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Twins

S = s1 . . . sn a word of length n

A (scattered) subword of S is a word S ′ = si1si2 . . . sil , where
i1 < i2 < · · · < il .

disjoint subwords si1si2 . . . sil and sj1sj2 . . . sjt :
{i1, . . . , il} ∩ {j1, . . . , jt} = ∅.

Definition 1

Twins: two disjoint identical subwords of S .

Example 2
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{i1, . . . , il} ∩ {j1, . . . , jt} = ∅.

Definition 1

Twins: two disjoint identical subwords of S .

Example 2

S = s1s2s3s4s5s6s7 = 0001010
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A (scattered) subword of S is a word S ′ = si1si2 . . . sil , where
i1 < i2 < · · · < il .

disjoint subwords si1si2 . . . sil and sj1sj2 . . . sjt :
{i1, . . . , il} ∩ {j1, . . . , jt} = ∅.

Definition 1

Twins: two disjoint identical subwords of S .

Example 2

S = s1s2s3s4s5s6s7 = 0001010
S1 = s1s2s4 = 001 and S2 = s3s5s6 = 001 are twins.
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Twins

S = s1 . . . sn a word of length n

A (scattered) subword of S is a word S ′ = si1si2 . . . sil , where
i1 < i2 < · · · < il .

disjoint subwords si1si2 . . . sil and sj1sj2 . . . sjt :
{i1, . . . , il} ∩ {j1, . . . , jt} = ∅.

Definition 1

Twins: two disjoint identical subwords of S .

Example 2

S = s1s2s3s4s5s6s7 = 0001010
S1 = s1s2s4 = 001 and S2 = s3s5s6 = 001 are twins.
S ′1 = s1s4s5 = 010 and S ′2 = s2s6s7 = 010 are also twins.
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Twins

Problem

How large could the twins be in any word over a given alphabet?

More precisely:

f (S): the largest integer m such that there are twins of length m

In the example S = 0001010 one has f (S) = 3.

We are interested in

f (n,Σ) = min{f (S) : S ∈ Σn}

Trivial lower bound

f (n, {0, 1}) ≥ b(1/3)nc
S = 001 101 111 010
twins equal to 0110: S = 001 101 111 010
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Twins

Our main result is

Theorem 3

There exists an absolute constant C such that(
1− C

(
log n

log log n

)−1/4)
n ≤ 2f (n, {0, 1}) ≤ n − log n.

i.e., a binary word of length n has twins of length n/2− o(n)
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k-twins

Definition 4

k-twins in S ∈ Σ∗: k disjoint identical subwords of S

f (S , k): the largest m so that S contains k-twins of length m each

f (n, k,Σ) = min{f (S , k) : S ∈ Σn}

Theorem 5

For any integer k ≥ 2, and alphabet Σ, |Σ| ≤ k,(
1− C |Σ|

(
log n

log log n

)−1/4)
n ≤ kf (n, k ,Σ) ≤ n − log n.

M. Axenovich, Y. Person, S. Puzynina Twins in words



ε-regular words

The density of the letter q in S : dq(S) = |S |q/|S |.
S [i , i + m] = si si+1 · · · si+m

Definition 6 (ε-regular word)

For a positive ε, ε < 1/3, call a word S of length n over an
alphabet Σ ε-regular if for every i , εn + 1 ≤ i ≤ n − 2εn + 1 and
every q ∈ Σ it holds that

|dq(S)− dq(S [i , i + εn − 1])| < ε.
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ε-regular words

Example 7

Word S of length n = 60, density 1/2:

011101010101000101001100110101010100110101010101111000010100

is ε-regular for ε = 1/5

Verification by definition:

consider factors of length εn = (1/5) · 60 = 12 starting at
positions 13, 14 . . . , 37

compare their densities with the density 1/2 of S

S ′ = S [13, 24] = 000101001100, d(S ′) = 8/12,
|8/12− 1/2| < ε = 1/5
S ′′ = S [14, 25] = 001010011001, d(S ′′) = 7/12,
|5/12− 1/2| < 1/5
etc.

M. Axenovich, Y. Person, S. Puzynina Twins in words



ε-regular partition

S := (S1, . . . , St): a partition of S if S = S1S2 . . . St

Definition 8 (ε-regular partition)

A partition S is an ε-regular partition of a word S ∈ Σn if∑
i∈[t]

Si is not ε−regular

|Si | ≤ εn,

i.e., the total length of ε-irregular factors is at most εn.
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Regularity lemma

Key lemma:

Lemma 9 (Regularity Lemma for Words)

For every ε, t0 and n such that 0 < ε < 1/3, t0 > 0 and
n > n0 = t0ε

−ε−4
, any word S ∈ Σn admits an ε-regular partition

into t parts with t0 ≤ t ≤ T0 = t031/ε
4
.
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twins in ε-regular word

S = 01110 11001 10110 11010 11100 10110 10101

S ′ = 0 0 11 1 0 0 11 1 00 11 1

S ′′ = 00 1 11 0 0 111 0 0 1 1 1
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Large alphabets and small k-twins

Theorem 10

For any integer k ≥ 2, and alphabet Σ of size l , |Σ| > k,(
k

|Σ|
− C |Σ|

(
log n

log log n

)− 1
4

)
n ≤ kf (n, k,Σ) ≤ n−max{αn, log n},

where α ∈ [0, 1/k] is the solution of the equation
l−(k−1)αα−kα(1− kα)kα−1 = 1, whenever such solution exists and
0 otherwise.

k = 2, l = 5: α < 0.49 ⇒ no twins of length n/2− o(n)
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Summary

We studied the following

Question:

is it true that any given word of length n over alphabet Σ has
k-twins of size n(1− o(1))/k each?

Informally: the k-twins cover almost all letters of the word

We have shown that the answer is:

YES for k ≥ |Σ|
NO for some pairs (k, |Σ|) with k < |Σ|, the smallest such
pair we know is (k , |Σ|) = (2, 5)

Open question

Is it true for (k , |Σ|) = (k , k + 1)?
We do not know even for (2, 3).
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