Repetitions in Words—Part I

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

Repetitions in words

- What kinds of repetitions can/cannot be avoided in words (sequences)?
- e.g., the word

abaabbabaabab

contains several repetitions

but in the word

abcbacbcabcba

the same sequence of symbols never repeats twice in succession

Types of repetitions

- ightharpoonup a square is a non-empty word of the form xx (like tauntaun)
- a word is squarefree if it contains no square
- a cube is a non-empty word xxx
- ▶ a t-power is a non-empty word x^t (x repeated t times)
- ▶ any long word over 2 symbols contains squares
- ▶ Over 3 symbols?

Thue's work

Theorem (Thue 1906)

There is an infinite squarefree word over 3 symbols.

Subsequent work

- ► Thue's result was rediscovered many times
- ▶ e.g., by Arshon (1937); Morse and Hedlund (1940)
- ▶ a systematic study of avoidable repetitions was begun by Bean, Ehrenfeucht, and McNulty (1979)

Morphisms

- typical construction of squarefree words: find a map that produces a longer squarefree word from a shorter squarefree word
- ▶ e.g., the map (morphism) f that sends $a \to abcab$; $b \to acabcb$; $c \to acbcacb$
- $f(acb) = abcab \, acbcacb \, acabcb$ is squarefree
- ▶ if this morphism preserves squarefreeness we can generate an infinite word by iteration

Preserving squarefreeness

- What conditions on a morphism guarantee that it preserves squarefreeness?
- we say a morphism is infix if no image of a letter appears inside the image of another letter
- lacktriangledown a
 ightarrow abc; b
 ightarrow ac; c
 ightarrow b is not infix

A sufficient condition for infix morphisms

Theorem (Thue 1912; Bean et. al. 1979)

Let $f:A^*\to B^*$ be a morphism from words over an alphabet A to words over an alphabet B. If f is infix and f(x) is squarefree whenever x is a squarefree word of length at most 3, then f preserves squarefreeness in general.

Generating squarefree words

- ▶ the map $a \to abcab$; $b \to acabcb$; $c \to acbcacb$ satisfies the conditions of the theorem
- so it preserves squarefreeness
- ▶ if we iterate it we get squarefree words:

 $a \rightarrow abcab \rightarrow abcabacabcbacbcacbabcabacabcb$

so there is an infinite squarefree word

A general criterion

Theorem (Crochemore 1982)

Let $f:A^*\to B^*$ be a morphism. Then f preserves squarefreeness if and only if it preserves squarefreeness on words of length at most

$$\max\left\{3, 1 + \left\lceil \frac{M(f) - 3}{m(f)} \right\rceil \right\},\,$$

where $M(f) = \max_{a \in A} |f(a)|$ and $m(f) = \min_{a \in A} |f(a)|$.

Consequences

- we have an algorithm to decide if a morphism is squarefree
- simply test if it is squarefree on words of a certain length (the bound in the theorem)
- What about t-powers?
- ▶ Recall: a square looks like xx; a t-power looks like $xx \cdots xx$ (t-times)

A criterion for *t*-power-freeness

Theorem (Richomme and Wlazinski 2007)

Let $t \geq 3$ and let $f: A^* \to B^*$ be a uniform morphism. There exists a finite set $T \subseteq A^*$ such that f preserves t-power-freeness if and only if f(T) consists of t-power-free words.

(uniform means the lengths of the images, |f(a)|, are the same for all $a \in A$)

The general case

Open problem

Is there an algorithm to determine if an arbitrary morphism is t-power-free?

Changing the problem slightly

- ▶ our initial goal was to generate long *t*-power-free words
- a morphism that preserves t-power-freeness can accomplish this
- ▶ but some morphisms can generate long *t*-power-free words without preserving *t*-power-freeness in general

An non-squarefree morphism

consider f defined by

$$a \to abc$$
 $b \to ac$ $c \to b$

iterates are squarefree:

$$a \rightarrow abc \rightarrow abcacb \rightarrow abcacbabcbac \rightarrow \cdots$$

▶ but f(aba) = abcacabc is not

Fixed points

- ightharpoonup suppose f generates an infinite word ${f x}$ by iteration
- we write $\mathbf{x} = f(\mathbf{x})$ and call \mathbf{x} a fixed point of f
- ► Can we determine if **x** is *t*-power-free?

Deciding if a fixed point is *t*-power-free

Theorem (Mignosi and Séébold 1993)

There is an algorithm to decide the following problem: Given $t \geq 2$ and a morphism f with fixed point \mathbf{x} , is \mathbf{x} t-power-free?

Investigating a special class of morphisms

- we now restrict our attention to a particular class of morphisms
- primitive morphisms have nice properties that make them easy to analyse

Primitive morphisms

- ▶ a morphism $f: \Sigma^* \to \Sigma^*$ is primitive if there is a constant d such that for all $a, b \in \Sigma$, a appears in $f^d(b)$
- ▶ the term "primitive" comes from matrix theory

A example of a primitive morphism

Suppose f maps

$$a \to ab$$
 $b \to bc$ $c \to a$.

