Avoiding Three Consecutive Blocks of the Same Length and Sum

Julien Cassaigne¹, James D. Currie², Luke Schaeffer³, Jeffrey Shallit³

Institut de Mathématiques de Luminy¹ University of Winnipeg² University of Waterloo³

April 25th, 2013

Pattern avoidance

Problem

Find an infinite word \mathbf{w} over a finite alphabet Σ such that no factor matches a given pattern.

- A *kth power* is a word of the form x^k for some $x \in \Sigma^*$.
 - murmur is a *square*.
- An abelian kth power is a word of the form $x_1 \cdots x_k$, where each x_i is a permutation of x_1 .
 - reappear is an abelian square.
- Let Σ ⊆ Z. An additive kth power is a word of the form x₁ ··· x_k such that

$$|x_1| = \cdots = |x_k|$$
$$\sum x_1 = \cdots = \sum x_k.$$

• facade is an additive square if we let $a = 1, b = 2, \ldots$

Pirillo and Varricchio (1994) discuss avoiding additive kth powers. Independently, Halbeisen and Hungerbühler (2000) considered additive squares.

Theorem (Dekking, 1979)

Abelian 4th powers are avoidable over a binary alphabet.

Corollary

Additive 4th powers are avoidable over a binary alphabet.

Questions

Are additive squares/cubes avoidable? How many symbols are required?

Our Result

Theorem

Suppose $\Sigma = \{0, 1, 3, 4\}$ and $\varphi \colon \Sigma^* \to \Sigma^*$ is the morphism

 $arphi(0) = 03 \ arphi(1) = 43 \ arphi(3) = 1 \ arphi(4) = 01.$

Then the fixed point

 $\mathbf{w} := arphi^{\omega}(\mathbf{0}) = \mathbf{0}\mathbf{3}\mathbf{1}\mathbf{4}\mathbf{3}\mathbf{0}\mathbf{1}\mathbf{1}\mathbf{0}\mathbf{3}\mathbf{4}\mathbf{3}\mathbf{4}\mathbf{3}\mathbf{0}\cdots$

avoids additive cubes.

The morphism was found by brute force search (Shallit).

- Start with an infinite tree ${\mathcal T}$ representing all prefixes of ${\boldsymbol w}.$
 - Based on recursive structure of **w**.
- \bullet Construct a tree \mathcal{T}^4 representing all triples of consecutive blocks.
- Store information (state) at each node such that we can
 - compute the state of a child from its parent and the edge label, and
 - determine whether the node represents an additive cube given the state. We use two vectors in \mathbb{N}^4 .
- Use linear algebra to show that, along a (hypothetical) path to an additive cube, the vectors are bounded.
- Exhaustively check the remaining (finite) search space for additive cubes.

Recursive Structure

Quotients and Remainders

Quotients and Remainders

Idea

Build a tree with a node for each prefix. For each x, draw an edge from x div φ to x labelled x mod φ .

Three consecutive blocks are delimited by four positions: the start of each block, and the end of the last block.

Definition

Suppose V is the set of nodes in \mathcal{T} . We define a tree \mathcal{T}^4 on nodes V^4 such that there is an edge from $(x_1, x_2, x_3, x_4) \in V^4$ to $(y_1, y_2, y_3, y_4) \in V^4$ labelled $(a_1, a_2, a_3, a_4) \in \{\varepsilon, 0, 4\}^*$ if and only if there is an edge from x_i to y_i labelled a_i for i = 1, 2, 3, 4.

Any triple of blocks $b_1b_2b_3$ corresponds to a node in \mathcal{T}^4 .

Next Step

Annotate each node with information to identify additive cubes.

Add some "state" to each node such that we can

- compute the state of the child given the state of the parent and edge label, and
- additive cubes can be identified.

Example

Associate a word with each node in \mathcal{T} . Let ε be the word for the root node, and compute the word for a child as follows:

$$x \xrightarrow{y} \varphi(x)y.$$

Then (by induction) node *i* is associated with w[0..i - 1].

- We can recursively compute $w[0..i_1 1], w[0..i_2 1], w[0..i_3 1], w[0..i_4 1]$ for a node (i_1, i_2, i_3, i_4) in \mathcal{T}^4 .
- Given w[0..i₁ − 1], w[0..i₂ − 1], w[0..i₃ − 1], w[0..i₄ − 1], we can check if w[i₁..i₄ − 1] is an additive cube.

Definition

The Parikh map, $\psi \colon \Sigma^* \to \mathbb{N}^{\Sigma}$, maps a word x to a vector $\psi(x)$ that counts the number of occurrences of each symbol $a \in \Sigma$ in x. For example, $\psi(034343) = (1, 0, 3, 2)$.

