C*-algebras of Matricially Ordered *-Semigroups

Berndt Brenken

COSy 2014

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Preface

Universal C*-algebras involving an automorphism realized via an implementing unitary, or an endomorphism via an isometry, have played a fundamental role in operator algebras. Such maps preserve algebraic structure.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Preface

Universal C*-algebras involving an automorphism realized via an implementing unitary, or an endomorphism via an isometry, have played a fundamental role in operator algebras. Such maps preserve algebraic structure.

A map of a C*-algebra defined via an implementing partial isometry does not preserve algebra structure. It is, however, a completely positive *-linear map.

Preface

Universal C*-algebras involving an automorphism realized via an implementing unitary, or an endomorphism via an isometry, have played a fundamental role in operator algebras. Such maps preserve algebraic structure.

A map of a C*-algebra defined via an implementing partial isometry does not preserve algebra structure. It is, however, a completely positive *-linear map.

We consider *-semigroups S , matricial partial order orders on S , along with a universal C^* -algebra associated with S and a matricial ordering on S.

For a particular example of a matrically ordered *-semigroup S along with complete order map on S , we obtain a C*-correspondence over the associated C*-algebra of S. The complete order map is implemented by a partial isometry in the Cuntz-Pimsner C*-algebra associated with the correspondence.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

For a particular example of a matrically ordered $*$ -semigroup S along with complete order map on S , we obtain a C*-correspondence over the associated C*-algebra of S. The complete order map is implemented by a partial isometry in the Cuntz-Pimsner C*-algebra associated with the correspondence.

The resulting Cuntz-Pimsner C*-algebra for this example is the universal C^* -algebra $\mathcal P$ generated by a partial isometry.

For a particular example of a matrically ordered $*$ -semigroup S along with complete order map on S , we obtain a C*-correspondence over the associated C*-algebra of S. The complete order map is implemented by a partial isometry in the Cuntz-Pimsner C*-algebra associated with the correspondence.

The resulting Cuntz-Pimsner C*-algebra for this example is the universal C^* -algebra $\mathcal P$ generated by a partial isometry.

It is known that P is nonunital, nonexact, residually finite dimensional, and Morita equivalent to the universal C*-algebra generated by a contraction.

A $*$ -semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

A $*$ -semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

A $*$ -semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Examples:

Any abelian semigroup (with $a^* = a$)

A $*$ -semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Examples:

Any abelian semigroup (with $a^* = a$)

A group G, or an inverse semigroup S, are examples of *-semigroups, where $a^* = a^{-1}$.

A $*$ -semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

Examples:

Any abelian semigroup (with $a^* = a$)

A group G, or an inverse semigroup S, are examples of *-semigroups, where $a^* = a^{-1}$.

For B a C^* -algebra, the contractions (or strict contractions) in B viewed as a semigroup under multiplication, with * the usual involution. In particular, for H a Hilbert space and $B = \mathcal{B}(\mathcal{H})$.

Matricial order

For a semigroup S the set of $k \times k$ matrices with entries in S, $M_k(S)$, does not inherit much algebraic structure through S. However, the *-structure, along with multiplication of specific types of matrices over S is sufficient to provide some context for an order structure.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Matricial order

For a semigroup S the set of $k \times k$ matrices with entries in S, $M_k(S)$, does not inherit much algebraic structure through S. However, the *-structure, along with multiplication of specific types of matrices over S is sufficient to provide some context for an order structure.

For $k \in \mathbb{N}$, let $[n_i]$ denote an element $[n_1, ..., n_k] \in M_{1,k}(S)$, the $1 \times n$ matrices with entries in S.

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 PM

Then $[n_i]^* \in M_{k,1}(S)$, a $k \times 1$ matrix over S ,

Matricial order

For a semigroup S the set of $k \times k$ matrices with entries in S, $M_k(S)$, does not inherit much algebraic structure through S. However, the *-structure, along with multiplication of specific types of matrices over S is sufficient to provide some context for an order structure.

