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AGE OF INFECTION EPIDEMIC MODELS

In 1927 Kermack and McKendrick described a very
general epidemic model that included a dependence of
infectivity on the time since becoming infected (age of
infection). This allows the inclusion of various
complicated compartmental structures in the same
framework.

We let ϕ(t) be the total infectivity at time t, defined as
the sum of products of the number of infected members
with each infection age and the mean infectivity for that
infection age. We let P (τ ) be the number of individuals
who are still infected at infection age τ , and we let π(τ )
with 0 ≤ π(τ ) ≤ 1 be the mean infectivity at infection
age τ . Then

A(τ ) = π(τ )P (τ ),

is the mean infectivity of members of the population
with infection age τ . We assume that an average
individual makes a contacts sufficient to transmit
infection in unit time and that there are no disease
deaths, so that the total population size is a constant N .
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The age of infection epidemic model is

S′ = −a
S

N
ϕ

ϕ(t) = ϕ0(t) +

∫ t

0
a
S(t − τ )

N
ϕ(t − τ )A(τ )dτ

= ϕ0(t) +

∫ t

0
[−S′(t − τ )]A(τ )dτ.

For this model it is known that

• I(t) → 0 and S(t) → S∞ > 0 as t → ∞.

• The basic reproduction number, defined as the number
of secondary infections caused by introducing a single
infective individual into an entirely susceptible
population, is

R0 = a

∫ ∞

0
A(τ )dτ.

• There is a final size relation, giving a relation
between the basic reproduction number and the size of
the epidemic,

log
S0

S∞
= R0

[

1 −
S∞
N

]

.

The final size relation gives a relation between the basic
reproduction number and the size of the epidemic.
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In the simplest form of the Kermack-McKendrick
epidemic model it is assumed that on average the
fraction of infected individuals who remain infective for
at least a time τ is e−γτ , so that the mean infective
period is 1/γ and the rate of recovery at time t is γI(t).

These asumptions lead to the simple
Kermack-McKendrick model

S′ = −
a

N
SI

I ′ =
a

N
SI − γI,

together with initial conditions

S(0) = S0, I(0) = I0, S0 + I0 = N.

In this special case,

R0 =
a

γ
.
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For the simple Kermack-McKendrick model, if S0 ≈ N ,
it is easy to see that if R0 > 1, the number of infectives
increases initially and we have an epidemic, while if
R0 < 1, the number of infectives decreases from the
start, and there is no epidemic.

For the general age of infection model, it is necessary to
give a more general definition of the meaning of an
epidemic. The definition that we will use is that there is
an epidemic if and only if the disease-free equilibrium
S = N,ϕ = 0 is unstable, with respect to initial values
for which ϕ > 0. It is possible to prove that there is an
epidemic if and only if R0 > 1.

The final size relation assumes that all individuals who
are infected at time t = 0 have infection age zero at time
t = 0. If there are initial infectives with infection age
greater than zero, the final size relation has the form

log
S0

S∞
= R0

(

1 −
S∞
N

)

− Γ

with

0 ≤ Γ ≤

∫ ∞

0
(N − S0)A(t)dt.
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DIRECT AND INDIRECT TRANSMISSION

Some diseases may be spread in more than one manner.
For example, cholera may be spread both by person to
person contact and indirectly through a pathogen
released by infectives through a medium such as
contaminated water. There is a theory of epidemic
models for such diseases parallel to the theory of models
with direct transmission only. The work described in this
section is joint with Z. Shuai and P. van den Driessche.

A Simple Model

We begin with a simple model analogous to the simple
SIR model. Consider an epidemic model with direct
(person to person) and indirect (through a medium such
as contaminated water) transmission. To a simple SIR
model we add a pathogen B shed by infectives.