Then

and a, b, c all appear in the third iterates.

The matrix of a morphism

- ▶ let $f: \Sigma^* \to \Sigma^*$ be a morphism
- $\Sigma = \{a_1, a_2, \dots, a_k\}$
- define a matrix

$$M = (m_{i,j})_{1 \le i,j \le k}$$

where $m_{i,j}$ is the number of occurrences of a_i in $f(a_j)$

An example

$$a \to ab$$

$$f: b \to bc$$

$$c \to a.$$

$$M = \begin{array}{ccc} & a & b & c \\ a & 1 & 0 & 1 \\ 1 & 1 & 0 \\ c & 0 & 1 & 0 \end{array}$$

Primitive matrices

- \blacktriangleright a non-negative matrix M is primitive if there is a positive integer d such that $M^d>0$
- ▶ the least such d is the index of primitivity
- ▶ if M is $k \times k$ then $d \le k^2 2k + 2$ (Wielandt 1950)
- ▶ if a morphism is primitive then its matrix is primitive

From the previous example

$$M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad M^3 = \begin{pmatrix} 2 & 2 & 1 \\ 3 & 2 & 2 \\ 2 & 1 & 1 \end{pmatrix} > 0$$

Repetitions and primitive morphisms

Theorem (Mossé 1992)

Let ${\bf x}$ be an infinite fixed point of a primitive morphism f. Then either

- x is periodic, or
- there exists a positive integer t such that x is t-power-free.

Linear recurrence

- this result is a consequence of another important property
- ► an infinite word x is recurrent if each of its factors occurs infinitely often
- ▶ it is linearly recurrent if there exists a constant C such that any factor of \mathbf{x} of length Cn contains all factors of \mathbf{x} of length n.
- an infinite word generated by a primitive morphism is linearly recurrent

The connection with repetitions

- ▶ let x be an aperiodic fixed point of a primitive morphism
- ▶ let C be the constant of linear recurrence
- lacktriangle Claim: ${f x}$ does not contain any repetition of the form v^C

Proving x avoids C-powers

- $ightharpoonup \mathbf{x}$ aperiodic implies that for all n the word \mathbf{x} has at least n+1 factors of length n (Coven and Hedlund 1973)
- suppose $\mathbf x$ contains v^C , where |v|=m
- v^C contains $\leq m$ factors of length m
- ▶ but $|v^C| = Cm$ and by linear recurrence v^C contains all factors of $\mathbf x$ of length m
- \mathbf{x} has $\leq m$ factors of length m, contradiction

Proving linear recurrence

It remains to prove:

Theorem (Durand 1998)

If $\mathbf x$ is a fixed point of a primitive morphism f, then there exists a constant C such that for every n, every factor of $\mathbf x$ of length Cn contains every factor of $\mathbf x$ of length n.

The Perron-Frobenius Theory

Let M be the matrix of f; so M is primitive. The fundamental result concerning primitive matrices is:

Theorem (Perron 1907; Frobenius 1912)

A primitive matrix M has a dominant eigenvalue θ ; i.e., θ is a positive, real eigenvalue of M and is strictly greater in absolute value than all other eigenvalues of M.

Asymptotic growth of M^n

Corollary

The limit

$$\lim_{n\to\infty}\frac{M^n}{\theta^n}$$

exists and is positive.

The length of the iterates of a morphism

- Let f be a primitive morphism, M its matrix, and θ the dominant eigenvalue of M.
- For each letter a, there exists a positive constant C_a such that

$$\lim_{n \to \infty} \frac{|f^n(a)|}{\theta^n} = C_a.$$

▶ There exist positive constants A, B such that for all n,

$$A\theta^n \le \min_{a \in \Sigma} |f^n(a)| \le \max_{a \in \Sigma} |f^n(a)| \le B\theta^n.$$

The constant of linear recurrence

- \blacktriangleright let \mathbf{x} be a fixed point of f
- \blacktriangleright we want to define a C such that any factor of ${\bf x}$ of length Cn contains all factors of length n
- it is not hard to show that for n=2 there exists C_2 such that every factor of length C_2 contains all factors of length 2
- \blacktriangleright we focus on $n \ge 3$
- ▶ let A, B, θ be as defined previously
- ▶ Claim: we can take $C = (C_2 + 2)(B/A)\theta$.

