Quantum Groups and Free Araki-Woods Factors

Michael Brannan (joint with Kay Kirkpatrick)

University of Illinois at Urbana-Champaign

COSy. May 24, 2014.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Motivation: Orthogonal Groups and Gaussian Random Variables

 \triangleright The goal of this talk is discuss some interesting connections between quantum groups and free probability theory.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

Motivation: Orthogonal Groups and Gaussian Random Variables

- \triangleright The goal of this talk is discuss some interesting connections between quantum groups and free probability theory.
- As a motivation, consider the $N \times N$ orthogonal group O_N with its Haar measure dg .
- \blacktriangleright Denote by

$$
v_{ij}: g \in O_N \mapsto g_{ij} \in \mathbb{R}
$$

be the (i, j) -th coordinate function on O_N . Then

$$
L_{\infty}(O_N)=\{v_{ij}\}_{1\leq i,j\leq N}^{\prime\prime}\subset \mathcal{B}(L_2(O_N)).
$$

We will simultaneously think of $\{v_{ii}\}_{i,j}$ as functions and as random variables over (O_N, dg) .

In There are two interesting ways in which O_N appears in in connection to independent Gaussian random variables.

Motivation: Orthogonal Groups and Gaussian RVs

1. Rotational Symmetry: Consider a real, i.i.d. N(0, 1) Gaussian vector $\mathbf{x} = (x_1, x_2, \dots, x_N) \subset L_{\infty-}(\Omega, \mu)$. Then the joint distribution of **x** and the "randomly rotated vector"

$$
\mathbf{y}=(y_1,\ldots,y_N);\quad y_i=\sum_{j=1}^N v_{ij}\otimes x_j\in L_\infty(O_N)\otimes L_\infty(\Omega,\mu)
$$

are the same:

$$
(\iota \otimes \mathbb{E}_{\mu})(P(\mathbf{y})) = \mathbb{E}_{\mu}(P(\mathbf{x})) 1_{L_{\infty}(O_{N})} \quad \forall P \in \mathbb{C} \langle X_{1}, \ldots, X_{N} \rangle.
$$

KORK ERKER ADE YOUR

Motivation: Orthogonal Groups and Gaussian RVs

1. Rotational Symmetry: Consider a real, i.i.d. $N(0, 1)$ Gaussian vector $\mathbf{x} = (x_1, x_2, \dots, x_N) \subset L_{\infty-}(\Omega, \mu)$. Then the joint distribution of **x** and the "randomly rotated vector"

$$
\mathbf{y}=(y_1,\ldots,y_N);\quad y_i=\sum_{j=1}^N v_{ij}\otimes x_j\in L_\infty(O_N)\otimes L_\infty(\Omega,\mu)
$$

are the same:

$$
(\iota \otimes \mathbb{E}_{\mu})(P(\mathbf{y})) = \mathbb{E}_{\mu}(P(\mathbf{x})) 1_{L_{\infty}(O_{N})} \quad \forall P \in \mathbb{C} \langle X_{1}, \ldots, X_{N} \rangle.
$$

2. Asymptotic Gaussianity in (O_N, dg) : Let $\mathbf{X} = \{x_{ii}\}_{i,i\in\mathbb{N}} \subset L_{\infty-}(\Omega,\mu)$ be a real, i.i.d. $N(0,1)$ Gaussian $\boldsymbol{\lambda} = \{x_{ij}\}_{i,j\in\mathbb{N}}\subset L_{\infty-}(\Omega,\mu)$ be a real, 1.1.0. $N(0,1)$ Gaussian array. Then the rescaled random variables $\sqrt{N}v_{ij}\in L_{\infty}(O_{N})$ satisfy the following convergence result: √

{ N v $_{ij}\}_{1\le i,j\le N}\longrightarrow \mathsf{X}$ in distribution as $N\to\infty.$ I.e, $\lim_{N\to\infty}\int_{O_N}$ $P({}$ $\sqrt{N}v_{ij}\}\big)$ dg = $\mathbb{E}_{\mu}(P(\mathbf{X}))$ (P $\in \mathbb{C}\langle X_{ij}:i,j\in\mathbb{N}\rangle$).