For $k \in \mathbb{N}$, let $[n_i]$ denote an element $[n_1, ..., n_k] \in M_{1,k}(S)$, the $1 \times n$ matrices with entries in S.

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 PM

Then $[n_i]^* \in M_{k,1}(S)$, a $k \times 1$ matrix over S , and the element $[n_i]^*[n_j] = [n_i^*n_j] \in M_k(S)^{sa}$. For the case of a C^* -algebra B , the sequence of partially ordered sets $\mathrm{M}_k(B)^{sa}$ satisfy some basic interconnections among their positive elements.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

For the case of a C^* -algebra B , the sequence of partially ordered sets $\mathrm{M}_k(B)^{sa}$ satisfy some basic interconnections among their positive elements.

For example, if

$$
\left(\begin{array}{cc}a_{1,1}&a_{1,2}\\a_{2,1}&a_{2,2}\end{array}\right)
$$

is positive in $M_2(B)^{sa}$ then

$$
\left(\begin{array}{ccc}a_{1,1}&a_{1,2}&a_{1,2}\\a_{2,1}&a_{2,2}&a_{2,2}\\a_{2,1}&a_{2,2}&a_{2,2}\end{array}\right)
$$

is also positive in $M_3(B)^{sa}$.

We may describe this property using d -tuples of natural numbers as ordered partitions of k where zero summands are allowed.

KO KKOK KEK KEK LE I DAG

We may describe this property using d -tuples of natural numbers as ordered partitions of k where zero summands are allowed.

Notation: For $d, k \in \mathbb{N}$ and $d \leq k$, set

$$
\mathcal{P}(d,k) = \left\{ (t_1, ..., t_d) \in (\mathbb{N}_0)^d \mid \sum_{r=1}^d t_r = k \right\}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

We may describe this property using d -tuples of natural numbers as ordered partitions of k where zero summands are allowed.

Notation: For $d, k \in \mathbb{N}$ and $d \leq k$, set

$$
\mathcal{P}(d,k) = \left\{ (t_1, ..., t_d) \in (\mathbb{N}_0)^d \mid \sum_{r=1}^d t_r = k \right\}.
$$

Each $\tau = (t_1, ..., t_d) \in \mathcal{P}(d, k)$ yields a *-map $\iota_\tau: \mathrm{M}_\mathit{d}(B) \rightarrow \mathrm{M}_\mathit{k}(B).$ For $[a_{i,j}] \in \mathrm{M}_\mathit{d}(B)$ the element $\iota_\tau([\mathsf{a}_{i,j}]):=[\mathsf{a}_{i,j}]_\tau\in \mathrm{M}_k(B)$ is the matrix obtained using matrix blocks; the i,j block of $\left[a_{i,j}\right]_{\tau}$ is the $t_i\times t_j$ matrix with the constant entry a_{i,j}.

The following Lemma shows that the maps ι_{τ} map positive elements to positive elements.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

The following Lemma shows that the maps ι_{τ} map positive elements to positive elements.

Lemma

For $\tau=(t_1,...,t_d)\in \mathcal{P}(d,k)$ and $[b_{i,j}]\in \mathrm{M}_{r,d}(B).$ There is $\left[c_{i,j}\right] \in \mathrm{M}_{r,k} (B),$ whose entries appear in $\left[b_{i,j}\right] ,$ such that

$$
\iota_{\tau}([b_{i,j}]^*[b_{i,j}])=[c_{i,j}]^*[c_{i,j}].
$$

Proof.

For $1\leq i\leq r$ let the $r\times k$ matrix $[c_{i,j}]$ have *i*-th row

$$
[b_{i1},...,b_{i1},b_{i2},...,b_{i2},...,b_{id},...,b_{id}]
$$

П

KORKAR KERKER E VOOR

where each element b_{ii} appears repeated t_i consecutive times.

