Avoiding Three Consecutive Blocks of the Same Length and Sum

Julien Cassaigne¹, James D. Currie², Luke Schaeffer³, Jeffrey Shallit³

Institut de Mathématiques de Luminy¹ University of Winnipeg² University of Waterloo³

April 25th, 2013

Pattern avoidance

Problem

Find an infinite word **w** over a finite alphabet Σ such that no factor matches a given pattern.

- A kth power is a word of the form x^k for some $x \in \Sigma^*.$
	- murmur is a square.
- An *abelian kth power* is a word of the form $x_1 \cdots x_k$, where each x_i is a permutation of x_1 .
	- reappear is an abelian square.
- Let $\Sigma \subset \mathbb{Z}$. An additive kth power is a word of the form $x_1 \cdots x_k$ such that

$$
|x_1| = \cdots = |x_k|
$$

$$
\sum x_1 = \cdots = \sum x_k.
$$

• facade is an additive square if we let $a = 1$, $b = 2$, ...

Pirillo and Varricchio (1994) discuss avoiding additive kth powers. Independently, Halbeisen and Hungerbühler (2000) considered additive squares.

Theorem (Dekking, 1979)

Abelian 4th powers are avoidable over a binary alphabet.

Corollary

Additive 4th powers are avoidable over a binary alphabet.

Questions

Are additive squares/cubes avoidable? How many symbols are required?

Our Result

Theorem

Suppose $\Sigma = \{0, 1, 3, 4\}$ and $\varphi \colon \Sigma^* \to \Sigma^*$ is the morphism

 $\varphi(0) = 03$ $\varphi(1) = 43$ $\varphi(3) = 1$ $\varphi(4) = 01.$

Then the fixed point

$$
\mathbf{w} := \varphi^{\omega}(0) = 031430110343430\cdots
$$

avoids additive cubes.

The morphism was found by brute force search (Shallit).

- Start with an infinite tree $\mathcal T$ representing all prefixes of **w**.
	- Based on recursive structure of w.
- Construct a tree \mathcal{T}^4 representing all triples of consecutive blocks.
- Store information (state) at each node such that we can
	- compute the state of a child from its parent and the edge label, and
	- determine whether the node represents an additive cube given the state. We use two vectors in \mathbb{N}^4 .
- Use linear algebra to show that, along a (hypothetical) path to an additive cube, the vectors are bounded.
- Exhaustively check the remaining (finite) search space for additive cubes.

Recursive Structure

Quotients and Remainders

Quotients and Remainders

Idea

Build a tree with a node for each prefix. For each x , draw an edge from x div φ to x labelled x mod φ .

Three consecutive blocks are delimited by four positions: the start of each block, and the end of the last block.

Definition

Suppose V is the set of nodes in $\mathcal T.$ We define a tree $\mathcal T^4$ on nodes V^4 such that there is an edge from $(x_1,x_2,x_3,x_4)\in\mathsf{V}^4$ to $(y_1,y_2,y_3,y_4)\in\mathsf{V}^4$ labelled $(a_1,a_2,a_3,a_4) \in \{\varepsilon,0,4\}^*$ if and only if there is an edge from x_i to y_i labelled a_i for $i = 1, 2, 3, 4$.

Any triple of blocks $b_1b_2b_3$ corresponds to a node in \mathcal{T}^4 .

Next Step

Annotate each node with information to identify additive cubes.

Add some "state" to each node such that we can

- compute the state of the child given the state of the parent and edge label, and
- additive cubes can be identified.

Example

Associate a word with each node in T. Let ε be the word for the root node, and compute the word for a child as follows:

$$
x \xrightarrow{y} \varphi(x) y.
$$

Then (by induction) node *i* is associated with $w[0..i - 1]$.

- We can recursively compute $w[0..i_1 - 1], w[0..i_2 - 1], w[0..i_3 - 1], w[0..i_4 - 1]$ for a node (i_1, i_2, i_3, i_4) in \mathcal{T}^4 .
- Given $w[0..i_1 1]$, $w[0..i_2 1]$, $w[0..i_3 1]$, $w[0..i_4 1]$, we can check if $w[i_1..i_4 - 1]$ is an additive cube.

Definition

The Parikh map, $\psi\colon \Sigma^*\to \mathbb{N}^{\Sigma}$, maps a word x to a vector $\psi(\mathsf{x})$ that counts the number of occurrences of each symbol $a \in \Sigma$ in x. For example, $\psi(034343) = (1, 0, 3, 2)$.

Idea

Store $\psi(x)$ instead of x.