Idea

Store $\psi(x)$ instead of x.

Linear Algebra

Parikh Vector Operations

We can compute ψ(φ(x)y) given ψ(x) and y.

$$\psi(\varphi(x)) = M\psi(x)$$

where *M* is the *incidence matrix* of φ :

$$M := \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

•
$$\psi(xy) = \psi(x) + \psi(y)$$

 $\psi(x) \xrightarrow{y} \psi(\varphi(x)y) = M\psi(x) + \psi(y)$

• We can detect additive cubes.

$$|x| = \psi(x) \cdot (1, 1, 1, 1)$$

 $\sum x = \psi(x) \cdot (0, 1, 3, 4)$

Linear Algebra

Block Differences

Let $b_1 = w[i_1..i_2 - 1]$, $b_2 = w[i_2..i_3 - 1]$, $b_3 = w[i_3..i_4 - 1]$ be three consecutive blocks.

- Given $t_1 = \psi(w[0..i_1 1])$, $t_2 = \psi(w[0..i_2 1])$, $t_3 = \psi(w[0..i_3 1])$ and $t_4 = \psi(w[0..i_4 - 1])$, we can tell if $b_1b_2b_3$ is an additive cube.
- It suffices to have the Parikh vector for each block:

$$\psi(b_1) = t_2 - t_1$$

 $\psi(b_2) = t_3 - t_2$
 $\psi(b_3) = t_4 - t_3$

or even just the block differences:

$$u := \psi(b_2) - \psi(b_1) = t_3 - 2t_2 + t_1$$

$$v := \psi(b_3) - \psi(b_2) = t_4 - 2t_3 + t_2$$

to detect additive cubes.

Proposal

Keep two block difference vectors,

$$u = \psi(x_2) - \psi(x_1)$$

$$v = \psi(x_3) - \psi(x_2).$$

On transition (a_1, a_2, a_3, a_4) , we compute u', v' where

$$u' = Mu - f(a_1, a_2, a_3)$$

 $v' = Mv - f(a_2, a_3, a_4)$

with $f(a, b, c) = \psi(a) - 2\psi(b) + \psi(c)$.

Eigenbasis

Idea

Change basis so the matrix is in Jordan canonical form.

Entries are complex numbers, not integers.

Eigencoordinates are decoupled for individual analysis.

Suppose $M = P^{-1}DP$, where D is a diagonal matrix with diagonal elements $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, the eigenvalues of M.

 $\lambda_1 \doteq 1.69028$ $\lambda_2 = -1.50507$

$$\lambda_3 \doteq 0.40739 + 0.47657i$$

 $\lambda_{4} = 0.40739 - 0.47657i$

Note that $|\lambda_3| = |\lambda_4| \doteq 0.62696$.

Coordinates along a path

Recall the equation

$$u' = Mu - f(a_1, a_2, a_3)$$

For each coordinate i = 1, 2, 3, 4 in the eigenbasis, we have

$$u_i'=\lambda_i u_i-f_i(a_1,a_2,a_3).$$

Note that $u'_i - \lambda_i u_i = f_i(a_1, a_2, a_3)$ is bounded.

Question

Suppose $\lambda \in \mathbb{C}$ and $(z_j)_{j=0}^\infty$ is a sequence of complex numbers with $z_0 = 0$ and

$$|z_{j+1} - \lambda z_j| \le B$$

for all *j*. What can we say about the asymptotic behaviour of such sequences?

Linear Algebra

Inside the Unit Circle $(|\lambda_i| < 1)$

Theorem

Let $\lambda \in \mathbb{C}$ be a complex number such that $|\lambda| < 1$. Suppose $(z_j)_{j=0}^{\infty}$ is a complex sequence such that $z_0 = 0$ and

$$|z_{j+1} - \lambda z_j| \le B$$

for all j. Then $|z_j| \leq \frac{B}{1-\lambda}$ for all j.

Inside the Unit Circle $(|\lambda_i| < 1)$

Theorem

Let $\lambda \in \mathbb{C}$ be a complex number such that $|\lambda| < 1$. Suppose $(z_j)_{j=0}^{\infty}$ is a complex sequence such that $z_0 = 0$ and

$$|z_{j+1} - \lambda z_j| \le B$$

for all *j*. Then $|z_j| \leq \frac{B}{1-\lambda}$ for all *j*.

Since $\lambda_3 \doteq 0.40739 + 0.47657i$ and $\lambda_4 = 0.40739 - 0.47657i$ are inside the unit circle,

Corollary

For any node in the tree, the third and fourth eigencoordinates of u and v are bounded.