Note that the maps ι_{τ} are defined even if the matrix entries are from a set, so in particular for matrices with entries from a *-semigroup S , and although there is no natural 'positivity' for matrices with entries in S one can still use partial orderings.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Note that the maps ι_{τ} are defined even if the matrix entries are from a set, so in particular for matrices with entries from a *-semigroup S , and although there is no natural 'positivity' for matrices with entries in S one can still use partial orderings.

Definition

A *-semigroup S is matricially ordered, write (S, \leq, M) , if there is a sequence of partially ordered sets $(\mathcal{M}_k(S), \preceq),$ ${\mathcal M}_k(S) \subseteq \operatorname{M}_k(S)^{\mathsf{sa}}$ $(k \in {\mathbb N}),$ with ${\mathcal M}_1(S) = S^{\mathsf{sa}},$ satisfying (for $[n_i] \in M_{1,k}(S)$

\n- a.
$$
[n_i]^*[n_j] = [n_i^*n_j] \in \mathcal{M}_k(S)
$$
\n- b. if $[a_{i,j}] \preceq [b_{i,j}]$ in $\mathcal{M}_k(S)$ then $[n_i^* a_{i,j} n_j] \preceq [n_i^* b_{i,j} n_j]$ in $\mathcal{M}_k(S)$
\n- c. the maps $\iota_{\tau} : \mathcal{M}_d(S) \to \mathcal{M}_k(S)$ are order maps for all $\tau \in \mathcal{P}(d, k)$.
\n

KORKAR KERKER E VOOR

The lemma above showed that a C^* -algebra B has a matricial order where $\mathcal{M}_k(B)$ is the usual partially ordered set $\mathrm{M}_k(B)^{\mathsf{sa}}.$

The lemma above showed that a C^* -algebra B has a matricial order where $\mathcal{M}_k(B)$ is the usual partially ordered set $\mathrm{M}_k(B)^{\mathsf{sa}}.$

We may define *-maps $\beta : S \to T$ of matricially ordered *-semigroups S and T that are complete order maps - so $\beta_k : \mathcal{M}_k(S) \to \mathcal{M}_k(T)$ is defined, and an order map of partially ordered sets. A completely positive map of C^* -algebras is then a complete order map.

A complete order representation of a matricially ordered *-semigroup S into a C^* -algebra is a *-homomorphism which is a complete order map.

C*-algebras of S

If F is a specified collection of *-representations of S in C*-algebras, for example *-representations, contractive *-representations, or complete order *-representations, then the universal C*-algebra of S is a C*-algebra $C_F^*(S)$ along with a *-semigroup homomorphism $\iota: \mathsf{S} \to \mathsf{C}^*_\mathsf{F}(\mathsf{S})$ in F satisfying the universal property

$$
\begin{array}{ccc}\nS & & \searrow & \gamma & \in F \\
\downarrow \iota & & \searrow & \gamma & \in F \\
C^*(S) & \pi_{\gamma} & \xrightarrow{\hspace{-.5cm}-} \rightarrow & C\n\end{array}
$$

Given $\gamma : S \to C$, $\gamma \in F$, there is a unique *-homomorphism $\pi_\gamma = \pi : C^*_\mathsf{F}(\mathsf{S}) \to \mathsf{C}$ with $\pi_\gamma \circ \iota = \gamma$.

KORKAR KERKER E VOOR

C*-algebras of S

If F is a specified collection of *-representations of S in C*-algebras, for example *-representations, contractive *-representations, or complete order *-representations, then the universal C*-algebra of S is a C*-algebra $C_F^*(S)$ along with a *-semigroup homomorphism $\iota: \mathsf{S} \to \mathsf{C}^*_\mathsf{F}(\mathsf{S})$ in F satisfying the universal property

$$
S \downarrow \iota \qquad \searrow \gamma \in F \nC^*(S) \pi_{\gamma} \dashrightarrow C
$$

Given $\gamma : S \to C$, $\gamma \in F$, there is a unique *-homomorphism $\pi_\gamma = \pi : C^*_\mathsf{F}(\mathsf{S}) \to \mathsf{C}$ with $\pi_\gamma \circ \iota = \gamma$.