[Linear Algebra](#page-12-0)

Parikh Vector Operations

• We can compute $\psi(\varphi(x)y)$ given $\psi(x)$ and y. \bullet

$$
\psi(\varphi(x)) = M\psi(x)
$$

where M is the *incidence matrix* of φ :

$$
M := \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.
$$

•
$$
\psi(xy) = \psi(x) + \psi(y)
$$

\n $\psi(x) \stackrel{y}{\rightarrow} \psi(\varphi(x)y) = M\psi(x) + \psi(y)$

• We can detect additive cubes.

$$
|x| = \psi(x) \cdot (1, 1, 1, 1)
$$

$$
\sum x = \psi(x) \cdot (0, 1, 3, 4)
$$

[Linear Algebra](#page-13-0)

Block Differences

Let $b_1 = w[i_1..i_2 - 1]$, $b_2 = w[i_2..i_3 - 1]$, $b_3 = w[i_3..i_4 - 1]$ be three consecutive blocks.

- Given $t_1 = \psi(w[0..i_1 1]), t_2 = \psi(w[0..i_2 1]), t_3 = \psi(w[0..i_3 1])$ and $t_4 = \psi(w[0..i_4 - 1])$, we can tell if $b_1b_2b_3$ is an additive cube.
- \bullet It suffices to have the Parikh vector for each block:

$$
\psi(b_1) = t_2 - t_1 \n\psi(b_2) = t_3 - t_2 \n\psi(b_3) = t_4 - t_3
$$

or even just the block differences:

$$
u := \psi(b_2) - \psi(b_1) = t_3 - 2t_2 + t_1
$$

$$
v := \psi(b_3) - \psi(b_2) = t_4 - 2t_3 + t_2
$$

to detect additive cubes.

Proposal

Keep two block difference vectors,

$$
u = \psi(x_2) - \psi(x_1)
$$

$$
v = \psi(x_3) - \psi(x_2).
$$

On transition (a_1, a_2, a_3, a_4) , we compute u', v' where

$$
u' = Mu - f(a_1, a_2, a_3)
$$

$$
v' = Mv - f(a_2, a_3, a_4)
$$

with $f(a, b, c) = \psi(a) - 2\psi(b) + \psi(c)$.

Eigenbasis

Idea

Change basis so the matrix is in Jordan canonical form.

Entries are complex numbers, not integers.

Eigencoordinates are decoupled for individual analysis.

Suppose $M = P^{-1}DP$, where D is a diagonal matrix with diagonal elements $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, the eigenvalues of M.

> $\lambda_1 = 1.69028$ $\lambda_2 = -1.50507$

$$
\lambda_3\doteq0.40739+0.47657i
$$

 $\lambda_4 = 0.40739 - 0.47657i$

Note that $|\lambda_3| = |\lambda_4| \doteq 0.62696$.

Coordinates along a path

Recall the equation

$$
u' = M u - f(a_1, a_2, a_3)
$$

For each coordinate $i = 1, 2, 3, 4$ in the eigenbasis, we have

$$
u'_i=\lambda_i u_i-f_i(a_1,a_2,a_3).
$$

Note that $u'_i - \lambda_i u_i = f_i(a_1, a_2, a_3)$ is bounded.

Question

Suppose $\lambda\in\mathbb{C}$ and $(z_j)_{j=0}^\infty$ is a sequence of complex numbers with $z_0=0$ and

$$
|z_{j+1}-\lambda z_j|\leq B
$$

for all j. What can we say about the asymptotic behaviour of such sequences?

[Linear Algebra](#page-17-0)

Inside the Unit Circle $(|\lambda_i| < 1)$

Theorem

Let $\lambda\in\mathbb{C}$ be a complex number such that $|\lambda| < 1.$ Suppose $(z_j)_{j=0}^\infty$ is a complex sequence such that $z_0 = 0$ and

$$
|z_{j+1}-\lambda z_j|\leq B
$$

for all j. Then $|z_j|\leq \frac{B}{1-\lambda}$ for all j.

[Linear Algebra](#page-18-0)

Inside the Unit Circle $(|\lambda_i| < 1)$

Theorem

Let $\lambda\in\mathbb{C}$ be a complex number such that $|\lambda| < 1.$ Suppose $(z_j)_{j=0}^\infty$ is a complex sequence such that $z_0 = 0$ and

$$
|z_{j+1}-\lambda z_j|\leq B
$$

for all j. Then $|z_j|\leq \frac{B}{1-\lambda}$ for all j.

Since $\lambda_3 \doteq 0.40739 + 0.47657i$ and $\lambda_4 = 0.40739 - 0.47657i$ are inside the unit circle,

Corollary

For any node in the tree, the third and fourth eigencoordinates of u and v are bounded.

