Twins in words

M. Axenovich¹ Y. Person² S. Puzynina³

¹Iowa State University, U.S.A. and Karlsruher Institut für Technologie, Germany

²Freie Universität Berlin, Institut für Mathematik, Germany

³University of Turku, Finland, and Sobolev Institute of Mathematics, Novosibirsk, Russia

▲ □ ► ▲ □ ►

글 > 글

- $S = s_1 \dots s_n$ a word of length n
- A (scattered) subword of S is a word $S' = s_{i_1}s_{i_2} \dots s_{i_l}$, where $i_1 < i_2 < \dots < i_l$.

<ロ> (四) (四) (三) (三) (三)

• disjoint subwords $s_{i_1}s_{i_2}\ldots s_{i_l}$ and $s_{j_1}s_{j_2}\ldots s_{j_t}$: $\{i_1,\ldots,i_l\} \cap \{j_1,\ldots,j_t\} = \emptyset.$

Definition 1

Twins: two disjoint identical subwords of S.

- $S = s_1 \dots s_n$ a word of length n
- A (scattered) subword of S is a word $S' = s_{i_1}s_{i_2} \dots s_{i_l}$, where $i_1 < i_2 < \dots < i_l$.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

• disjoint subwords $s_{i_1}s_{i_2}\ldots s_{i_l}$ and $s_{j_1}s_{j_2}\ldots s_{j_t}$: $\{i_1,\ldots,i_l\} \cap \{j_1,\ldots,j_t\} = \emptyset.$

Definition 1

Twins: two disjoint identical subwords of S.

Example 2

 $S = s_1 s_2 s_3 s_4 s_5 s_6 s_7 = 0001010$

- $S = s_1 \dots s_n$ a word of length n
- A (scattered) subword of S is a word $S' = s_{i_1}s_{i_2} \dots s_{i_l}$, where $i_1 < i_2 < \dots < i_l$.

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

• disjoint subwords $s_{i_1}s_{i_2}\ldots s_{i_l}$ and $s_{j_1}s_{j_2}\ldots s_{j_t}$: $\{i_1,\ldots,i_l\} \cap \{j_1,\ldots,j_t\} = \emptyset.$

Definition 1

Twins: two disjoint identical subwords of S.

Example 2

 $S = s_1 s_2 s_3 s_4 s_5 s_6 s_7 = 0001010$ $S_1 = s_1 s_2 s_4 = 001$ and $S_2 = s_3 s_5 s_6 = 001$ are twins.

- $S = s_1 \dots s_n$ a word of length n
- A (scattered) subword of S is a word $S' = s_{i_1}s_{i_2} \dots s_{i_l}$, where $i_1 < i_2 < \dots < i_l$.

< 口 > < 回 > < 回 > < 回 > < 回 > <

3

• disjoint subwords $s_{i_1}s_{i_2}\ldots s_{i_l}$ and $s_{j_1}s_{j_2}\ldots s_{j_t}$: $\{i_1,\ldots,i_l\} \cap \{j_1,\ldots,j_t\} = \emptyset.$

Definition 1

Twins: two disjoint identical subwords of S.

Example 2

$$S = s_1 s_2 s_3 s_4 s_5 s_6 s_7 = 0001010$$

 $S_1 = s_1 s_2 s_4 = 001$ and $S_2 = s_3 s_5 s_6 = 001$ are twins.
 $S'_1 = s_1 s_4 s_5 = 010$ and $S'_2 = s_2 s_6 s_7 = 010$ are also twins.

Problem

How large could the twins be in any word over a given alphabet?

- - 4 回 ト - 4 回 ト

æ

Problem

How large could the twins be in any word over a given alphabet?

More precisely:

f(S): the largest integer m such that there are twins of length m

In the example S = 0001010 one has f(S) = 3.

A (1) > (1) > (1)

Problem

How large could the twins be in any word over a given alphabet?

More precisely:

f(S): the largest integer m such that there are twins of length m

In the example S = 0001010 one has f(S) = 3.

We are interested in

$$f(n, \Sigma) = \min\{f(S) : S \in \Sigma^n\}$$

A (1) > < 3</p>

Problem

How large could the twins be in any word over a given alphabet?

More precisely:

f(S): the largest integer m such that there are twins of length m

In the example S = 0001010 one has f(S) = 3.

We are interested in

$$f(n, \Sigma) = \min\{f(S) : S \in \Sigma^n\}$$

Trivial lower bound

```
f(n, \{0, 1\}) \geq \lfloor (1/3)n \rfloor
```

M. Axenovich, Y. Person, S. Puzynina Twins in words

Problem

How large could the twins be in any word over a given alphabet?

More precisely:

f(S): the largest integer m such that there are twins of length m

In the example S = 0001010 one has f(S) = 3.

We are interested in

$$f(n, \Sigma) = \min\{f(S) : S \in \Sigma^n\}$$

Trivial lower bound

 $f(n, \{0, 1\}) \geq \lfloor (1/3)n \rfloor$

 $S = 001 \ 101 \ 111 \ 010$ twins equal to 0110: $S = 001 \ 101 \ 111 \ 010$

M. Axenovich, Y. Person, S. Puzynina Twins in words

Our main result is

Theorem 3

There exists an absolute constant C such that

$$\left(1-C\left(\frac{\log n}{\log\log n}\right)^{-1/4}\right)n\leq 2f(n,\{0,1\})\leq n-\log n$$

æ

Our main result is

Theorem 3

There exists an absolute constant C such that

$$\left(1-C\left(\frac{\log n}{\log\log n}\right)^{-1/4}\right)n\leq 2f(n,\{0,1\})\leq n-\log n$$

イロン イヨン イヨン イヨン

æ

i.e., a binary word of length n has twins of length n/2 - o(n)