6



We assume that the infectivity of the pathogen is
proportional to its concentration, suggesting mass action
transmission. The resulting model is

S′ = −a
S

N
I − βSB

I ′ = a
S

N
I + βSB − γI

R′ = γI

B′ = rI − δB,

with initial conditions

S(0) = S0, I(0) = I0, B(0) = B0,

in a population of constant total size N = S0 + I0, with
R(0) = 0. In general, N = S + I + R. In this model r
represents the rate at which an infectious individual
sheds pathogen and δ represents the rate at which the
pathogen loses infectivity.
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From the sum of the equations for S and I we see that

(S + I)′ = −γI.

This shows that (S + I) decreases to a limit, and since
(S + I) is a smooth function it is possible to show that
its derivative approaches zero, from which we may
deduce that

I∞ = lim
t→∞

I(t) = 0.

Also, integration of this equation gives

γ

∫ ∞

0
I(t)dt = N − lim

t→∞
S(t) = N − S∞.

This implies
∫ ∞
0 I(t)dt < ∞.
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The next generation matrix approach, viewing I,B as
disease compartments, gives the basic reproduction
number

R0 =
a

γ
+

rβN

γδ
.

In this expression, the first term represents secondary
infections caused directly by a single infective introduced
into a wholly susceptible population, infecting a
susceptibles in unit time for a time period 1/γ. The
second term represents secondary infections caused
indirectly through the pathogen since a single infective
sheds a quantity r of pathogen in unit time for a time
period 1/γ and this pathogen infects βN susceptibles in
unit time for a time period 1/δ.

Integration of the equation for S gives

log
S0

S∞
=

a

N

∫ ∞

0
I(t)dt + β

∫ ∞

0
B(t)dt.

Integration of the linear equation for B gives

B(t) = B0e
−δt + r

∫ t

0
e−δ(t−s)I(s)ds.
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Next, we must show that

lim
t→∞

∫ t

0
e−δ(t−s)I(s)ds = lim

t→∞

∫ t
0 eδsI(s)ds

eδt
= 0.

If the integral in the numerator of this expression is
bounded, this is clear, and if the integral is unbounded,
L’Hôpital’s rule shows that the limit is
limt→∞ I(t)/δ = 0. Thus

B∞ = lim
t→∞

B(t) = 0.

Integration now gives
∫ ∞

0
B(t)dt =

B0 + r
∫ ∞
0 I(t)dt

δ
.

This implies
∫ ∞
0 B(t)dt < ∞, and substitution gives

log
S0

S∞
=

[ a

N
+ β

r

δ

]

∫ ∞

0
I(t)dt + β

B0

δ
,

and now substitution gives the final size relation

log
S0

S∞
=

(

a

N
+

βNr

γδ

)[

1 −
S∞
N

]

+ β
B0

δ

= R0

[

1 −
S∞
N

]

+ β
B0

δ
.

This implies S∞ > 0.
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An Age of Infection Model

In order to cover such generalizations of the model as
multiple infective stages and arbitrary distributions of
stay in a stage, we give an age of infection model

S′(t) = −S(t)
[ a

N
ϕ(t) + βB(t)

]

ϕ(t) = ϕ0(t) +

∫ t

0
[−S′(t − τ )]P (τ )dτ

B(t) = B0(t) +

∫ t

0
rϕ(t− τ )Q(τ )dτ.

In this model, ϕ(t) represents the total infectivity of
individuals with age of infection t, ϕ0(t) represents the
total infectivity at time t of individuals who were already
infected at time t = 0, B0(t) represents the pathogen
concentration at time t remaining from pathogen
concentration that was already present at time t = 0.
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P (τ ) represents the mean infectivity of individuals at age
of infection τ , normally the product of the fraction of
infectives still infective at age of infection τ and the
relative infectivity at that infection age, and Q(τ )
represents the fraction of pathogen remaining τ time
units after having been shed by an infective. The
function Q is monotone non-increasing with
Q(0) = 1,

∫ ∞
0 Q(τ )dτ < ∞. Since infectivity of an

individual may depend on the age of infection of the
individual, the function P is not necessarily
non-increasing, but we assume

∫ ∞
0 P (τ )dτ < ∞.

