×2−6×1

3 =3

X = [011100]

By induction, (wi−1,Ri−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0
◮ If D ends with 01ℓ

p = ACBBCBBABCAB, variable order : (A,B,C)
w24 = 001001100111001101110001

R24 =







D = 024

L = []
X = []

By induction, (wi−1,Ri−1) gives Vi−1.
Vi = Vi−1 · V [i]



Let us show that |V| ≤ |O|
Lemme
After i steps, Vi can be recovered from the couple (wi ,Ri).

Proof

◮ Step 0 : w0 = ε, R0 = (ε, [ ], [ ]), V0 = ε

◮ Step i :
◮ If D ends with 0
◮ If D ends with 01ℓ

p = ACBBCBBABCAB, variable order : (A,B,C)
w24 = 001001100111001101110001

R24 =







D = 024

L = []
X = []

By induction, (wi−1,Ri−1) gives Vi−1.
Vi = Vi−1 · V [i]

Distinct entry vectors produce distinct outputs (w ,R).



We show that |R| = o(2t)

Keep in mind :

◮ R = Rt = (D,L,X )

◮ |R| ≤ |D| × |L| × |X |
◮ t letters are added, t − |wt | letters are erased
◮ Let m be the number erased factors
◮ (fi)1≤i≤m is the set of m erased factors
◮ |fi | ≥ 3× 2k−1

◮

∑

1≤i≤m

|fi | = t − |wt | ≤ t



Analysis of D
◮ |D| = t + t − |wt | = 2t − n
◮ D is a partial Dyck word.
◮ The length of a descent (consecutive 1’s) is ≥ 3× 2k−1.
◮ Ct,d : number of Dyck words of length 2t with descents of

length ≥ d .

Let φd (x) = 1 +
∑

i≥d x i = 1 + xd

1−x .

Lemme (Esperet & Parreau, 2013)
Let d be an integer such that the equation φd (x)− xφ′

d(x) = 0
has a solution τ with 0 < τ < r , where r is the radius of
convergence of φd . Then τ is the unique solution of the
equation in the open interval (0, r). Moreover, there exists a
constant cd such that Ct,d ≤ cdγ

t
d t−

3
2 where γd = φ′

d (τ) =
φd (τ)
τ

.



Analysis of D
◮ |D| = t + t − |wt | = 2t − n
◮ D is a partial Dyck word.
◮ The length of a descent (consecutive 1’s) is ≥ 3× 2k−1.
◮ Ct,d : number of Dyck words of length 2t with descents of

length ≥ d .

◮ |D| ≤ 1.27575t if d ≥ 24
◮ |D| ≤ 1.15685t if d ≥ 48
◮ |D| ≤ 1.08603t if d ≥ 100



Analysis of X

◮ For every erased factor fi , we add at most
⌊
|fi |
2

⌋

letters to X

◮ |X | ≤
⌊
|f1|
2

⌋

+
⌊
|f2|
2

⌋

+ . . .+
⌊
|fm|
2

⌋

≤ t
2

◮ |X | ≤ 2
t
2



Analysis of L

◮ {A,B,C, . . .}



Analysis of L

◮ ((((((({A,B,C, . . .}{A1,A2, . . . ,Ak}



Analysis of L

◮ ((((((({A,B,C, . . .}{A1,A2, . . . ,Ak}
◮ L = {L1,L2, . . . ,Lm}
◮ Every Li in L corresponds to an erased factor fi
◮ Li = {|A1|, |A1 · A2|, . . . , |A1 · A2 · . . . · Ak−1|}
◮ hk (ℓ) : number of (k − 1)-sets corresponding to a factor of

length ℓ

◮ |L| ≤ hk (|f1|)× hk(|f2|)× . . .× hk (|fm|)
◮ gk (ℓ) = hk (ℓ)

1
ℓ

◮ |L| ≤ gk (|f1|)|f1| × gk (|f2|)|f2| × . . . × gk (|fm|)|fm|

◮ If we show that gk (ℓ) ≤ c, then
|L| ≤ c|f1| × c|f2| × . . . × c|fm| ≤ ct



Bound on gk(ℓ) for k = 4, ℓ ≥ 100 or k ≥ 5, ℓ ≥ 48

◮ Li = {|A1|
︸︷︷︸

≥1

, |A1 · A2|, |A1 · A2 · A3|, . . . , |A1 · A2 · . . . · Ak−1|
︸ ︷︷ ︸

≤
⌊

|fi |
2

⌋

}

◮ Li is a (k − 1)-set of distinct integers between 1 and
⌊
|fi |
2

⌋

◮ hk (ℓ) ≤
( ⌊

ℓ
2

⌋

k − 1

)

⇒ gk(ℓ) ≤
( ⌊

ℓ
2

⌋

k − 1

) 1
ℓ

◮ gk (ℓ) ≤ gk (l) =
(

(⌊ ℓ2⌋)k−1

(k−1)!