Definition 4

k-twins in $S \in \Sigma^*$: *k* disjoint identical subwords of *S*

f(S, k): the largest m so that S contains k-twins of length m each

$$f(n,k,\Sigma) = \min\{f(S,k): S \in \Sigma^n\}$$

Theorem 5

For any integer $k \ge 2$, and alphabet Σ , $|\Sigma| \le k$,

$$\left(1-C|\Sigma|\left(rac{\log n}{\log\log n}
ight)^{-1/4}
ight)n\leq kf(n,k,\Sigma)\leq n-\log n$$

・ロト ・回ト ・ヨト

The density of the letter q in S: $d_q(S) = |S|_q/|S|$. $S[i, i + m] = s_i s_{i+1} \cdots s_{i+m}$

Definition 6 (ε -regular word)

For a positive ε , $\varepsilon < 1/3$, call a word S of length n over an alphabet Σ ε -regular if for every i, $\varepsilon n + 1 \le i \le n - 2\varepsilon n + 1$ and every $q \in \Sigma$ it holds that

$$|d_q(S) - d_q(S[i, i + \varepsilon n - 1])| < \varepsilon.$$

イロト イヨト イヨト イヨト

Example 7

Word S of length n = 60, density 1/2:

is $\varepsilon\text{-regular}$ for $\varepsilon=1/5$

Verification by definition:

- consider factors of length εn = (1/5) · 60 = 12 starting at positions 13, 14..., 37
- ullet compare their densities with the density 1/2 of S

•
$$S' = S[13, 24] = 000101001100, \ d(S') = 8/12, \ |8/12 - 1/2| < \epsilon = 1/5$$

•
$$S'' = S[14, 25] = 001010011001, d(S'') = 7/12,$$

 $|5/12 - 1/2| < 1/5$

イロト イヨト イヨト イヨト

æ

• etc.

$$\mathcal{S} := (S_1, \ldots, S_t)$$
: a partition of S if $S = S_1 S_2 \ldots S_t$

Definition 8 (ε -regular partition)

A partition S is an ε -regular partition of a word $S \in \Sigma^n$ if

$$\sum_{\substack{i\in [t]\ arepsilon_i ext{ is not }arepsilon - ext{regular}}} |S_i| \leq arepsilon n,$$

A⊒ ▶ ∢ ∃

i.e., the total length of ε -irregular factors is at most εn .

Key lemma:

Lemma 9 (Regularity Lemma for Words)

For every ε , t_0 and n such that $0 < \varepsilon < 1/3$, $t_0 > 0$ and $n > n_0 = t_0 \varepsilon^{-\varepsilon^{-4}}$, any word $S \in \Sigma^n$ admits an ε -regular partition into t parts with $t_0 \le t \le T_0 = t_0 3^{1/\varepsilon^4}$.

- 4 回 🕨 - 4 国 🕨 - 4 国 🕨

æ

Theorem 10

For any integer $k \ge 2$, and alphabet Σ of size I, $|\Sigma| > k$,

$$\left(\frac{k}{|\Sigma|}-C|\Sigma|\left(\frac{\log n}{\log\log n}\right)^{-\frac{1}{4}}\right)n\leq kf(n,k,\Sigma)\leq n-\max\{\alpha n,\log n\},$$

where $\alpha \in [0, 1/k]$ is the solution of the equation $I^{-(k-1)\alpha}\alpha^{-k\alpha}(1-k\alpha)^{k\alpha-1} = 1$, whenever such solution exists and 0 otherwise.

· < @ > < 문 > < 문 > · · 문

Theorem 10

For any integer $k \ge 2$, and alphabet Σ of size I, $|\Sigma| > k$,

$$\left(\frac{k}{|\Sigma|}-C|\Sigma|\left(\frac{\log n}{\log\log n}\right)^{-\frac{1}{4}}\right)n\leq kf(n,k,\Sigma)\leq n-\max\{\alpha n,\log n\},$$

where $\alpha \in [0, 1/k]$ is the solution of the equation $I^{-(k-1)\alpha}\alpha^{-k\alpha}(1-k\alpha)^{k\alpha-1} = 1$, whenever such solution exists and 0 otherwise.

· < @ > < 문 > < 문 > · · 문

$$k = 2$$
, $l = 5$: $\alpha < 0.49 \Rightarrow$ no twins of length $n/2 - o(n)$

Summary

We studied the following

Question:

is it true that any given word of length *n* over alphabet Σ has *k*-twins of size n(1 - o(1))/k each?

Informally: the k-twins cover almost all letters of the word

< **₩** ► < **⇒** ►

Summary

We studied the following

Question:

is it true that any given word of length *n* over alphabet Σ has *k*-twins of size n(1 - o(1))/k each?

Informally: the k-twins cover almost all letters of the word

We have shown that the answer is:

- YES for $k \ge |\Sigma|$
- NO for some pairs $(k, |\Sigma|)$ with $k < |\Sigma|$, the smallest such pair we know is $(k, |\Sigma|) = (2, 5)$

Summary

We studied the following

Question:

is it true that any given word of length *n* over alphabet Σ has *k*-twins of size n(1 - o(1))/k each?

Informally: the k-twins cover almost all letters of the word

We have shown that the answer is:

- YES for $k \ge |\Sigma|$
- NO for some pairs $(k, |\Sigma|)$ with $k < |\Sigma|$, the smallest such pair we know is $(k, |\Sigma|) = (2, 5)$

Open question

Is it true for $(k, |\Sigma|) = (k, k+1)$? We do not know even for (2, 3). Maria Axenovich, Yury Person, Svetlana Puzynina: A regularity lemma and twins in words. J. Comb. Theory, Ser. A 120(4): 733-743 (2013)

- (同) - (三)

æ

- ∢ ≣ ▶