Inside the Unit Circle - Corollaries

• For three consecutive blocks x₁x₂x₃, the block difference vectors

$$u = \psi(b_2) - \psi(b_1)$$
$$v = \psi(b_3) - \psi(b_2)$$

are close to a plane (2-dimensional subspace).

• If $b_1b_2b_3$ is an additive cube then we have two linear equations per vector:

$$\begin{aligned} & (\psi(b_2) - \psi(b_1)) \cdot (1, 1, 1, 1) = 0 \quad (\psi(b_3) - \psi(b_2)) \cdot (1, 1, 1, 1) = 0 \\ & (\psi(b_2) - \psi(b_1)) \cdot (0, 1, 3, 4) = 0 \quad (\psi(b_3) - \psi(b_2)) \cdot (0, 1, 3, 4) = 0 \end{aligned} \\ & \text{So } u = \psi(b_2) - \psi(b_1) \text{ and } v = \psi(b_3) - \psi(b_2) \text{ are bounded.} \end{aligned}$$

Bounded endpoints

Theorem

Let $b_1b_2b_3$ be an additive cube. Then $\psi(b_2) - \psi(b_1)$ and $\psi(b_3) - \psi(b_2)$ are bounded.

In a path to an additive cube, the first and last nodes have bounded u and v. What happens in the middle of the path?

Linear Algebra

Outside the Unit Circle $(|\lambda_i| > 1)$

Theorem

Let $\lambda \in \mathbb{C}$ be a complex number such that $|\lambda| > 1$. Suppose $(z_j)_{j=0}^{\infty}$ is a complex sequence such that $z_0 = 0$ and

$$|z_{j+1} - \lambda z_j| \le B$$

for all *j*. Then either $|z_j| \leq \frac{B}{\lambda-1}$ for all *j*, or the sequence grows exponentially.

Corollary

Suppose x is a node along a path to a (hypothetical) additive cube in \mathbf{w} . Then the first and second eigencoordinates of u and v are bounded.

- Along a path to a hypothetical additive cube, all eigencoordinates of *u* and *v* are bounded.
- Hence, u = ψ(b₂) ψ(b₁) and v = ψ(b₃) ψ(b₂) are bounded, integer vectors.
- The search space is finite. A computer-assisted search for additive cubes finishes the proof.

- $\bullet\,$ Construct an infinite search tree, $\mathcal{T}^4,$ representing all triples of consecutive blocks
- Store a pair of vectors at each node.
- $|\lambda_3|, |\lambda_4| < 1 \Longrightarrow$ two coordinates of u and v are bounded everywhere.
- At additive cube nodes, two additional equations make *u* and *v* bounded.
- |λ₁|, |λ₂| > 1 ⇒ the other two coordinates u and v to be bounded on the path.
- Finite computer search.

- Can we avoid additive squares?
- Is it possible to avoid additive cubes over a 3 symbol alphabet?
- S Are there "nicer" words avoiding additive cubes?
- Which subsets of the integers allow us to avoid additive cubes?
- Suppose we have a coding h(0) = a, h(1) = b, h(3) = c and h(4) = d to w. For which tuples (a, b, c, d) ∈ Z⁴ does h(w) avoid additive cubes?

Recoding w

Suppose $h\colon \Sigma^* \to \mathbb{Z}^*$ is a morphism where

$$egin{aligned} h(0) &= a \ h(1) &= b \ h(3) &= c \ h(4) &= d. \end{aligned}$$

Suppose x_1x_2 is a factor in **w** with $|x_1| = |x_2|$. Then $\sum h(x_1) = \sum h(x_2)$ if and only if

$$\psi(x_1) \cdot (a, b, c, d) = \psi(x_2) \cdot (a, b, c, d)$$

 $0 = (\psi(x_2) - \psi(x_1)) \cdot (a, b, c, d)$

We do not want $\sum h(x_1) = \sum h(x_2)$, so look for (a, b, c, d) not orthogonal to $\psi(x_2) - \psi(x_1)$.

Theorem

Suppose we have $(a, b, c, d) \in \mathbb{Z}^4$ such that if x_1x_2 is a factor in **w** with $|x_1| = |x_2|$, then $(\psi(x_2) - \psi(x_1)) \cdot (a, b, c, d) = 0$ if and only if $\psi(x_1) = \psi(x_2)$. Then $h(\mathbf{w})$ avoids additive cubes.

Idea

Plot $\psi(x_2) - \psi(x_1)$ for all x_1x_2 in **w** such that $|x_1| = |x_2|$.

Note that $|x_1| = |x_2|$ implies $(\psi(x_2) - \psi(x_1)) \cdot (1, 1, 1, 1) = 0$, so there are only three degrees of freedom for us to plot.

Points

More Points

Points and Vector