) 1
ℓ

(decreasing for ℓ ≥ 3× 2k−1)

◮ ∀ℓ ≥ 100, g4(ℓ) ≤ g4(100) ≤ 1.10456
◮ ∀k ≥ 5, ∀ℓ ≥ 48, gk (ℓ) ≤ g5(48) ≤ 1.21973



Bound on g4(ℓ) for 24 ≤ ℓ ≤ 99

◮ k = 4. Variables : A1,A2,A3,A4.
◮ ai : # appearance of Ai in p. ai ≥ 2.
◮

∑
ai = |p|

◮ Li = {|A1|, |A1 · A2|, |A1 · A2 · A3|}. Gives {ℓ1, ℓ2, ℓ3, ℓ4}
◮ A|p| =

∑

i≥|p|

bi x i (generating function)

bi : # 4-uplets (ℓ1, ℓ2, ℓ3, ℓ4) with ℓi ≥ 1
such that a1 × ℓ1 + a2 × ℓ2 + a3 × ℓ3 + a4 × ℓ4 = i
By definition : h4(ℓ) = bℓ, and then g4(ℓ) = (bℓ)

1
ℓ .



Pennies, nickels, dimes, quarters, and half dollars

◮ C =
∑

i≥1

cix
i (ci : number of ways to change i cents)

◮ C = 1
1− x

× 1
1− x2 ×

1
1− x5 ×

1
1− x10 ×

1
1− x20 ×

1
1− x50

◮ In our case :
◮ Four coins with (possibly the same) values ai
◮ Every coin appears at least once.

◮ A|p| =
∑

i≥|p|

bi x i =
xa1

1− xa1
× xa2

1− xa2
× xa3

1− xa3
× xa4

1− xa4



Bound on g4(ℓ) for 24 ≤ ℓ ≤ 100
◮ k = 4. Variables : A1,A2,A3,A4.
◮ ai : # of appearance of Ai in p. ai ≥ 2.

∑
ai = |p|

◮ Li = {|A1|, |A1 · A2|, |A1 · A2 · A3|}. Gives {ℓ1, ℓ2, ℓ3, ℓ4}
◮ A|p| =

∑

i≥|p|

bi x i (generating function)

bi : # 4-uplets (ℓ1, ℓ2, ℓ3, ℓ4) with ℓi ≥ 1
such that a1 × ℓ1 + a2 × ℓ2 + a3 × ℓ3 + a4 × ℓ4 = i
By definition : h4(ℓ) = bℓ and so g4(ℓ) = (bℓ)

1
ℓ .

◮ A|p| =
xa1

1− xa1
× xa2

1− xa2
× xa3

1− xa3
× xa4

1− xa4

◮ For all 24 ≤ |p| ≤ 99 and all (a1,a2,a3,a4) such that
∑

ai = |p|, Maple computes
A|p| = b24x24 + b25x25 + . . . + b99x99 + O(x100).

◮ (bi)
1
i max for |p| = 24, (a1,a2,a3,a4) = (2,2,2,18), i = 46

: b46 = 84
there are 84 4-uplets which correspond to an occurrence f of a pattern p, such that |f | = 46 and |p| = 24

◮ g4(ℓ) ≤ 84
1
46 < 1.10112



Analyse of L

◮ g4(ℓ) < 1.10112 for 24 ≤ ℓ ≤ 99
◮ ∀ℓ ≥ 100, g4(ℓ) ≤ 1.10456
◮ ∀k ≥ 5, ∀ℓ ≥ 48, gk (ℓ) ≤ 1.21973

◮ If we show that gk (ℓ) ≤ c then
|L| ≤ c|f1| × c|f2| × . . . × c|fm| ≤ ct

◮ |L| ≤ (1.10456)t if k = 4
◮ |L| ≤ (1.21973)t if k ≥ 5



We show that |R| = o(2t)

◮ |R| ≤ |D| × |L| × |X |
◮ If k ≥ 5 : |R| ≤ (1.15685× 1.21973×

√
2)t = o(2t)

◮ If k = 4 : |R| ≤ (1.27575× 1.10456×
√

2)t = o(2t)



2t = |V| ≤ |O| ≤ 2n × |R| = o(2t)

We have shown that :
◮ |V| ≤ |O|
◮ |R| = o(2t)

And so :
◮ 2t = |V| ≤ |O| ≤ 2n × |R| = o(2t)



Questions

◮ Is every doubled pattern 3-avoidable ?
remaining cases : k = 4 and k = 5.

◮ Is there a k such that every doubled pattern on at least k
variables is 2-avoidable ?
Such a k is at least 5 since λ(ABCCBADD) = 3.
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