Establishing the claim

- write $\mathbf{x} = x_1 x_2 \cdots$
- ightharpoonup consider a factor $w = x_i x_{i+1} \cdots x_{i+Cn-1}$ of ${\bf x}$
- |w| = Cn
- ightharpoonup since \mathbf{x} is a fixed point of f we have $\mathbf{x} = f(\mathbf{x})$
- by iteration we have

$$\mathbf{x} = f^p(x_1)f^p(x_2)\cdots$$

for every $p \ge 1$

Taking the preimage of \boldsymbol{w}

ightharpoonup choose p satisfying

$$\min_{a \in \Sigma} |f^{p-1}(a)| < n < \min_{a \in \Sigma} |f^p(a)|$$

- write $w = uf^p(x_r)f^p(x_{r+1})\cdots f^p(x_{r+j-1})v$
- ightharpoonup u and v as small as possible
- we get

$$\begin{aligned} |w| &= Cn &\leq |u| + |v| + j \max_{a \in \Sigma} |f^p(a)| \\ &\leq 2 \max_{a \in \Sigma} |f^p(a)| + j \max_{a \in \Sigma} |f^p(a)| \end{aligned}$$

Rearranging the last inequality

Rearrange to get

$$j \geq \frac{Cn}{\max_{a \in \Sigma} |f^p(a)|} - 2$$
$$\geq \frac{(C_2 + 2)(B/A)\theta n}{B\theta^p} - 2.$$

Recall that $n > \min_{a \in \Sigma} |f^{p-1}(a)| \ge A\theta^{p-1}$.

Using this inequality to replace n gives

$$j \geq \frac{(C_2+2)(B/A)\theta A\theta^{p-1}}{B\theta^p} - 2$$
$$= C_2.$$

Concluding the proof

- ► Recall: $w = uf^p(x_r)f^p(x_{r+1})\cdots f^p(x_{r+j-1})v$
- ▶ since $j \ge C_2$ we have $|x_r x_{r+1} \cdots x_{r+j-1}| \ge C_2$
- $ightharpoonup x_r x_{r+1} \cdots x_{r+j-1}$ contains all factors of $\mathbf x$ of length 2
- ▶ any factor of x of length n is a factor of some $f^p(z)$, where z is a factor of x of length at most 2
- lacktriangledown w contains all such $f^p(z)$ and thus all factors of length n
- since w was an arbitrary factor of length Cn, the proof is complete

Recapping the argument

- ▶ we have shown that a fixed point x of a primitive morphism f is linearly recurrent
- ▶ from this we deduced that x is either periodic, or avoids C-powers, where C is the constant of linear recurrence
- ▶ this C may not be optimal
- ▶ How can we tell if x is (ultimately) periodic?
- we address this question (for arbitrary morphisms) in the second part

Subword complexity

- if $\mathbf x$ is an infinite word, its subword complexity function p(n) counts the number of distinct factors of $\mathbf x$ of length n
- ightharpoonup we have seen that p(n) is bounded if ${f x}$ is ultimately periodic
- ▶ and that $p(n) \ge n + 1$ if \mathbf{x} is aperiodic
- if $\mathbf x$ is generated by iterating a primitive morphism then p(n) = O(n) (follows from linear recurrence)

Possible complexity functions

Theorem (Pansiot 1984)

Let $\mathbf x$ be an infinite word generated by iterating a morphism. The subword complexity function p(n) of $\mathbf x$ satisfies one of the following: $p(n) = \Theta(1)$, $p(n) = \Theta(n)$, $p(n) = \Theta(n \log \log n)$, or $p(n) = \Theta(n^2)$.

Complexity functions of repetition-free words

- ► Ehrenfeucht and Rozenberg (80's) investigated the subword complexities of repetition-free words generated by morphisms
- let x be an infinite word generated by iterating a morphism
- if \mathbf{x} avoids t-powers for some $t \geq 2$, then $p(n) = O(n \log n)$
- if \mathbf{x} is a cubefree binary word, then $p(n) = \Theta(n)$
- ▶ there is a cubefree ternary word with $p(n) = \Theta(n \log n)$

Constructing such a cubefree word

Let f be the morphism that maps

$$a \to ab$$
, $b \to ba$, $c \to cacbc$.

Then

$$c \rightarrow cacbc \rightarrow cacbcabcacbcbacacbc \rightarrow \cdots$$

is cubefree and has complexity $p(n) = \Theta(n \log n)$. (Note: f is not primitive.)

Complexity of squarefree words

- let x be an infinite word generated by iterating a morphism
- if \mathbf{x} is a squarefree ternary word, then $p(n) = \Theta(n)$
- ▶ Ehrenfeucht and Rozenberg (1983) constructed a DOL language with subword complexity $p(n) = \Theta(n \log n)$

Constructing the D0L language

Let f be the morphism that maps

$$a \rightarrow abcab, \quad b \rightarrow acabcb, \quad c \rightarrow acbcacb$$

 $d \rightarrow dcdadbdadcdbdcd$

The language obtained by repeatedly applying f to the word dabcd is squarefree and has complexity $p(n) = \Theta(n \log n)$

Finding an infinite word

- ▶ Question: Can you find a morphism with an infinite squarefree fixed point having complexity $p(n) = \Theta(n \log n)$?
- the previous results all concerned repetition-free words generated by iterating a morphism
- if we consider arbitrary words, then it is not too difficult to construct an infinite ternary squarefree word with exponential subword complexity

The End