

13th BIOMAT

INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY

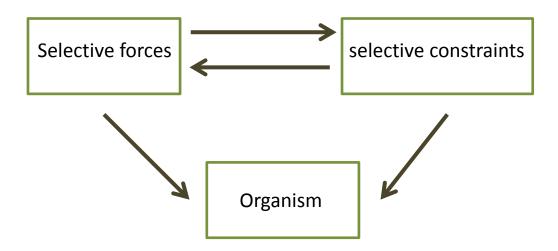
16th Oral Session

MINING THE CONSTRAINTS OF PROTEIN EVOLUTION

Fernando Encinas Ponce Antonio Basilio de Miranda

November, 6th, 2013 – Toronto, Canada

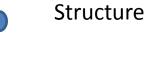
Introduction


Motivation

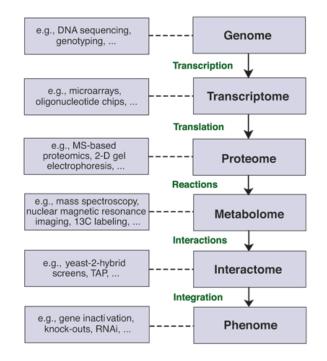
- Systems biology approach
- Computational methods Data Mining
- Methodology
- Results
- Conclusions

INTRODUCTION

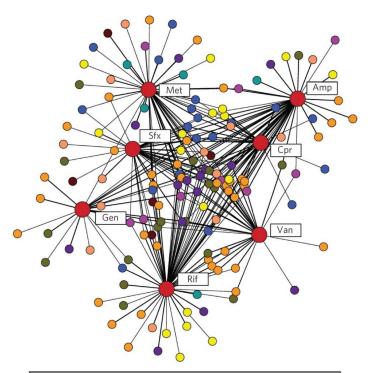
Evolution


accumulation of random changes in the genetic makeup over time

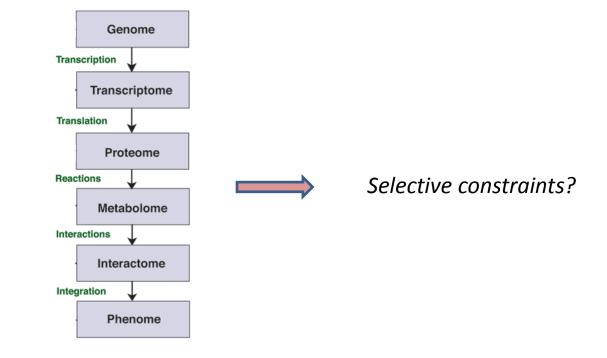
Evolutionary constraint: restriction or limitation on the course or outcome of evolution


Why proteins evolve at differente rates?

The pre-genomic view...



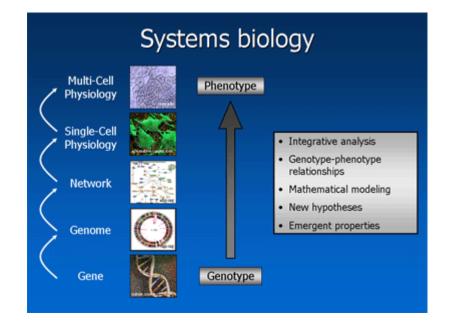
High-throughput biological information


Biological complexity:

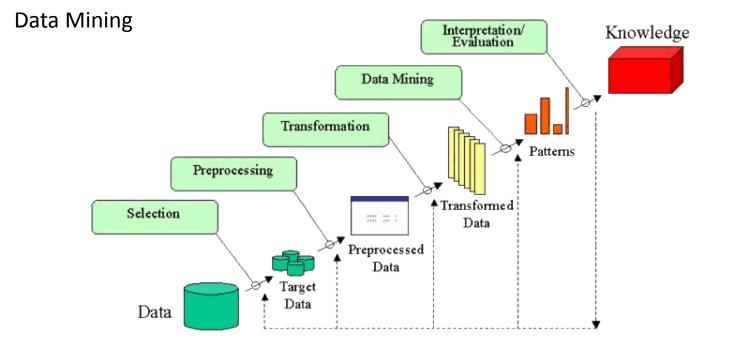
Functional classification	
DNA binding, replication, recombination and repair	
Gluthatione biosynthesis and redox homeostasis	
Transport, efflux, cell-wall and cell-membrane synthesis	\bigcirc
Chaperones and proteases	
Protein synthesis	
General metabolic reactions	\bigcirc
Regulation	
Prophage-encoded genes and cell adhesion	
Unassigned genes	\bigcirc