Inside the Unit Circle - Corollaries

• For three consecutive blocks $x_1x_2x_3$, the block difference vectors

$$
u = \psi(b_2) - \psi(b_1)
$$

$$
v = \psi(b_3) - \psi(b_2)
$$

are close to a plane (2-dimensional subspace).

If $b_1b_2b_3$ is an additive cube then we have two linear equations per vector:

$$
(\psi(b_2) - \psi(b_1)) \cdot (1, 1, 1, 1) = 0 \quad (\psi(b_3) - \psi(b_2)) \cdot (1, 1, 1, 1) = 0
$$

$$
(\psi(b_2) - \psi(b_1)) \cdot (0, 1, 3, 4) = 0 \quad (\psi(b_3) - \psi(b_2)) \cdot (0, 1, 3, 4) = 0
$$

So $u = \psi(b_2) - \psi(b_1)$ and $v = \psi(b_3) - \psi(b_2)$ are bounded.

Bounded endpoints

Theorem

Let $b_1b_2b_3$ be an additive cube. Then $\psi(b_2) - \psi(b_1)$ and $\psi(b_3) - \psi(b_2)$ are bounded.

In a path to an additive cube, the first and last nodes have bounded u and v. What happens in the middle of the path?

[Linear Algebra](#page-21-0)

Outside the Unit Circle $(|\lambda_i|>1)$

Theorem

Let $\lambda\in\mathbb{C}$ be a complex number such that $|\lambda|>1.$ Suppose $(z_j)_{j=0}^\infty$ is a complex sequence such that $z_0 = 0$ and

$$
|z_{j+1}-\lambda z_j|\leq B
$$

for all j. Then either $|z_j|\leq \frac{B}{\lambda-1}$ for all j, or the sequence grows exponentially.

Corollary

Suppose x is a node along a path to a (hypothetical) additive cube in w . Then the first and second eigencoordinates of u and v are bounded.

- Along a path to a hypothetical additive cube, all eigencoordinates of u and v are bounded.
- Hence, $u = \psi(b_2) \psi(b_1)$ and $v = \psi(b_3) \psi(b_2)$ are bounded, integer vectors.
- The search space is finite. A computer-assisted search for additive cubes finishes the proof.
- Construct an infinite search tree, \mathcal{T}^4 , representing all triples of consecutive blocks
- Store a pair of vectors at each node.
- \bullet $|\lambda_3|$, $|\lambda_4|$ < 1 \Longrightarrow two coordinates of u and v are bounded everywhere.
- \bullet At additive cube nodes, two additional equations make μ and ν bounded.
- $|\lambda_1|, |\lambda_2| > 1 \Longrightarrow$ the other two coordinates u and v to be bounded on the path.
- **•** Finite computer search.
- **1** Can we avoid additive squares?
- 2 Is it possible to avoid additive cubes over a 3 symbol alphabet?
- **3** Are there "nicer" words avoiding additive cubes?
- Which subsets of the integers allow us to avoid additive cubes?
- **•** Suppose we have a coding $h(0) = a$, $h(1) = b$, $h(3) = c$ and $h(4) = d$ to **w**. For which tuples $(a, b, c, d) \in \mathbb{Z}^4$ does $h(\mathbf{w})$ avoid additive cubes?

Recoding w

Suppose $h: \Sigma^* \to \mathbb{Z}^*$ is a morphism where

$$
h(0) = a
$$

\n
$$
h(1) = b
$$

\n
$$
h(3) = c
$$

\n
$$
h(4) = d
$$

Suppose x_1x_2 is a factor in **w** with $|x_1| = |x_2|$. Then $\sum h(x_1) = \sum h(x_2)$ if and only if

$$
\psi(x_1) \cdot (a, b, c, d) = \psi(x_2) \cdot (a, b, c, d)
$$

$$
0 = (\psi(x_2) - \psi(x_1)) \cdot (a, b, c, d)
$$

We do not want $\sum h(x_1) = \sum h(x_2)$, so look for (a, b, c, d) not orthogonal to $\psi(x_2) - \psi(x_1)$.

Theorem

Suppose we have $(a, b, c, d) \in \mathbb{Z}^4$ such that if x_1x_2 is a factor in ${\bf w}$ with $|x_1| = |x_2|$, then $(\psi(x_2) - \psi(x_1)) \cdot (a, b, c, d) = 0$ if and only if $\psi(x_1) = \psi(x_2)$. Then $h(\mathbf{w})$ avoids additive cubes.

Idea

Plot $\psi(x_2) - \psi(x_1)$ for all x_1x_2 in **w** such that $|x_1| = |x_2|$.

Note that $|x_1| = |x_2|$ implies $(\psi(x_2) - \psi(x_1)) \cdot (1, 1, 1, 1) = 0$, so there are only three degrees of freedom for us to plot.

Points

More Points

Points and Vector