From Classical to Free Probability

- ► Replace L_{∞} - (Ω, μ) with a vN algebra (M, φ) equipped with a n.f. state φ (a non-commutative probability space).
- \triangleright Replace classical independence with Voiculescu's free independence with respect to φ . (\longrightarrow free probability theory).
- \triangleright The free probability analogue of a Gaussian vector **x** is a free semicircular system $s = (s_1, s_2, \ldots, s_N) \subset (M, \varphi)$, determined by $s_i = s_i^*$ and joint distribution

$$
\varphi(s_{i(1)}s_{i(2)}\ldots s_{i(k)}) := |NC_2^{i(1),...,i(k)}(k)| \qquad (1 \leq i(r) \leq N).
$$

KORKAR KERKER EL VOLO

► Important Fact: $(W^*(s_1,\ldots,s_N),\varphi) \cong (L(\mathbb{F}_N),$ trace), the free group factor on N generators.

From Classical to Free Probability

- ► Replace L_{∞} - (Ω, μ) with a vN algebra (M, φ) equipped with a n.f. state φ (a non-commutative probability space).
- \triangleright Replace classical independence with Voiculescu's free independence with respect to φ . (\longrightarrow free probability theory).
- \triangleright The free probability analogue of a Gaussian vector **x** is a free semicircular system $s = (s_1, s_2, \ldots, s_N) \subset (M, \varphi)$, determined by $s_i = s_i^*$ and joint distribution

$$
\varphi(s_{i(1)}s_{i(2)}\ldots s_{i(k)}) := |NC_2^{i(1),...,i(k)}(k)| \qquad (1 \leq i(r) \leq N).
$$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

► Important Fact: $(W^*(s_1,\ldots,s_N),\varphi) \cong (L(\mathbb{F}_N),$ trace), the free group factor on N generators.

Question

What do distributional symmetries of free semicircular systems $\mathbf{s} = (s_1, \ldots, s_N)$ look like?

The Distributional Symmetries of $s = (s_1, \ldots, s_N)$

Consider a generic "random rotation" of $s = (s_1, \ldots, s_N)$ given by

$$
s_i \mapsto y_i := \sum_{j=1}^N u_{ij} \otimes s_j \qquad (1 \leq i \leq N)
$$

where $\{u_{ij}\}_{1\le i,j\le N}\subseteq \mathcal{A}$ are the coordinate functions implementing the symmetry and $\mathcal A$ is the unital $*$ -algebra they generate.

KORK ERKER ADE YOUR

The Distributional Symmetries of $s = (s_1, \ldots, s_N)$

Consider a generic "random rotation" of $s = (s_1, \ldots, s_N)$ given by

$$
s_i \mapsto y_i := \sum_{j=1}^N u_{ij} \otimes s_j \qquad (1 \leq i \leq N)
$$

where $\{u_{ij}\}_{1\leq i,j\leq N}\subseteq \mathcal{A}$ are the coordinate functions implementing the symmetry and $\mathcal A$ is the unital $*$ -algebra they generate.

If $s = (s_1, \ldots, s_N)$ is invariant under this transformation, then the invariance condition

$$
(\iota \otimes \varphi)(P(\mathbf{y})) = \varphi(P(\mathbf{s}))1_{\mathcal{A}} \qquad (P \in \mathbb{C}\langle X_1,\ldots,X_N \rangle)
$$

imposes certain relations on the generators u_{ii} of A.

It turns out that the only relations imposed are

1.
$$
\underline{U} := [u_{ij}] \in M_{N}(\mathcal{A})
$$
 is unitary (R1)

2.
$$
\overline{U} = U
$$
, where $\overline{U} = [u_{ij}^*]$. (R2).