The basic reproduction number is

R0 = a

∫ ∞

0
P (τ )dτ + rβN

∫ ∞

0
P (τ )dτ

∫ ∞

0
Q(τ )dτ.

In this expression, the first term represents new infection
transmitted directly by a single infectious individual
inserted into a totally susceptible population, while the
second term represents secondary infections caused by
this individual indirectly through shedding of pathogen.

12



Integration of the equation for S gives

log
S0

S∞
=

a

N

∫ ∞

0
ϕ(τ )dτ + β

∫ ∞

0
B(τ )dτ.

Routine calculations involving interchange of the order of
integration give
∫ ∞

0
ϕ(τ )dτ =

∫ ∞

0
B0(τ )dτ + r

∫ ∞

0
ϕ(τ )dτ

∫ ∞

0
Q(τ )dτ

∫ ∞

0
B(τ )dτ =

∫ ∞

0
B0(τ )dτ

+r

∫ ∞

0
Q(τ )dτ

∫ ∞

0
ϕ0(τ )dτ

+r[S0 − S∞]

∫ ∞

0
P (τ )dτ

∫ ∞

0
Q(τ )dτ.

Then substitution gives

log
S0

S∞
= R0

[

S0 − S∞
N

]

+
a

N

∫ ∞

0
ϕ0(t)dt

+rβ

∫ ∞

0
Q(t)dt

∫ ∞

0
ϕ0(t)dt + β

∫ ∞

0
B0(t)dt.
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If all infections at time zero have infection age zero, then

ϕ0(t) = [N−S0]P (t),

∫ ∞

0
ϕ0(t)dt = [N−S0]

∫ ∞

0
P (t)dt,

and if the entire pathogen concentration at time zero has
infection age zero, then

B0(t) = B0Q(t),

∫ ∞

0
B0(t)dt = B0

∫ ∞

0
Q(t)dt

with some constant B0. In this case, the final size
relation takes the form

log
S0

S∞
= R0

[

1 −
S∞
N

]

+ βB0

∫ ∞

0
Q(t)dt.

The final size relation has a term arising from an initial
pathogen concentration that tends to decrease S∞.
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In general, because Q is monotone non-increasing,
∫ ∞

0
B0(t)dt ≤ B0

∫ ∞

0
Q(t)dt.

If P is monotone non-increasing,
∫ ∞

0
ϕ0(t)dt ≤ [N − S0]

∫ ∞

0
P (t)dt.

If P is not monotone, this is not necessarily true.
However, if there are no infectives initially, so that the
epidemic is started by the pathogen, then ϕ0(t) = 0 and
S0 = N . Then the final size relation remains valid
without the need to assume that P is monotone.

These results have been established only for a constant
rate of pathogen shedding. If the rate of pathogen
depends on the age of infection, the equation for B in
the model should be replaced by an equation

B(t) = B0(t) +

∫ t

0
r(t − τ )ϕ(t− τ )Q(τ )dτ.

It is not possible to treat the corresponding model as an
age of infection model, but we can view it as a staged
progression model.
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A Staged Progression Model

The age of infection epidemic model is very general,
including models with multiple infective stages and
treatment. In addition, it allows arbitrary distributions
of stay in compartmnets. The drawback of the age of
infection model is that it may be difficult to calculate the
function P (τ ). The staged progression epidemic model is
a fairly general special case of the age of infection model,
allowing multiple stages but allowing direct calculation of
the function A(τ ).

We consider an epidemic with progression from S
through k infected stages I1, I2, · · · , but with the
addition of a pathogen. We assume that in stage j the
relative infectivity is εj, the distribution of stay in the

stage is given by Pj with Pj(0) = 1,
∫ ∞
0 Pj(t)dt < ∞,

and Pj monotone non-increasing, so that the infectivity
of an individual in stage j is Aj(τ ) = εjPj(τ ). There are
no disease deaths and the total population size N is
constant.
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We assume initial conditions

S(0) = 0, I1(0) = I0, I2(0) = I3(0) = · · · = Ik(0) = 0.

