What is the minimal critical exponent of quasiperiodic words?

Gwenaël Richomme

Montpellier, France

April 22th, 2013 Workshop "Challenges in Combinatorics on Words"

Definition

Definition

Definition

Definition

Critical exponent?

Fractional power

$$
x^{\frac{p}{q}} = x^n y
$$
 with $n = \lfloor \frac{p}{q} \rfloor$, $q = |x|$ and y prefix of x of length $p - nq$

$$
ababa = (ab)^{5/2}
$$

$$
abaabaab = (aba)^{8/3}
$$

Critical exponent?

Fractional power

$$
x^{\frac{p}{q}} = x^n y
$$
 with $n = \lfloor \frac{p}{q} \rfloor$, $q = |x|$ and y prefix of x of length $p - nq$

$$
ababa = (ab)^{5/2}
$$

$$
abaabaab = (aba)^{8/3}
$$

Critical exponent of w

$$
E(w) = sup\{k \in \mathbf{Q} \mid w \text{ contains a } k\text{th power}\}\
$$

 E (Thue-Morse) = 2 $E(Fibonacci) = 2 + \phi$

Question

$min{E(w) | w$ quasiperiodic ??

Question

$$
\min\{E(w) \mid w \text{ quasiperiodic}\}
$$
?

Observation

w quasiperiodic
$$
\Rightarrow E(w) > 2
$$
.

Indeed w contains an overlap of q or q^2 .

Result to be verified

For all $\epsilon > 0$, over a 3-letter alphabet, there exists an infinite word with critical exponent less than $2 + \epsilon$

So the question holds only on binary alphabets: Is the smallest exponent $\frac{7}{3}$? $\frac{5}{3}$? $\frac{8}{3}$? other ?

Result to be verified

For all $\epsilon > 0$, over a 3-letter alphabet, there exists an infinite word with critical exponent less than $2 + \epsilon$

So the question holds only on binary alphabets: Is the smallest exponent $\frac{7}{2}$?

Recent idea (friday)

to use Karhumäki, Shallit 1994 and their 21-uniform morphism: $\Rightarrow \frac{7}{2}$

Ideas for the 7-letter alphabet

Step 1

$$
f\left\{\begin{array}{l}a\mapsto xyxzxyx\\b\mapsto xyxzxy\\c\mapsto xyxz\end{array}\right.
$$

for all infinite word w, $f(w)$ is xyxzxyx-quasiperiodic

Ideas for the 7-letter alphabet

Step 1

$$
\begin{cases}\n a \mapsto xyxzxyx \\
b \mapsto xyxzxy \\
c \mapsto xyxz\n\end{cases}
$$

for all infinite word w, $f(w)$ is xyxzxyx-quasiperiodic

f

Step 2

Choose:

- \bullet w, y and z square-free
- x letter, $x \notin \text{alph}(yz)$, $\text{alph}(y) \cap \text{alph}(z) = \emptyset$

Maximal runs of exponent > 2 are:

$$
xyxyx
$$

$$
f(ba) = xyxzyxyxzxyxy
$$

Consequence of Step 2

$$
E(w) = \max(2 + \frac{1}{1+|y|}, 2 + \frac{1}{1+\frac{|z|}{2+|y|}})
$$

Final step

y and z can be chosen on disjoint 3-letter alphabets such that $E(w) \leq 2 + \epsilon$

Use following square-free Brandenburg's morphism (1983) twice:

 $a_1 \mapsto aba$ cab cac bab cba cbc $a_2\mapsto$ aba cab cac bac aba cbc $a_3\mapsto$ aba cab cac bca bcb abc $a_4\mapsto$ aba cab cba cab acb abc $a_5 \mapsto$ aba cab cba cbc acb abc

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

Use following square-free Brandenburg's morphism (1983) twice:

 $a_1 \mapsto aba$ cab cac bab cba cbc $a_2 \mapsto aba$ cab cac bac aba cbc $a_3\mapsto$ aba cab cac bca bcb abc $a_4\mapsto$ aba cab cba cab acb abc $a_5 \mapsto$ aba cab cba cbc acb abc

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

with following extensions for the first time: $a_6 \mapsto$ dbd cdb cdc bdb cbd cbc, $a_7 \mapsto e$ be ceb cec beb cbe cbc

Use following square-free Brandenburg's morphism (1983) twice:

 $a_1 \mapsto$ aba cab cac bab cba cbc $a_2\mapsto$ aba cab cac bac aba cbc $a_3\mapsto$ aba cab cac bca bcb abc $a_4\mapsto$ aba cab cba cab acb abc $a_5 \mapsto$ aba cab cba cbc acb abc

