A new numerical approach for simulation of pattern formation models on stationary and growing surfaces

> Mahdieh Sattari Jukka Tuomela

November 4, 2013

<□> <@> < E> < E> E

- Motivation
- Schnakenberg model
- Triangulation and implementation
- Examples on growing manifolds
- Role of eigenfunction in pattern evolution
- Conclusion

Pattern formation on a evolving biological surface modelled by reaction-diffusion equation.

Let M be two dimensional manifold and $u : M \to \mathbb{R}^2$. The model is given by

$$\partial_t u_1 - d_1 \Delta_M u_1 = \gamma (a - u_1 + u_1^2 u_2) = \gamma f_1(u) \partial_t u_2 - d_2 \Delta_M u_2 = \gamma (b - u_1^2 u_2) = \gamma f_2(u)$$

where d_i , a, b and γ are some positive constants.

The stationary problem

$$- d_1 \Delta_M u_1 = \gamma (a - u_1 + u_1^2 u_2) - d_2 \Delta_M u_2 = \gamma (b - u_1^2 u_2)$$

The constant (positive) solution is

$$u = \left(a+b, \frac{b}{(a+b)^2}\right)$$

Schnakenberg Model

To get diffusion-driven instability, choose a and b such that

$$(a+b)^3 + a - b > 0$$
 and $a < b$

and diffusion parameters such that

$$\sqrt{\frac{d_2}{d_1}} > \frac{(a+b)\left(a+b+\sqrt{2b(a+b)}\right)}{b-a}$$

In particular $d_2 > d_1$.

To solve model on the sphere S^2 with metric g, let V_h be some finite dimensional subspace of $H^1(S^2)$ and let

$$V_h = {\sf span}ig(\psi_1,\ldots,\psi_mig)$$

The approximate solution $u = (u_1, u_2)$ can be written as

$$u_j(x,t) = \sum_{i=1}^m c_i^j(t)\psi_i(x)$$

Find (u_1, u_2) such that

$$\begin{split} \partial_t \int_{S^2} u_1 \psi_j \omega_{S^2} + d_1 \int_{S^2} g(\operatorname{grad}(u_1), \operatorname{grad}(\psi_j)) \omega_{S^2} &= \gamma \int_{S^2} f_1(u) \psi_j \omega_{S^2} \\ \partial_t \int_{S^2} u_2 \psi_j \omega_{S^2} + d_2 \int_{S^2} g(\operatorname{grad}(u_2), \operatorname{grad}(\psi_j)) \omega_{S^2} &= \gamma \int_{S^2} f_2(u) \psi_j \omega_{S^2} \end{split}$$

where ω_{S^2} is the area form.

Let δt be the time step and $c_i^{j,n} = c_i^j(n\delta t)$ and

$$u_j^n = \sum_{i=1}^m c_i^{j,n} \psi_i \approx u_j(x, n\delta t)$$

using implicit Euler method for time discretization

$$((1 + \delta t \gamma)M^{n+1} + \delta t d_1 R^{n+1} - \delta t \gamma \tilde{M}^n) c^{1,n+1} = M^n c^{1,n} + \delta t \gamma a F^{n+1} (M^{n+1} + \delta t d_2 R^{n+1} + \delta t \gamma \hat{M}^n) c^{2,n+1} = M^n c^{2,n} + \delta t \gamma b F^{n+1}$$

where

$$\begin{split} M_{ij}^n &= \int_{S^2} \psi_i \psi_j \omega_{S^2}^n \qquad R_{ij}^n = \int_{S^2} g(\operatorname{grad}(\psi_i), \operatorname{grad}(\psi_j)) \omega_{S^2}^n \\ E_{ijk\ell}^n &= \int_{S^2} \psi_i \psi_j \psi_k \psi_\ell \omega_{S^2}^n \qquad F_i^n = \int_{S^2} \psi_i \omega_{S^2}^n \\ \tilde{M}_{ij}^n &= \sum_{k,\ell} E_{ijk\ell}^{n+1} c_k^{1,n} c_\ell^{2,n} \qquad \hat{M}_{ij}^n = \sum_{k,\ell} E_{ijk\ell}^{n+1} c_k^{1,n} c_\ell^{1,n} \end{split}$$