The total infectivity is given by

ϕ(t) =

k
∑

j=1

εjIj(t).

We let Bj(t) be the quantity of pathogen shed by
infectives in the stage Ij and let Qj denote the
distribution of stay of pathogen shed by infectives in this
stage, with Qj(0) = 1,

∫ ∞
0 Qj(t)dt < ∞, and Qj

monotone non-increasing. We let rj be the shedding rate
in this stage. We also define the total quantity of
pathogen,

B(t) =

k
∑

j=1

Bj(t).

Then

Bj(t) = B0
j (t) +

∫ t

0
rjIj(t − τ )Qj(τ )dτ.
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A single infective introduced into a wholly susceptible
population while in infection stage j causes a secondary
infections in unit time directly for a period of
∫ ∞
0 Pj(t)dt. In addition, this individual sheds a quantity

rj of pathogen in unit time for a time period
∫ ∞
0 P (t)dt,

and this pathogen causes βN infections in unit time for
a time period

∫∞
0 Q(t)dt. This shows that the basic

reproduction number is

R0 = a
k

∑

j=1

εj

∫ ∞

0
Pj(t)dt

+βN
k

∑

j=1

rj

∫ ∞

0
Pj(t)dt

∫ ∞

0
Qj(t)dt.
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We assume that all initial infectives are in the first stage
with infection age zero at t = 0. Then the equation for
I1 in the model is

I1(t) = I0
1(t) +

∫ t

0
[−S′(t − τ )]P1(τ )dτ,

with I0
1(t) = I0P1(t). Then

∫ ∞

0
I1(t)dt = I0

∫ ∞

0
P1(t)dt + [S0 − S∞]

∫ ∞

0
P1(t)dt

= [N − S∞]

∫ ∞

0
P1(t)dt.

Then
∫ ∞

0
Ij(t)dt = [N − S∞]

∫ ∞

0
Pj(t)dt, j = 1, 2, · · · , k.

Integration gives
∫ ∞

0
Bj(τ )dτ =

∫ ∞

0
B0

j (τ )dτ

+rj

∫ ∞

0
Ij(τ )dτ

∫ ∞

0
Qj(τ )dτ

=

∫ ∞

0
B0

j (τ )dτ

+rj[N − S∞]

∫ ∞

0
Pj(τ )dτ

∫ ∞

0
Qj(τ )dτ.
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We have

S′(t) = −S(t)[
a

N
S(t)ϕ(t) + βB(t)]

= −S(t)





a

N

k
∑

j=1

εjIj(t) − β

k
∑

j=1

Bj(t)



 ,

and integration gives

log
S0

S∞
=

a

N

k
∑

j=1

εj

∫ ∞

0
Ij(t)dt + β

k
∑

j=1

∫ ∞

0
Bj(t)]dt.

For simplicity, we assume that all individuals infected at
time zero have infection age zero for t = 0, and also that
there is a new quantity of pathogen B0 introduced at
time zero, so that B0(t) = B0Q(t). Then this relation
reduces to the final size relation

log
S0

S∞
= R0

[

1 −
S∞
N

]

+ βB0

∫ ∞

0
Q(t)dt.
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MODELS WITH DRUG RESISTANCE

Treatment of a virus with antiviral drugs raises a
possibility of development of a drug-resistant strain of
the virus. There is some experimental evidence that
there are situations in which the treatment may cause
development of more drug-resistant cases than it cures,
so that treatment may become counter-productive. The
work described in this section is joint with S. Moghadas
and Y. Xiao.