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

with following extensions for the first time: $a_6 \mapsto$ dbd cdb cdc bdb cbd cbc, $a_7 \mapsto ebe$ ceb cec beb cbe cbc

If w has a run of period p and exponent $2 + \epsilon$ with $\epsilon > 0$, then $f(w)$ has a run of exponent $2 + \epsilon + 17/p$

Use following square-free Brandenburg's morphism (1983) twice:

 $a_1 \mapsto$ aba cab cac bab cba cbc $a_2\mapsto$ aba cab cac bac aba cbc $a_3\mapsto$ aba cab cac bca bcb abc $a_4\mapsto$ aba cab cba cab acb abc $a_5 \mapsto$ aba cab cba cbc acb abc

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

with following extensions for the first time: $a_6 \mapsto$ dbd cdb cdc bdb cbd cbc, $a_7 \mapsto ebe$ ceb cec beb cbe cbc

If w has a run of period p and exponent $2 + \epsilon$ with $\epsilon > 0$, then $f(w)$ has a run of exponent $2 + \epsilon + 17/p$

(In the construction on 7 letter alphabt, we can prove periods of repetitions of exponent at least 2 are $>|xyz|$.)

Use paper by Karhumäki and Shallit in 1994 and their morphism:

- $a \mapsto 011010011001001101001$
- $b \mapsto 100101100100110010110$
- $\epsilon \mapsto 100101100110110010110$
- $d \mapsto 011010011011001101001$

 $\overline{\mathcal{L}}$ KS1994: If w is square-free:

 \int \int

- $f(w)$ contains no square yy with $|y| > 13$;
- $f(w)$ contains no $\frac{7}{3}$ + -powers.

It seems that taking suitable w quasiperiodic over $\{a, b, c\}$ with exponent 2 $<$ $E(w)$ $<$ $\frac{7}{3}$ $\frac{7}{3}$, we can get $E(f(w)) = \frac{7}{3}$.

Theorem (Karhumäki, Shallit 1994)

Let x be a word avoiding α -powers, with $2 < \alpha \leq \frac{7}{3}$ $rac{1}{3}$. Let μ be the Thue–Morse morphism. Then there exist u, v with u, $v \in \{\varepsilon, 01, 00, 11\}$ and a word y avoiding α -powers, such that $x = u\mu(y)v$.

Theorem (Karhumäki, Shallit 1994)

Let x be a word avoiding α -powers, with $2 < \alpha \leq \frac{7}{3}$ $rac{1}{3}$. Let μ be the Thue–Morse morphism. Then there exist u, v with u, $v \in \{\epsilon, 01, 00, 11\}$ and a word y avoiding α -powers, such that $x = u\mu(y)v$.

Consequence:

for w infinite avoiding such α -powers, $n \ge a$, $w = u\mu^{n}(w')$ with w' . w q-quasiperiodic + n such that $3|q| \leq |\mu^n(a)|$: contradiction.

Theorem (Karhumäki, Shallit 1994)

Let x be a word avoiding α -powers, with $2 < \alpha \leq \frac{7}{3}$ $rac{1}{3}$. Let μ be the Thue–Morse morphism. Then there exist u, v with u, $v \in \{\epsilon, 01, 00, 11\}$ and a word y avoiding α -powers, such that $x = u\mu(y)v$.

Consequence:

for w infinite avoiding such α -powers, $n \ge a$, $w = u\mu^{n}(w')$ with w' . w q-quasiperiodic + n such that $3|q| \leq |\mu^n(a)|$: contradiction.

 $E(w) \geq \frac{7}{3}$ 3

7

Characterization of quasiperiodic-free morphism? That is w non-quasiperiodic \Rightarrow $f(w)$ non-quasiperiodic.

7

Characterization of quasiperiodic-free morphism? That is w non-quasiperiodic \Rightarrow $f(w)$ non-quasiperiodic.

They are prefix and suffix.

Characterization of quasiperiodic-free morphism? That is w non-quasiperiodic \Rightarrow $f(w)$ non-quasiperiodic.

They are prefix and suffix.

If f does not preserve non-quasiperiodic words, then exists uv^{ω} non-quasiperiodic with $f(uv^{\omega})$ non-quasiperiodic?

Characterization of quasiperiodic-free morphism? That is w non-quasiperiodic \Rightarrow $f(w)$ non-quasiperiodic.

They are prefix and suffix.

If f does not preserve non-quasiperiodic words, then exists uv^{ω} non-quasiperiodic with $f(uv^{\omega})$ non-quasiperiodic?

What about bounds on |u| and $|v|$?