Antibiotics as probes of biological complexity Shannon B Falconer, Tomasz L Czarny & Eric D Brown Nature Chemical Biology 7,415–423 (2011)

among these data...



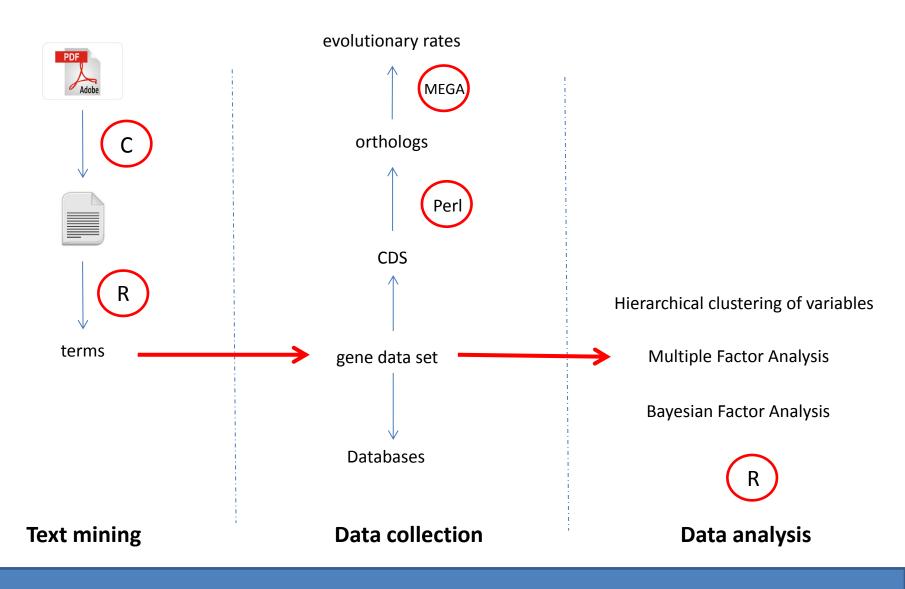
Natural selection works to optimize organisms


SYSTEM APPROACH

Holistic perspective...

http://bme.virginia.edu/csbl/about.php

COMPUTATIONAL METHODS



http://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html

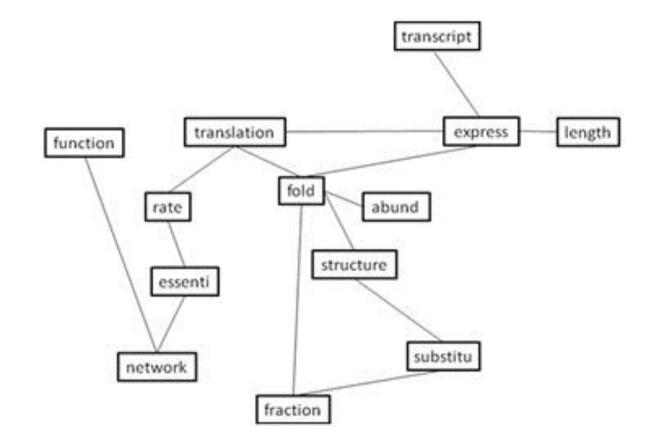
- To identify overlooked genomic constraints that govern protein evolution
- To integrate information on these constraints into a single framework (biological system)

METHODOLOGY

RESULTS

Text mining

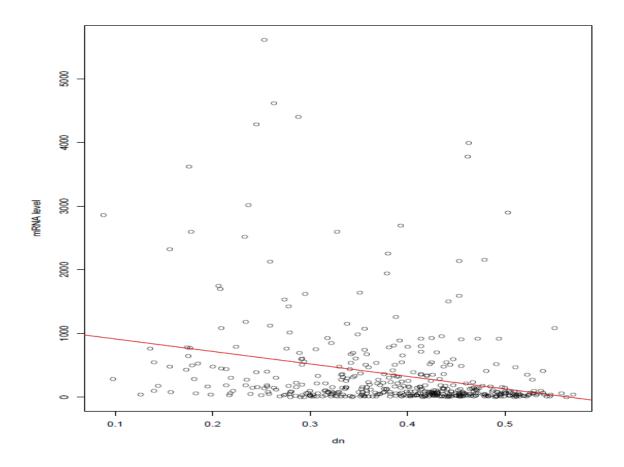
List of most frequent terms in the collection of documents


[1] "chang" [4] "differ" "effect" "evolut" [7] "evolutionari" "evolv" [10] "figur" [13] "genom" "interact" [16] "mutat" [19] "protein" [22] "residu" "result" "select" [25] "sequenc" "site" [28] "structur" "studi" [31] "yeast

"correl" "data" "function" "network" "ortholog" "rate"

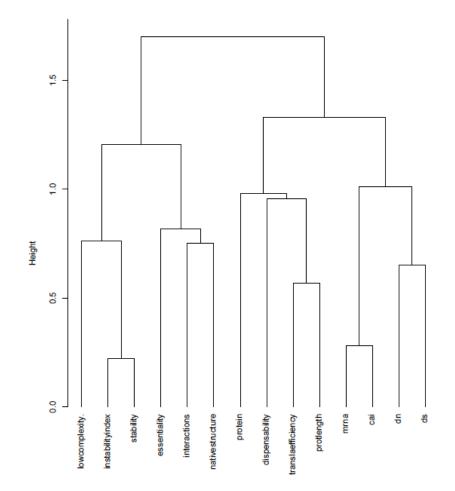
"express" "gene" "level" "relat"

"speci" "use"


Term association analysis

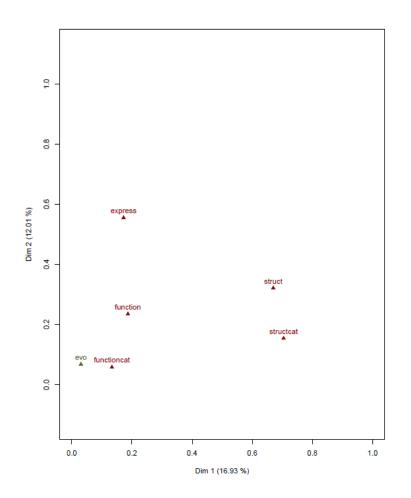
Text-derived variables

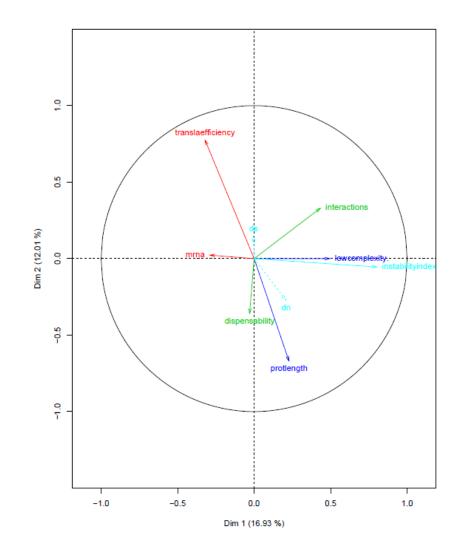
Stem term	Gene/protein feature	Variable type	Nature
rate, substitu	number of synonymous substitutions (dS)	continuous	Evolutive
rate, substitu	number of non-synonymous substitutions(dN)	continuous	Evolutive
express	mRNA level	continuous	Expression
abund	protein level	continuous	Expression
translation	translation efficiency	continuous	Expression
length	protein length	continuous	Structural
structure	native structure	categorical	Structural
structure	instability index	continuous	Structural
structure	Stability	categorical	Structural
network	number of interactions	continuous	Functional
region, structure	low complexity porcentage	continuous	Structural
essenti	Essentiality	categorical	Functional
essenti	Dispensability	continuous	Functional

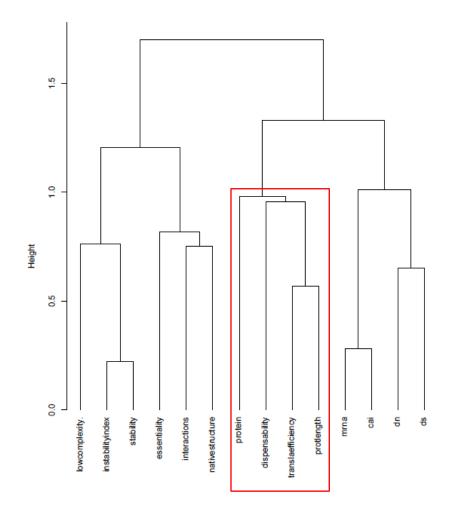

Pair-wise correlation analyses

Negative correlation between mRNA level and dN

Variable	ORF length	dN	dS	dN/dS	mRNA level	Translatio nal efficiency	Protein abundanc e	CAI	Number of interactio ns	Dispensa bility	% Low complexit y	Protein length	Instability index
ORF length	100	17.74	-19.12	14.13	3.17	-51.78	6.31	-12.03	3.69	8.25	2.54	99.35	8.33
dN		100	-41.15	62.6	-26.68	-25.06	3.49	-49.6	-6.77	1.42	9.16	17.54	22.22
dS			100	-89.4	-5.13	10.65	2.32	-1.86	-3.11	-3.27	1.54	-20.14	3.17
dN/dS				100	-9.77	-13.4	-0.74	-19.56	0.37	2.32	2.16	15.35	4.91
mRNA level					100	8.15	-2.84	71.14	-3.53	-2.47	3.73	3.25	-17.54
Translatio nal efficiency						100	-11.63	29.92	0.1	-9.57	-10.38	-51.33	-18.18
Protein abundanc e							100	-7.38	-2.01	-2.06	1.64	6.32	9.66
CAI								100	-5.2	-4.14	5.78	-11.67	-27.04
Number of interactio ns									100	-1.25	9.52	3.7	9.93
Dispensa bility										100	-4.44	8.58	-5.06
% Low complexit y											100	2.66	38.93
Protein length												100	7.89
Instability index													100


Clustering of variables reveals the underlying structure of the data


Muliple Factor Analysis


Stem term	Gene/protein feature	Variable type	Nature
rate, substitu	number of synonymous substitutions (dS)	continuous	Evolutive
rate, substitu	number of non-synonymous substitutions(dN)	continuous	Evolutive
express	mRNA level	continuous	Expression
abund	protein level	continuous	Expression
translation	translation efficiency	continuous	Expression
length	protein length	continuous	Structural
structure	native structure	categorical	Structural
structure	instability index	continuous	Structural
structure	Stability	categorical	Structural
network	number of interactions	continuous	Functional
region, structure	low complexity porcentage	continuous	Structural
essenti	Essentiality	categorical	Functional
essenti	Dispensability	continuous	Functional

Latent constructs are useful to integrate genomic data

Individual coordinates show relationships between variables

Bayesian Factor Analysis

Positive and negative contributors to an adapted protein translation system

	Factor loading	Psi-uniqueness
synonymous substitutions	0.4121	0.6921
instability index	-0.213	0.9548
translation efficiency	0.8783	0.2129
protein level	-0.1410	0.9826
Dispensability	-0.0995	0.9954

Convergence diagnostic test

	Stationary	p-value
dS	Passed	0.243
instability index	Passed	0.180
translation efficiency	Passed	0.122
protein level	Passed	0.165
dispensability	Passed	0.584
Psi-dS	Passed	0.608
Psi-instability index	Passed	0.219
Psi-translation efficiency	Passed	0.104
Psi-protein level	Passed	0.380
Psi-dispensability	Passed	0.454

Innovative computational methods are needed to make sense of biological data

Translational efficiency, structural instability and low complexity regions appear to be important determinants of protein evolution

Latent constructs are an interesting aternative to integrate genomic data.