We will formulate a model for an epidemic in which there
is a drug-sensitive strain but treatment may cause some
treated individuals to become drug-resistant. We divide
a homogeneously mixing population into members who
are susceptible (S), infected with the drug-sensitive
strain (IS), infected with the drug-sensitive strain under
treatment (IT ), infected with the drug-resistant strain
(IR), and recovered individuals (R). Since treatment is
ineffective against the drug-resistant infection, we do not
distinguish between treated and untreated individuals in
IR. We begin with a simple treatment model.
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A Basic Treatment Model

We add treatment of a fraction of individuals infected
with a wild (drug-sensitive) strain of a disease to a
simple SIR model,

S′ = −βS[IS + δT IT ]

I ′S = βS[IS + δT IT ] − (γS + η)IS

I ′T = ηIS − γT IS.

Here, S, IS, IT are the sizes of the susceptible
population, the infective but not treated population size,
and the treated population size respectively, β is the
contact rate, δT is the reduction factor in infectivity of
treated members, η the treatment fraction, γS the
recovery rate, and γT the recovery rate for treated
members. The basic reproduction number is

R0 =
βN

γS + η
+

η

η + γS

δTβN

γT
.

The first term in R0 represents secondary infections
caused by an infective in a wholly susceptible population
while the second term represents secondary infections
caused by a treated individual.
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A Drug Resistance Model

We wish to include the development of drug resistance
under antiviral treatment to study whether increasing
the treatment rate may do more harm than good by
increasing the number of drug-resistant cases. The basic
additional assumption is that treated cases may become
drug-resistant. We continue to assume that the time
scale is short enough that we may neglect births and
natural deaths, and that there are no disease deaths, so
that the total population size is a constant N .

We assume that:

• resistance may be absent initially, but develops as a
result of treatment, and can then be transmitted.

• treatment is effective only against wild infections.

• there is a compartment IR of members with resistant
infection with recovery rate γR and δR is the
corresponding reduction factor for infectivity. We
assume δR < 1.

• the probability of developing resistance at time τ
following the initiation of treatment is 1 − e−κτ .
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The resulting model is

S′(t) = −βS(IS + δT IT + δRIR)

I ′S(t) = βS(IS + δT IT ) − (γS + η)IS

I ′T (t) = ηIS(t) − (γT + κ)IT (t)

I ′R(t) = δRβSIR(t) + κIT − γIR(t),

We assume IT (0) = 0, that is, that time is measured
from the beginning of treatment. The initial conditions
are

S(0) = S0, IS(0) = I0, IT (0) = 0, IR(0) ≥ 0,

with S0 + I0 + IR(0) = N .

We calculate RS, the number of secondary sensitive
infections caused by a single sensitive infection in a
wholly susceptible population, namely

RS =
βN

γS + η
+

η

η + γS

δTβN

κ + γT
.
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Here, the first term is the number of secondary infections
caused while this infective is in IS, η/(η + γS) is the
fraction of sensitive infectives that are treated, and
δTβN/(κ + γT ) is the number of secondary infections
caused while the infective is in IT . Also, the number of
resistant infections caused by a single resistant infective
in a wholly susceptible population is

RR =
δRβN

γR
.

This calculation does not cover the
η

η + γS
·

κ

κ + γT
·
βNδR

γR

resistant infections that develop from treated sensitive
infections when a sensitive infection is introduced into a
wholly susceptible population.

Using the next generation matrix method, we calculate

R0 = max[RS,RR],

There is an epidemic for the drug resistance epidemic
model if and only if R0 > 1.

25



Final Size Relations

Summing the equations of the model gives

(S + IS + IT + IR)′ = −(γSIS + γT IT + γRIR) < 0.

Hence, (S + IS + IT + IR) is a decreasing function
bounded below by zero, and therefore approaches a limit
as t → ∞. It is easy to show that the derivative of this
function approaches zero, and this implies, since
IS, IT , IR are non-negative, that each of IS, IT , IR

approaches zero as t → ∞. Thus, S approaches a
non-negative limit S∞ as t → ∞.

