An Agent-Based Modelling Framework for Tuberculosis Infection with Drug-Resistance

Aquino L. Espíndola¹, Alexandre S. Martinez², Seyed M. Moghadas³

¹ Departamento de Física Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense, Volta Redonda, RJ

27.213-145, Brasil

² Departamento de Física Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brasil

³Agent-Based Modelling Laboratory York University, 4700 Keele St. Toronto, Ontario M3J 1P3, Canada

Aquino Espíndola (ICEx-UFF)

ABM Framework for TB

Contents

Introduction

- Disease Compartments
- Dynamics
- Agent-Based Model for TB
- Model Implementation

Some Results

- Discussion and Future Direction
- Acknowledgments

Introduction

• TB is a disease caused by the Mycobacterium tuberculosis.

• Tuberculosis (TB) is a worldwide pandemic.

Introduction

• TB is spread through the air: cough, sneeze, or spit

• More than 2 billion people are infected with TB bacilli.

Introduction

- Over 10 million new infections and deaths annually.
- There were an estimated 511,000 new MDR-TB cases in 2007.
- There is also TB (XDR-TB) occurs when resistance to second-line drugs develops.
- It is extremely difficult to treat XDR-TB.
- XDR-TB cases have been confirmed in more than 50 countries.

Susceptible and Latent individuals (X and L)

State	Description
X	susceptible (pathogen-free)
L _s	infected with $S \underline{only}$ (pathogen-harboured but not infectious)
L _R	infected with R only
L_{SR}	co-infected with both S and R pathogens

Table: Disease states. Note: *S* and *R* represents states related to drug sensitive and drug resistant pathogens, respectively.

Infectious individuals (T_S and T_R)

State	Description
T _s	active TB infectious with S pathogens only
T _R	active TB infectious with <i>R</i> pathogens only
T ^S _{SR}	co-infected TB active with S pathogens only
	co-infected TB active with R pathogens only

Table: Disease states. Note: *S* and *R* represents states related to drug sensitive and drug resistant pathogens, respectively.

Effectively Treated (L^D)

State	Description
$\mathbf{L}^{\mathbf{D}_1}_{\mathbf{s}}$	effectively treated S active TB
$L_{\rm R}^{D_2}$	effectively treated <i>R</i> active TB
$L_{_{RS}}^{D_{1}}$	effectively treated co-infected TB active with S pathogens only
$\boldsymbol{L}_{RS}^{D_2}$	effectively treated co-infected TB active with R pathogens only

Table: Disease states. Note: D_1 and D_2 correspond to the treatment with the first and second drugs, respectively. Sensitive and resistant pathogens refer to drug sensitive and drug resistant, respectively.

Dynamics

Latent TB

Effective treatment of sensitive pathogen

Effective treatment of resistant pathogen

Figure: Influx and outflow of the latent states with S and R pathogens.

Aquino Espíndola (ICEx-UFF)

ABM Framework for TB

Dynamics

Active TB

Figure: Influx and outflow of the active TB states with *S* and *R* pathogens.

Aquino Espíndola (ICEx-UFF)

Agent-Based Model for TB

Aquino Espíndola (ICEx-UFF)

ABM Framework for TB

Lattice and Neighborhood

Figure: Schematic diagram of the lattice environment in the ABM model.

```
Aquino Espíndola (ICEx-UFF)
```

ABM Framework for TB

Contagion and Emergence of Drug Resistance

- Contagion: Only T_S , T_R , T_{SR}^S , T_{SR}^R are source of infection.
- <u>Activation</u>: Latent individuals may undergo endogenous activation.
- Relapse: reactivated during latency (already treated).
- Exogenous Re-infection: reactivation influenced by re-exposure to another active TB.
- Drug Resistance: treatment failure with drug 1.

Numerical Implementation

- At t = 0, only X and T_S individuals in the lattice.
- Transition: $X \rightarrow L_S$:

$$P_S = 1 - (1 - \beta_S)^{K_S}$$

- β_S is the baseline infectivity of the *S* strain.
- *K_S* is the number of neighbours having active TB.
- The system evolves during 200 years.
- Antibiotics (D_1 and D_2) are introduced with P_{treat} probability.
- We monitor the spread of disease for 25 years following the start of treatment.

Exogenous Re-infection=ON & Relapse=ON

Figure: Solid black: S infectious; Dashed black: S not infectious; Solid grey: R infectious; Dashed grey: R not infectious.

Aquino Espíndola (ICEx-UFF)

Exogenous Re-infection=ON & Relapse=OFF

Figure: Solid black: S infectious; Dashed black: S not infectious; Solid grey: R infectious; Dashed grey: R not infectious.

Exogenous Re-infection=OFF & Relapse=ON

Figure: Solid black: S infectious; Dashed black: S not infectious; Solid grey: R infectious; Dashed grey: R not infectious.

Exogenous Re-infection=OFF & Relapse=OFF

Figure: Solid black: S infectious; Dashed black: S not infectious; Solid grey: R infectious; Dashed grey: R not infectious.

Snapshot of the Lattice. Relapse = ON

Figure: Colours: susceptible (green), latent (yellow), active TB with the sensitive strain (red), active TB with the resistant strain (blue), and effectively treated (white).

Snapshot of the Lattice. Relapse = OFF

Figure: Colours: susceptible (green), latent (yellow), active TB with the sensitive strain (red), active TB with the resistant strain (blue), and effectively treated (white).

Discussion and Future Direction

- General framework to study of complex TB dynamics.
- Two strains of the pathogen: drug sensitive and drug resistant.
- Treatment with two types of antimicrobial agents.
- Our model encapsulates mechanisms of exogenous re-infection and relapse.
- A more realistic model including: dynamical lattice, age, individuals' characteristics, and population demographics.

Acknowledgments

- Mitacs and NSERC (Canada).
- Agent-Based Modelling Laboratory at York University (Canada).
- Brazilian agency CNPq through the National Institute of Science and Technology of Complex Systems (Grant #305738/2010-0).
- Brazilian agency CAPES.
- Universidade Federal Fluminense/Brazil for the partial support.