► These are the same relations as for $\{v_{ij}\}\subset L_\infty(O_N)$ BUT ${u_{ii}}$ are not required to commute! **KORK (FRAGE) EL POLO**

The Quantum Group O_N^+ N

 \triangleright This leads us to define a universal (non-commutative) unital C ∗ -algebra

$$
C(O_N^+) = C^* \big(\{ u_{ij} \}_{1 \le i,j \le N} \mid U = [u_{ij}] \text{ unitary } \& \overline{U} = U \big).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \blacktriangleright The algebra $C(O_N^+)$ $_{N}^{+}$) encodes all the symmetries of a free semicircular system $\mathbf{s} = (s_1, \ldots, s_N)$.

The Quantum Group O_N^+ N

 \triangleright This leads us to define a universal (non-commutative) unital C ∗ -algebra

$$
C(O_N^+) = C^* \big(\{ u_{ij} \}_{1 \le i,j \le N} \mid U = [u_{ij}] \text{ unitary } \& \overline{U} = U \big).
$$

 \blacktriangleright The algebra $C(O_N^+)$ $_{N}^{+}$) encodes all the symmetries of a free semicircular system $s = (s_1, \ldots, s_N)$.

Theorem (Wang '93)

 $C(O_N^+)$ $_{N}^{+})$ is the C * -algebra of a compact quantum group - the free orthogonal quantum group O_N^+ $\overset{+}{\mathsf{N}}$.

In particular, we have a coproduct

$$
\Delta: C(O_N^+) \to C(O_N^+) \otimes C(O_N^+); \quad \Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}
$$

and a ∆-bi-invariant Haar state

$$
h_N: C(O_N^+) \to \mathbb{C}; \quad (\iota \otimes h_N)\Delta = (h_N \otimes \iota)\Delta = h_N(\cdot)1.
$$

Note: O_N is a quantum subgroup of O_N^+ $\frac{1}{N}$.

-
K □ K + d R + k 로 K + 로 K + 도 E + 9 Q Q + O Q Q

O_N^+ $_{N}^{+}$ and Free Semicircular Systems

Let $L_{\infty}(O_{N}^{+}% \times\mathbb{R}^{2})\cap\mathbb{R}^{2}\rightarrow\mathbb{R}$ $\mathcal{B}_{N}^{(+)}=\{u_{ij}\}_{1\leq i,j\leq N}^{\prime\prime}\subset\mathcal{B}({L_2(h_N)}).$ In summary, we obtain the following:

Theorem (Curran '09)

Free semicircular systems are invariant under quantum rotations. In particular, there is a trace-preserving quantum group action $O_N^+ \curvearrowright^\alpha L(\mathbb{F}_N)$ given by a unital injective normal $*$ -homomorphism

$$
\alpha: L(\mathbb{F}_N) = W^*(s_1,\ldots,s_N) \to L_\infty(O_N^+) \overline{\otimes} L(\mathbb{F}_N); \quad \alpha(s_i) = \sum_j u_{ij} \otimes s_j
$$

KORK ERKER ADE YOUR

satisfying
$$
(\iota \otimes \alpha) \circ \alpha = (\Delta \otimes \iota) \circ \alpha
$$
 and $(\iota \otimes \varphi) \circ \alpha = \varphi(\cdot)1$.

O_N^+ $_{N}^{+}$ and Free Semicircular Systems

By replacing O_N with O_N^+ $_N^+$, we also obtain a free analogue of the asymptotic Gaussianity result for O_M .

Theorem (Banica-Collins '07, B. '13) √

The normalized generators { \overline{N} u_{ij}}_{1≤ij≤N} ⊂ (L_∞(O $_{\mathcal{N}}^{+}$ $(h_N^+), h_N)$ are (strongly) asymptotically free and semicircular: Let $S = \{s_{ii}\}_{i,i\in\mathbb{N}}$ be a free semicircular array, then for any NC polynomial P,

$$
\lim_{N} h_{N}\Big(P(\lbrace \sqrt{N}u_{ij}\rbrace)\Big) = \varphi(P(\mathbf{S}))
$$

and
$$
\lim_{N} || P(\lbrace \sqrt{N}u_{ij}\rbrace)||_{L_{\infty}(O_{N}^{+})} = || P(\mathbf{S})||_{L(\mathbb{F}_{N})}.
$$

KORKAR KERKER EL VOLO

Type III Deformations of O_N^+ N

The QG O_N^+ $_N^+$ can be "deformed" to get many more interesting QGs. Theorem (Van Daele-Wang '95) For any $F \in GL(N, \mathbb{C})$ such that $F\overline{F} \in \mathbb{C}1$, there exists a compact quantum group O_{\digamma}^+ with

 $C(O_F^+)$ $\mathcal{F}_F^+)=\textit{C}^*\big(u_{ij}, 1\leq i,j\leq \textit{N} \mid \textit{U}=\left[u_{ij}\right]$ unitary and $\textit{U}=F\overline{\textit{U}}F^{-1}\big),$

and
$$
\Delta(u_{ij}) = \sum_{j=1}^N u_{ik} \otimes u_{kj}
$$
.

Note: In most cases (i.e., $F \notin \mathbb{C}U_N$), the Haar state h_F on O_F^+ is non-tracial $(L_{\infty}(\mathcal{O}_{\mathcal{F}}^{+}))$ (F_F^+) is a type III vN algebra).

KORKAR KERKER EL VOLO

Type III Deformations of O_N^+ N

The QG O_N^+ $_N^+$ can be "deformed" to get many more interesting QGs. Theorem (Van Daele-Wang '95) For any $F \in GL(N, \mathbb{C})$ such that $F\overline{F} \in \mathbb{C}1$, there exists a compact quantum group O_{\digamma}^+ with

 $C(O_F^+)$ $\mathcal{F}_F^+)=\textit{C}^*\big(u_{ij}, 1\leq i,j\leq \textit{N} \mid \textit{U}=\left[u_{ij}\right]$ unitary and $\textit{U}=F\overline{\textit{U}}F^{-1}\big),$

and
$$
\Delta(u_{ij}) = \sum_{j=1}^N u_{ik} \otimes u_{kj}
$$
.

Note: In most cases (i.e., $F \notin \mathbb{C}U_N$), the Haar state h_F on O_F^+ is non-tracial $(L_{\infty}(\mathcal{O}_{\mathcal{F}}^{+}))$ (F_F^+) is a type III vN algebra).

Questions

Do these deformed O_F^+ \bar{f}^+ have any connections with free probability?

- Does free independence appear in the large rank limit?
- - Does O_F^+ $\mathcal{F}^+_{\mathsf{F}}$ act on interesting NC probability spaces $(M,\varphi)?$

Shlyakhtenko's Free Araki-Woods Factors

The answer is yes to both of these questions! The relevant NC probabilistic objects (M, φ) are given by certain free Araki-Woods factors:

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Shlyakhtenko's Free Araki-Woods Factors

The answer is yes to both of these questions! The relevant NC probabilistic objects (M, φ) are given by certain free Araki-Woods factors:

- ► Fix an orthogonal representation $(U_t)_{t\in\mathbb{R}}$ of $\mathbb R$ on a real Hilbert space $H_{\mathbb{R}}$ (dim $H_{\mathbb{R}} > 2$).
- Extend U_t to the complexified Hilbert space $H_{\mathbb{C}}$, and write $U_t = A^{it} \in \mathcal{U}(H_{\mathbb{C}})$ for some (unbounded) $A > 0$.
- \triangleright The generator A induces a new inner product

$$
\langle \xi | \eta \rangle_U = \Big\langle \frac{2}{1+A^{-1}} \xi \big| \eta \Big\rangle \text{ on } H_{\mathbb C} \text{ with } \|\xi\|_U = \|\xi\| \; \forall \xi \in H_{\mathbb R}.
$$

This yields an isometric embedding $H_{\mathbb{R}} \hookrightarrow H = \overline{H_{\mathbb{C}}}^{\|\cdot\|_U}.$ \triangleright Consider the full Fock space

$$
\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n\geq 1} H^{\otimes n}
$$

and the canonical left creation operators

$$
\ell(\xi) \in \mathcal{B}(\mathcal{F}(H)) \qquad (\xi \in H)
$$

Shlyakhtenko's Free Araki-Woods Factors

 \triangleright The free Araki-Woods factor is the von Neumann algebra

 $\Gamma(H_{\mathbb{R}},U_t)'' = \{ \ell(\xi) + \ell(\xi)^* : \xi \in H_{\mathbb{R}} \}'' \subseteq \mathcal{B}(\mathcal{F}(H)).$

- $\blacktriangleright \; \mathsf{\Gamma}(H_{\mathbb{R}},U_t)''$ has a n.f. state $\varphi_{\Omega}(\cdot)=\langle \cdot \Omega|\Omega \rangle$ the free quasi-free state.
- $\triangleright \varphi_0$ is tracial iff $U_t = id$ for all t.
- \blacktriangleright $\Gamma(H_{\mathbb{R}}, \mathsf{id}) = L(\mathbb{F}_{\mathsf{dim}\, H_{\mathbb{R}}})$. In fact, if $(e_i)_i$ is an ONS for $H_{\mathbb{R}}$, then $\mathbf{s} = (\ell(e_i) + \ell(e_i)^*)_{i=1}^N$ is a free semicircular system wrt. φ_{Ω} .

KORKAR KERKER EL VOLO

 \blacktriangleright For non-trivial U_t , $\Gamma(H_\mathbb{R},U_t)''$ is a full type III $_\lambda$ factor for some $0 \leq \lambda \leq 1$ (Shlyakhtenko).

O_F^+ $\mathcal{F}_{\mathcal{F}}^+$ and Free Araki-Woods Factors

Theorem (B.-Kirkpatrick '14)

Given any O_f^+ with dim $F = N$, there exists a free Araki-Woods factor $(\Gamma(\mathbb{R}^N,U_t^F)'',\varphi_{\Omega})$ with canonical generators (c_1,\ldots,c_N) and a faithful φ_{Ω} -preserving action

$$
O_F^+\cap\mathcal{C}^{\alpha}\Gamma(\mathbb{R}^N,U_t^F)^{\prime\prime}\quad \text{given by}\quad \alpha(c_i)=\sum_j u_{ij}\otimes c_j\quad (1\leq i\leq N).
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

O_F^+ $\mathcal{F}_{\mathcal{F}}^+$ and Free Araki-Woods Factors

Theorem (B.-Kirkpatrick '14)

Given any O_f^+ with dim $F = N$, there exists a free Araki-Woods factor $(\Gamma(\mathbb{R}^N,U_t^F)'',\varphi_{\Omega})$ with canonical generators (c_1,\ldots,c_N) and a faithful φ_{Q} -preserving action

$$
O_F^+\cap\mathcal{C}^{\alpha}\Gamma(\mathbb{R}^N,U_t^F)^{\prime\prime}\quad \text{given by}\quad \alpha(c_i)=\sum_j u_{ij}\otimes c_j\quad (1\leq i\leq N).
$$

Theorem (B.-Kirkpatrick '14)

For any almost periodic representation U_t on $H_{\mathbb{R}}$, there exists a sequence of quantum groups $\{O_{E}^+\}$ $(\mathcal{F}_{\mathcal{F}(n)}^+)_{n\geq 1}$ s.t. $((\mathsf{\Gamma}(\mathcal{H}_\mathbb{R},\mathcal{U}_t)'',\varphi_\Omega))_{n\geq 1}$ arises as the Haar distributional limit of normalized generators of $(L_{\infty}(\mathcal{O}_{\mathsf{F1}}^{+})$ $h_{F(n)}^{+}$, $h_{F(n)}$).

Bonus: When dim $H_{\mathbb{R}} < \infty$, we can even take dim $F(n) =$ constant for all $n!$ (A purely non-unimodular phenomenon).