It is convenient to use the notation f̂ for the integral of a
non-negative integrable function f ,

f̂ =

∫ ∞

0
f (t)dt.

Integration of the above equation from 0 to ∞ leads to

N − S∞ = γS ÎS + γT ÎT + γRÎR.

Integration of the equation for S in the model gives

log
S0

S∞
= β[ÎS + δT ÎT + δRÎR].
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Integration of the equation for IT in the model gives,
since IT (0) = limt→∞ IT (t) = 0,

ηÎS = (κ + γT )ÎT ,

and we may use this relation to eliminate ÎT ,

N − S∞ =
κγS + γSγT + ηγT

κ + γT
ÎS + γRÎR

log
S0

S∞
= β

κ + γT + ηδT

κ + γT
ÎS + βδRÎR.

This pair of linear equations for ÎS, ÎR, has solution

β∆(η)ÎS = βδR(κ + γT )(N − S∞)

−γR(κ + γT ) log
S0

S∞

β∆(η)ÎR = (κγS + γSγT + ηγT ) log
S0

S∞
−β(κ + γT + δTη)(N − S∞),

with

∆(η) = δR(κγS + γSγT + ηγT ) − γR(κ + γT + ηδT ).

27



It is easy to calculate that ∆(η) < 0 is equivalent to
δRβN

γ
< βN

κ + γT + ηδT

κγS + γSγT + ηγT
,

and if we define

R
∗(η) = βN

κ + γT + ηδT

κγS + γSγT + ηγT
,

this is equivalent to

RR < R∗(η).

If δTγS ≤ γT , δT < 1 it is easy to verify that R∗(η) is a
decreasing function of η. Thus

R∗(0) = βN
κ + γS

γS(κ + γT )

≥ limη→∞R∗(η) = R∗(∞) = βN
δT

γT
.

Since the solutions ÎS, ÎR are non-negative, it follows
from the expressions for ÎS, ÎR that if ∆(η) < 0,

RR

[

1 −
S∞
N

]

≤ log
S0

S∞
≤ R∗(η)

[

1 −
S∞
N

]

.

If ∆(η) > 0, these inequalities are reversed.
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We distinguish three cases, corresponding to the location
of RR with respect to R∗(0) and R∗(∞).

(i)RR > R∗(0), if

δRγS(κ + γT ) > γR(κ + γT ).

In this case RR > R∗(η) for 0 ≤ η < ∞.

R
∗(η)

[

1 −
S∞
N

]

< log
S0

S∞
< RR

[

1 −
S∞
N

]

.

(ii)RR < R∗(∞), if

δRγT < γRδT .

In this case RR < R∗(η) for 0 ≤ η < ∞.

RR

[

1 −
S∞
N

]

< log
S0

S∞
< R

∗(η)

[

1 −
S∞
N

]

.
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(iii)R∗(0) > RR > R∗(∞), if

δRγS(κ + γT ) < γR(κ + γT ), δRγT > δTγR.

In this case R∗(η) > RR for small η and
R∗(η) < RR for large η. Specifically, there is a value
ηc such that R∗(ηc) = RR, with

ηc =
γR(κ + γS) − δRγS(κ + γT )

γT δR − δTγR−
.

RR

[

1 −
S∞
N

]

< log
S0

S∞
< R

∗(η)

[

1 −
S∞
N

]

(0 ≤ η < ηc)

R
∗(η)

[

1 −
S∞
N

]

< log
S0

S∞
< RR

[

1 −
S∞
N

]

(ηc < η < ∞).

We have two expressions for log(S0/S∞) and (N − S∞).
In the analysis of the simple Kermack-McKendrick
model the corresponding expressions contained only one
term of the form Î , and it was possible to eliminate that
term from the two equations. Here, we have two terms
ÎS and ÎR, and elimination is not possible without some
additional information or assumption.
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In order to establish an equality relating the treatment
rate and the epidemic final size, we need to make an
additional assumption. We have written N − S∞, the
total number of members who are infected over the
course of the epidemic, as the sum of two terms, namely
γÎR, the total number of drug-resistant infections, and

κγS + γSγT + ηγT

κ + γT
ÎS,

the number of cases of drug-sensitive infections that do
not develop resistance. We consider the treatment rate η
to be a parameter that can be controlled, with all the
other parameters of the model fixed. Then the ratio of
these two numbers is a function of η, and we define

λ(η) =
γ(κ + γT )ÎR

(κγS + γSγT + ηγT ))ÎS

.

We will assume
λ′(η) ≥ 0.
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Simulations indicate that the effect of increasing the
treatment rate η is to increase the number of resistant
infections and to decrease the number of sensitive
infections. If there is no transition from sensitive to
resistant infections (κ = 0), the number of sensitive
infections is a decreasing function of the treatment rate,
while the number of resistant infections is independent of
the treatment rate (except for a decrease because of the
decrease in the number of sensitive infections). The effect
of adding development of resistance at a given treatment
rate is to decrease the number of sensitive infections,
because some sensitive infection would develop
resistance, and to increase the number of resistant
infections. This makes it plausible that the ratio λ(η) is
an increasing function of the treatment rate.

We eliminate ÎS and ÎR to obtain a pseudo-final size
relation

log
S0

S∞(η)
= E(η)

[

1 −
S∞(η)

N

]

,

where

E(η) =
R∗(η) + RRλ(η)

1 + λ(η)
.
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For a final size equation of this form, determining S∞ as
a function of η, it is easy to verify that the derivatives of
E(η) and S∞(η) with respect to η have opposite sign.
This implies that if

E′(η) =
[1 + λ(η)](R∗(η))′ + λ′(η)[RR − R∗(η)]

(1 + λ(η))2
> 0,

the effect of increasing the treatment rate η is to decrease
S∞, that is, to make the epidemic more severe. Since
(R∗(η))′ < 0, λ′(η) > 0, we see that E′(η) < 0 if
RR < R∗(η)]. However, it is possible to have E′(η) > 0
if RR > R∗(η)], and this happens, at least for some
values of η, in the cases (ii) [δRγT < γRδT ] and (iii)
[δRγS(κ + γT ) < γR(κ + γS), δRγT > γRδT ].
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To demonstrate this possibility, we simulated the model,
showing optimal treatment rates at which the final size is
a minimum for two different levels of resistance
transmission, using parameter values

β = 4.5 × 10−5, N = 10, 000, γS = γR = 1/4 day−1,

κ = 0.0002 day−1, δT = 0.4.

Initial values are

S0 = 104
− 1, IS(0) = 1, IT (0) = IR(0) = 0.

For δR = 0.7, for which ηc = 0.03, the optimal rate is
η0 = 0.238 (red curves). For δR = 0.9, which is in case
(ii), the optimal treatment rate η = 0.139. The solid
curves are total infections; the dotted curves are the total
number of infections without resistance, and the dashed
curves are the total number of resistant infections.
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CONCLUSIONS

The age of infection epidemic model is a very general
form. We have considered extensions in two different
directions. For diseases with direct and indirect modes of
transmission it is possible to build a parallel
development, an age of infection model if the rate of
shedding pathogen does not depend on the time since
infection, or a stage-structured model if the rate of
shedding pathogen depends on the age of infection.

For diseases in which there is a risk of development of
drug resistance, experimental evidence indicates a
possibility that increasing the treatment rate may be
counter-productive. We have formulated a simple model
that can exhibit such behavior, but analysis of the model
depends on an assumption about the ratio of
drug-resistant cases to drug-sensitive cases of disease.
Although simulations indicate the validity of this
assumption, we have not been able to establish its
validity analytically. This remains an open problem, as
does the question of describing an age of infection model
for a disease with two strains.
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