The influence of an interacting substrate on Turing instability conditions

Karolína Korvasová Václav Klika

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

5th November 2013

E ► ★ E ►

What is Turing instability?

Can diffusion cause instability?

æ

・ロン ・雪 と ・ ヨ と ・

Can diffusion cause instability?

Diffusion driven instability (Turing instability):

A steady state of the system is

- asymptotically stable without diffusion,
- unstable with diffusion.

▲御▶ ▲理▶ ▲理≯

I. Lengyel and I. R. Epstein:

- u... concentration of unbound chemical 1,
- v... concentration of unbound chemical 2,
- $w \dots$ concentration of bound chemical 1,

$$u_t = d_u \Delta u + f_u u + f_v v - h_u u - h_w w,$$

$$v_t = d_v \Delta v + g_u u + g_v v,$$
 (RDES)

$$w_t = h_u u + h_w w.$$

We assume $h_u > 0$ and $h_w < 0$.

3

I. Lengyel and I. R. Epstein:

- u... concentration of unbound chemical 1,
- v... concentration of unbound chemical 2,
- w... concentration of bound chemical 1,

$$u_t = d_u \Delta u + f_u u + f_v v - h_u u - h_w w,$$

$$v_t = d_v \Delta v + g_u u + g_v v,$$
 (RDES)

$$w_t = h_u u + h_w w.$$

We assume $h_u > 0$ and $h_w < 0$. For $|h_w|$ and h_u large one can approximate the system RDES by

$$(1+K)u_t = d_u\Delta u + f_u u + f_v v,$$

$$v_t = d_v\Delta v + g_u u + g_v v,$$
 (RDER)

where
$$K = -h_u/h_w > 0$$

Karolína Korvasová (CTU)

What does Turing instability require?

Reaction + diffusion:

 $f_u g_v < 0$ and $d_1 \neq d_2$,

▲口 > ▲聞 > ▲臣 > ▲臣 > ― 臣

What does Turing instability require?

Reaction + diffusion:

 $f_u g_v < 0$ and $d_1 \neq d_2$,

• Reduced reaction + diffusion + binding: $f_u g_v < 0$,

What does Turing instability require?

- Reaction + diffusion: $f_u g_v < 0$ and $d_1 \neq d_2$,
- Reduced reaction + diffusion + binding: $f_u g_v < 0$,
- Reaction + diffusion + binding:

イロト 不得 トイヨト イヨト 二日

?

• Binding SA \implies TI can occur for d_u , d_v with arbitrary relation to one another.

イロト イポト イヨト イヨト 二日

- ▶ Binding SA ⇒ TI can occur for d_u, d_v with arbitrary relation to one another.
- ► Binding SI ⇒ TI can occur only if the inhibitor diffuses faster than the activator.

- ▶ Binding SA ⇒ TI can occur for d_u, d_v with arbitrary relation to one another.
- ► Binding SI ⇒ TI can occur only if the inhibitor diffuses faster than the activator.
- ▶ SA-SA type kinetics permits TI (also for $d_u = d_v$). !

- ▶ Binding SA ⇒ TI can occur for d_u, d_v with arbitrary relation to one another.
- Binding SI ⇒ TI can occur only if the inhibitor diffuses faster than the activator.
- ▶ SA-SA type kinetics permits TI (also for $d_u = d_v$). !
- SI-SI type reaction does not permit TI.

- ▶ Binding SA ⇒ TI can occur for d_u, d_v with arbitrary relation to one another.
- ► Binding SI ⇒ TI can occur only if the inhibitor diffuses faster than the activator.
- ▶ SA-SA type kinetics permits TI (also for $d_u = d_v$). !
- ► SI-SI type reaction does not permit TI.
- If d_u = d_v then the necessary and sufficient conditions for TI do not depend on d_u and d_v.

- ▶ Binding SA ⇒ TI can occur for d_u, d_v with arbitrary relation to one another.
- ► Binding SI ⇒ TI can occur only if the inhibitor diffuses faster than the activator.
- ▶ SA-SA type kinetics permits TI (also for $d_u = d_v$). !
- ► SI-SI type reaction does not permit TI.
- ► If d_u = d_v then the necessary and sufficient conditions for TI do not depend on d_u and d_v.
- Hopf bifurcation cannot occur (as without binding).

▲口 > ▲聞 > ▲臣 > ▲臣 > ― 臣

- ▶ Binding SA ⇒ TI can occur for d_u, d_v with arbitrary relation to one another.
- ► Binding SI ⇒ TI can occur only if the inhibitor diffuses faster than the activator.
- ▶ SA-SA type kinetics permits TI (also for $d_u = d_v$). !
- ► SI-SI type reaction does not permit TI.
- ► If d_u = d_v then the necessary and sufficient conditions for TI do not depend on d_u and d_v.
- ► Hopf bifurcation cannot occur (as without binding).
- Instability condition does not depend on the parameters of binding !

イロト 不得 とうせい かほとう ほ

・ロット 4 聞 > 4 画 > 4 画 > 4 回 >

6 / 7

Thank you.

<ロト <回 > < 回 > < 回 > < 三 > < 三 > 三 三