Domain composition

The sphere
$$S^2$$
 is covered with 6 patches D_j
 $D_1 = (-1, 1) \times (-1, 1)$ $\varphi_1(z) = \gamma_1^{-\frac{1}{2}} \begin{pmatrix} z_1 \\ z_2 \\ 1 \end{pmatrix}$
 $D_2 = (1, 3) \times (-1, 1)$ $\varphi_2(z) = \gamma_2^{-\frac{1}{2}} \begin{pmatrix} 1 \\ z_2 \\ 2 - z_1 \end{pmatrix}$
 $D_3 = (-1, 1) \times (1, 3)$ $\varphi_3(z) = \gamma_3^{-\frac{1}{2}} \begin{pmatrix} z_1 \\ 1 \\ 2 - z_2 \end{pmatrix}$
 $D_{j+3} = D_j$ $\varphi_{j+3} = -\varphi_j$

where

$$\gamma_1 = 1 + |z|^2$$
, $\gamma_2 = 1 + (z_1 - 2)^2 + z_2^2$, $\gamma_3 = 1 + z_1^2 + (z_2 - 2)^2$

Hence $\varphi_j: D_j \to S^2$

Identification

Using Riemannian metric $G_j = d\varphi_j^T d\varphi_j$ in triangulation

The growing manifold is topologically the sphere S^2 with changing Riemannian metric.

To produce the growing manifold, define $\beta: S^2 \to \mathbb{R}^3$ and $\hat{\varphi}_j = \beta \circ \varphi_j$ then the Riemannian metric is

$$\hat{G}_j = d\hat{\varphi}_j^T d\hat{\varphi}_j = d\varphi_j^T d\beta^T d\beta d\varphi_j$$

Let $\beta(x) = \rho(t)(x_1, x_2, x_3)$ where

$$\rho(t) = \frac{e^{rt}}{1 + \frac{1}{K}(e^{rt} - 1)}$$

Then $\hat{\varphi_j}=\rho(t)\varphi_j$ and the corresponding Riemannian metric is $\hat{G}_j=\rho(t)^2G_j$

choosing parameters as follows

d_1	d_2	γ	a	b	Κ	r	δt
1	10	200	0.1	0.9	1.5	0.1	0.01

Define

$$\beta(x) = (lx_1, lx_2, (lx_3/h)^{1/2p})$$

such that

$$\begin{cases} h(t) = \frac{l(t)}{q(t)^{2p}} \\ q(t) = \frac{q_0}{\beta + (1-\beta)e^{-rt}} \\ l(t) = l_0 (1 + \alpha(1 - e^{-kt})) \end{cases}$$

Choose parameters as

d_1	d_2	γ	a	b	q_0	l_0	α	β	r	k	р
1	100	500	0.1	0.9	0.5	0.1	0.8	0.3	0.5	0.5	5

The concentrations u_1 and u_2 at t = 0.1 with $\delta t = 0.0005$

The concentrations u_1 and u_2 at t = 1.6 with $\delta t = 0.0005$

The concentrations u_1 and u_2 at t = 1.68 with $\delta t = 0.0005$

The concentrations u_1 and u_2 at t = 2.75 with $\delta t = 0.0005$

 y_1 and y_2 are two positive roots of

$$p_0(y) = d_1 d_2 (a+b)y^2 + \left((a+b)^3 d_1 + (a-b)d_2 \right) y + (a+b)^3$$

Then we call $I = (y_1, y_2)$ critical interval.

Let λ be an eigenvalue of $-\Delta$ and v_{λ} be the corresponding eigenfunction.

If $\lambda/\gamma \in (y_1, y_2)$ then the linearized Schnackenberg problem has a solution of form $Cv_\lambda e^{\mu\gamma t}$ where μ is the positive solution of

$$p_1(\mu,\lambda) = (a+b)\mu^2 + \left((d_1+d_2)(a+b)\lambda + (a+b)^3 + a - b \right)\mu + p_0(\lambda)$$

Choosing parameters as follows

d_1	d_2	a	b
1	10	0.1	0.9

The computed critical interval is I = [0.2, 0.5].

Let t = 1.6 be the ending time.

 $\lambda_1 = 3.64$ and $\lambda_2 = 14.76$ are two first eigenvalues.

Set $\gamma = 15$ then just $\lambda_1 / \gamma \in I = [0.2, 0.5]$.

Eigenfunction and pattern formation

The eigenfunction and concentration u_1

Changing the parameter as follows

d_1	d_2	a	b
1	20	0.2	1

The computed critical interval is I = [0.169, 0.425].

The ending time t = 1.6 and $\lambda_3 = 15.01$.

Set $\gamma = 72$ then $\lambda_3 / \gamma \in I$.

Eigenfunction and pattern formation

The eigenfunction and concentration u_1

- Our approach can also readily be extended to more complicated surfaces.
- Since all computations are done in two dimensional domains there is no error related to the approximation of the surface in three dimensional space.
- In the case of restricting the parameters such that one eigenvalue of Laplace operator belongs to the critical interval, we are able to predict sort of pattern formation.
- The method benefits from simplicity in programming for different kinds of curved surfaces.

Question?

Thanks for your attention

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで