Quantum Groups and Free Araki-Woods Factors

Michael Brannan (joint with Kay Kirkpatrick)

University of Illinois at Urbana-Champaign

COSy. May 24, 2014.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation: Orthogonal Groups and Gaussian Random Variables

The goal of this talk is discuss some interesting connections between quantum groups and free probability theory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation: Orthogonal Groups and Gaussian Random Variables

- The goal of this talk is discuss some interesting connections between quantum groups and free probability theory.
- ► As a motivation, consider the N × N orthogonal group O_N with its Haar measure dg.
- Denote by

$$v_{ij}: g \in O_N \mapsto g_{ij} \in \mathbb{R}$$

be the (i, j)-th coordinate function on O_N . Then

$$L_{\infty}(O_N) = \{v_{ij}\}_{1 \leq i,j \leq N}^{\prime\prime} \subset \mathcal{B}(L_2(O_N)).$$

We will simultaneously think of $\{v_{ij}\}_{i,j}$ as functions and as random variables over (O_N, dg) .

► There are two interesting ways in which *O_N* appears in in connection to independent Gaussian random variables.

Motivation: Orthogonal Groups and Gaussian RVs

1. Rotational Symmetry: Consider a real, i.i.d. N(0,1) Gaussian vector $\mathbf{x} = (x_1, x_2, \dots, x_N) \subset L_{\infty-}(\Omega, \mu)$. Then the joint distribution of \mathbf{x} and the "randomly rotated vector"

$$\mathbf{y} = (y_1, \ldots, y_N); \quad y_i = \sum_{j=1}^N v_{ij} \otimes x_j \in L_\infty(O_N) \otimes L_{\infty-}(\Omega, \mu)$$

are the same:

$$(\iota \otimes \mathbb{E}_{\mu})(P(\mathbf{y})) = \mathbb{E}_{\mu}(P(\mathbf{x}))\mathbf{1}_{L_{\infty}(O_N)} \quad \forall P \in \mathbb{C}\langle X_1, \ldots, X_N \rangle.$$

Motivation: Orthogonal Groups and Gaussian RVs

1. Rotational Symmetry: Consider a real, i.i.d. N(0, 1) Gaussian vector $\mathbf{x} = (x_1, x_2, \dots, x_N) \subset L_{\infty-}(\Omega, \mu)$. Then the joint distribution of \mathbf{x} and the "randomly rotated vector"

$$\mathbf{y} = (y_1, \ldots, y_N); \quad y_i = \sum_{j=1}^N v_{ij} \otimes x_j \in L_\infty(O_N) \otimes L_{\infty-}(\Omega, \mu)$$

are the same:

$$(\iota \otimes \mathbb{E}_{\mu})(P(\mathbf{y})) = \mathbb{E}_{\mu}(P(\mathbf{x}))\mathbf{1}_{L_{\infty}(O_N)} \quad \forall P \in \mathbb{C}\langle X_1, \ldots, X_N \rangle.$$

2. Asymptotic Gaussianity in (O_N, dg) : Let $\mathbf{X} = \{x_{ij}\}_{i,j \in \mathbb{N}} \subset L_{\infty-}(\Omega, \mu)$ be a real, i.i.d. N(0, 1) Gaussian array. Then the rescaled random variables $\sqrt{N}v_{ij} \in L_{\infty}(O_N)$ satisfy the following convergence result:

$$\{\sqrt{N}v_{ij}\}_{1\leq i,j\leq N} \longrightarrow \mathbf{X} \text{ in distribution as } N \to \infty. \text{ I.e,}$$
$$\lim_{N\to\infty} \int_{O_N} P(\{\sqrt{N}v_{ij}\}) dg = \mathbb{E}_{\mu}(P(\mathbf{X})) \qquad (P \in \mathbb{C}\langle X_{ij} : i,j\in\mathbb{N}\rangle).$$

From Classical to Free Probability

- Replace L_{∞−}(Ω, μ) with a vN algebra (M, φ) equipped with a n.f. state φ (a non-commutative probability space).
- ► Replace classical independence with Voiculescu's free independence with respect to φ. (→ free probability theory).
- The free probability analogue of a Gaussian vector x is a free semicircular system s = (s₁, s₂,..., s_N) ⊂ (M, φ), determined by s_i = s_i^{*} and joint distribution

$$\varphi(s_{i(1)}s_{i(2)}\dots s_{i(k)}) := |NC_2^{i(1),\dots,i(k)}(k)| \qquad (1 \le i(r) \le N).$$

Important Fact: (W^{*}(s₁,..., s_N), φ) ≃ (L(𝔽_N), trace), the free group factor on N generators.

From Classical to Free Probability

- Replace L_{∞−}(Ω, μ) with a vN algebra (M, φ) equipped with a n.f. state φ (a non-commutative probability space).
- ► Replace classical independence with Voiculescu's free independence with respect to φ. (→ free probability theory).
- The free probability analogue of a Gaussian vector x is a free semicircular system s = (s₁, s₂,..., s_N) ⊂ (M, φ), determined by s_i = s_i^{*} and joint distribution

$$\varphi(s_{i(1)}s_{i(2)}\dots s_{i(k)}) := |NC_2^{i(1),\dots,i(k)}(k)| \qquad (1 \le i(r) \le N).$$

Important Fact: (W^{*}(s₁,...,s_N), φ) ≅ (L(𝔅_N), trace), the free group factor on N generators.

Question

What do distributional symmetries of free semicircular systems $\mathbf{s} = (s_1, \dots, s_N)$ look like?

The Distributional Symmetries of $\mathbf{s} = (s_1, \ldots, s_N)$

► Consider a generic "random rotation" of s = (s₁,..., s_N) given by

$$s_i \mapsto y_i := \sum_{j=1}^N u_{ij} \otimes s_j \qquad (1 \le i \le N)$$

where $\{u_{ij}\}_{1 \le i,j \le N} \subseteq \mathcal{A}$ are the coordinate functions implementing the symmetry and \mathcal{A} is the unital *-algebra they generate.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Distributional Symmetries of $\mathbf{s} = (s_1, \ldots, s_N)$

► Consider a generic "random rotation" of s = (s₁,..., s_N) given by

$$s_i \mapsto y_i := \sum_{j=1}^N u_{ij} \otimes s_j \qquad (1 \le i \le N)$$

where $\{u_{ij}\}_{1 \le i,j \le N} \subseteq \mathcal{A}$ are the coordinate functions implementing the symmetry and \mathcal{A} is the unital *-algebra they generate.

If s = (s₁,..., s_N) is invariant under this transformation, then the invariance condition

$$(\iota \otimes \varphi)(P(\mathbf{y})) = \varphi(P(\mathbf{s}))\mathbf{1}_{\mathcal{A}} \qquad (P \in \mathbb{C}\langle X_1, \dots, X_N \rangle)$$

imposes certain relations on the generators u_{ij} of A.

It turns out that the only relations imposed are

1.
$$\underline{U} := [u_{ij}] \in M_{\underline{N}}(\mathcal{A})$$
 is unitary (R1)

- 2. $\overline{U} = U$, where $\overline{U} = [u_{ij}^*]$. (R2).
- ► These are the same relations as for $\{v_{ij}\} \subset L_{\infty}(O_N)$ BUT $\{u_{ij}\}$ are not required to commute!

The Quantum Group O_N^+

 This leads us to define a universal (non-commutative) unital C*-algebra

$$C(O_N^+) = C^*(\{u_{ij}\}_{1 \le i,j \le N} \mid U = [u_{ij}] \text{ unitary } \& \overline{U} = U).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The algebra C(O_N⁺) encodes all the symmetries of a free semicircular system s = (s₁,..., s_N).

The Quantum Group O_N^+

 This leads us to define a universal (non-commutative) unital C*-algebra

$$C(O_N^+) = C^* \big(\{u_{ij}\}_{1 \le i,j \le N} \mid U = [u_{ij}] \text{ unitary } \& \overline{U} = U \big).$$

► The algebra C(O_N⁺) encodes all the symmetries of a free semicircular system s = (s₁,..., s_N).

Theorem (Wang '93)

 $C(O_N^+)$ is the C^{*}-algebra of a compact quantum group - the free orthogonal quantum group O_N^+ .

In particular, we have a coproduct

$$\Delta: C(O_N^+) \to C(O_N^+) \otimes C(O_N^+); \quad \Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$$

and a $\Delta\text{-bi-invariant}$ Haar state

$$h_N: C(O_N^+) \to \mathbb{C}; \quad (\iota \otimes h_N)\Delta = (h_N \otimes \iota)\Delta = h_N(\cdot)1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: O_N is a quantum subgroup of O_N^+ .

O_N^+ and Free Semicircular Systems

Let $L_{\infty}(O_N^+) = \{u_{ij}\}_{1 \le i,j \le N}^{\prime\prime} \subset \mathcal{B}(L_2(h_N))$. In summary, we obtain the following:

Theorem (Curran '09)

Free semicircular systems are invariant under quantum rotations. In particular, there is a trace-preserving quantum group action $O_N^+ \curvearrowright^{\alpha} L(\mathbb{F}_N)$ given by a unital injective normal *-homomorphism

$$\alpha: L(\mathbb{F}_N) = W^*(s_1, \ldots, s_N) \to L_{\infty}(O_N^+) \overline{\otimes} L(\mathbb{F}_N); \quad \alpha(s_i) = \sum_j u_{ij} \otimes s_j$$

satisfying
$$(\iota \otimes \alpha) \circ \alpha = (\Delta \otimes \iota) \circ \alpha$$
 and $(\iota \otimes \varphi) \circ \alpha = \varphi(\cdot)1$.

O_N^+ and Free Semicircular Systems

By replacing O_N with O_N^+ , we also obtain a free analogue of the asymptotic Gaussianity result for O_N .

Theorem (Banica-Collins '07, B. '13) The normalized generators $\{\sqrt{N}u_{ij}\}_{1 \le ij \le N} \subset (L_{\infty}(O_N^+), h_N)$ are (strongly) asymptotically free and semicircular: Let $\mathbf{S} = \{s_{ij}\}_{i,j \in \mathbb{N}}$ be a free semicircular array, then for any NC polynomial P,

$$\lim_{N} h_N \left(P(\{\sqrt{N}u_{ij}\}) \right) = \varphi(P(\mathbf{S}))$$

and
$$\lim_{N} \|P(\{\sqrt{N}u_{ij}\})\|_{L_{\infty}(O_N^+)} = \|P(\mathbf{S})\|_{L(\mathbb{F}_N)}.$$

(日) (同) (三) (三) (三) (○) (○)

Type III Deformations of O_N^+

The QG O_N^+ can be "deformed" to get many more interesting QGs. Theorem (Van Daele-Wang '95) For any $F \in GL(N, \mathbb{C})$ such that $F\overline{F} \in \mathbb{C}1$, there exists a compact quantum group O_F^+ with

 $C(O_F^+) = C^* (u_{ij}, 1 \le i, j \le N \mid U = [u_{ij}] \text{ unitary and } U = F\overline{U}F^{-1}),$

and
$$\Delta(u_{ij}) = \sum_{j=1}^{N} u_{ik} \otimes u_{kj}.$$

Note: In most cases (i.e., $F \notin \mathbb{C}U_N$), the Haar state h_F on O_F^+ is non-tracial $(L_{\infty}(O_F^+))$ is a type III vN algebra).

(日) (同) (三) (三) (三) (○) (○)

Type III Deformations of O_N^+

The QG O_N^+ can be "deformed" to get many more interesting QGs. Theorem (Van Daele-Wang '95) For any $F \in GL(N, \mathbb{C})$ such that $F\overline{F} \in \mathbb{C}1$, there exists a compact quantum group O_F^+ with

 $C(O_F^+) = C^*(u_{ij}, 1 \le i, j \le N \mid U = [u_{ij}] \text{ unitary and } U = F\overline{U}F^{-1}),$

and
$$\Delta(u_{ij}) = \sum_{j=1}^N u_{ik} \otimes u_{kj}.$$

Note: In most cases (i.e., $F \notin \mathbb{C}U_N$), the Haar state h_F on O_F^+ is non-tracial $(L_{\infty}(O_F^+)$ is a type III vN algebra).

Questions

Do these deformed O_F^+ have any connections with free probability?

- Does free independence appear in the large rank limit?
- Does O_F^+ act on interesting NC probability spaces (M, φ) ?

Shlyakhtenko's Free Araki-Woods Factors

The answer is yes to both of these questions! The relevant NC probabilistic objects (M, φ) are given by certain free Araki-Woods factors:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Shlyakhtenko's Free Araki-Woods Factors

The answer is yes to both of these questions! The relevant NC probabilistic objects (M, φ) are given by certain free Araki-Woods factors:

- Fix an orthogonal representation (U_t)_{t∈ℝ} of ℝ on a real Hilbert space H_ℝ (dim H_ℝ ≥ 2).
- ► Extend U_t to the complexified Hilbert space $H_{\mathbb{C}}$, and write $U_t = A^{it} \in U(H_{\mathbb{C}})$ for some (unbounded) A > 0.
- The generator A induces a new inner product

$$\langle \xi | \eta
angle_U = \left\langle rac{2}{1+A^{-1}} \xi | \eta
ight
angle$$
 on $H_{\mathbb{C}}$ with $\| \xi \|_U = \| \xi \| \ orall \xi \in H_{\mathbb{R}}.$

This yields an isometric embedding $H_{\mathbb{R}} \hookrightarrow H = \overline{H_{\mathbb{C}}}^{\|\cdot\|_U}$. • Consider the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n \geq 1} H^{\otimes n}$$

and the canonical left creation operators

$$\ell(\xi) \in \mathcal{B}(\mathcal{F}(H)) \qquad (\xi \in H).$$

Shlyakhtenko's Free Araki-Woods Factors

The free Araki-Woods factor is the von Neumann algebra

 $\Gamma(H_{\mathbb{R}}, U_t)'' = \{\ell(\xi) + \ell(\xi)^* : \xi \in H_{\mathbb{R}}\}'' \subseteq \mathcal{B}(\mathcal{F}(H)).$

- Γ(H_ℝ, U_t)" has a n.f. state φ_Ω(·) = ⟨·Ω|Ω⟩ the free quasi-free state.
- φ_{Ω} is tracial iff $U_t = \text{id for all } t$.
- ► $\Gamma(H_{\mathbb{R}}, \mathrm{id}) = L(\mathbb{F}_{\dim H_{\mathbb{R}}})$. In fact, if $(e_i)_i$ is an ONS for $H_{\mathbb{R}}$, then $\mathbf{s} = (\ell(e_i) + \ell(e_i)^*)_{i=1}^N$ is a free semicircular system wrt. φ_{Ω} .

For non-trivial U_t, Γ(H_ℝ, U_t)" is a full type III_λ factor for some 0 ≤ λ ≤ 1 (Shlyakhtenko).

O_F^+ and Free Araki-Woods Factors

Theorem (B.-Kirkpatrick '14)

Given any O_F^+ with dim F = N, there exists a free Araki-Woods factor $(\Gamma(\mathbb{R}^N, U_t^F)'', \varphi_{\Omega})$ with canonical generators (c_1, \ldots, c_N) and a faithful φ_{Ω} -preserving action

$$O_F^+ \curvearrowright^{lpha} \Gamma(\mathbb{R}^N, U_t^F)'' \quad \text{given by} \quad lpha(c_i) = \sum_j u_{ij} \otimes c_j \quad (1 \le i \le N).$$

O_F^+ and Free Araki-Woods Factors

Theorem (B.-Kirkpatrick '14)

Given any O_F^+ with dim F = N, there exists a free Araki-Woods factor $(\Gamma(\mathbb{R}^N, U_t^F)'', \varphi_{\Omega})$ with canonical generators (c_1, \ldots, c_N) and a faithful φ_{Ω} -preserving action

$$\mathcal{O}_F^+ \curvearrowright^{lpha} \Gamma(\mathbb{R}^N, \mathcal{U}_t^F)'' \hspace{0.2cm} \textit{given by} \hspace{0.2cm} lpha(c_i) = \sum_j u_{ij} \otimes c_j \hspace{0.2cm} (1 \leq i \leq N).$$

Theorem (B.-Kirkpatrick '14)

For any almost periodic representation U_t on $H_{\mathbb{R}}$, there exists a sequence of quantum groups $\{O_{F(n)}^+\}_{n\geq 1}$ s.t. $((\Gamma(H_{\mathbb{R}}, U_t)'', \varphi_{\Omega}))$ arises as the Haar distributional limit of normalized generators of $(L_{\infty}(O_{F(n)}^+), h_{F(n)})$.

Bonus: When dim $H_{\mathbb{R}} < \infty$, we can even take dim F(n) = constant for all n! (A purely non-unimodular phenomenon).