For an arbitrary *-semigroup one can also form the universal C^* -algebra where F is the collection of contractive *-representations.**KORK (FRAGE) EL POLO**

Hilbert modules

Definition

Let β : $S \to T$ be a *-map of a *-semigroup S to a matricially ordered *-semigroup (T, \prec, \mathcal{M}) . The map β_k has the Schwarz property for k, if

 $\beta_k([n_i])^*\beta_k([n_j]) \preceq \beta_k([n_i]^*[n_j])$

KORK ERKER ADE YOUR

in $\mathcal{M}_k(\mathcal{T})$ for $[n_i] \in M_{1,k}(\mathcal{S})$. Here $\beta_k([n_i])^* \beta_k([n_j])$ is the selfadjoint element $[\beta(n_i)^*\beta(n_j)]$ in $\mathcal{M}_k(\mathcal{T}).$

Hilbert modules

Definition

Let β : $S \to T$ be a *-map of a *-semigroup S to a matricially ordered *-semigroup (T, \leq, M) . The map β_k has the Schwarz property for k, if

 $\beta_k([n_i])^*\beta_k([n_j]) \preceq \beta_k([n_i]^*[n_j])$

in $\mathcal{M}_k(\mathcal{T})$ for $[n_i] \in M_{1,k}(\mathcal{S})$. Here $\beta_k([n_i])^* \beta_k([n_j])$ is the selfadjoint element $[\beta(n_i)^*\beta(n_j)]$ in $\mathcal{M}_k(\mathcal{T}).$

A *-homomorphism $\sigma : S \to T$ of *-semigroups has the Schwarz property (since $\sigma_k([n_i])^*\sigma_k([n_j]) = \sigma_k([n_i]^*[n_j])$ for $[n_i] \in M_{1,k}(S)$).

Note that if $\beta : R \to S$ and $\sigma : S \to T$ are complete order maps, β with the Schwarz property and σ a *-semigroup homomorphism, then $\sigma\beta$ is a complete order map with the Schwarz property.

A (complete) Schwarz map to a C^* -algebra C is necessarily completely positive:

Definition

A *-map β : $S \to C$ from a *-semigroup S into a C*-algebra C is completely positive if the matrix $[\beta(n_{\mathsf{i}}^*n_{\mathsf{j}})]$ is positive in $\mathrm{M}_k(\mathcal{C})$ for any finite set $n_1, ..., n_k$ in S.

KOD KARD KED KED E VOOR

A (complete) Schwarz map to a C^* -algebra C is necessarily completely positive:

Definition

A *-map β : $S \to C$ from a *-semigroup S into a C*-algebra C is completely positive if the matrix $[\beta(n_{\mathsf{i}}^*n_{\mathsf{j}})]$ is positive in $\mathrm{M}_k(\mathcal{C})$ for any finite set $n_1, ..., n_k$ in S.

Completely positive maps yield Hilbert modules; so for $\beta : S \to C$ completely positive from a *-semigroup S into a C^* -algebra C then $X = \mathbb{C}[S] \otimes_{alg} C$ has a C valued (pre) inner product (for $x = s \otimes c$, $y = t \otimes d$, with $s, t \in S$, c, d in C

$$
\mathsf{set} \langle x, y \rangle = \langle c, \beta(s^*t) d \rangle = c^* \beta(s^*t) d),
$$

After moding out by 0 vectors and completing obtain a right Hilbert module \mathcal{E}_C .

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Assume there is a *-map $\alpha : S \rightarrow S$ which is a complete order map satisfying the Schwarz inequality for all $k \in \mathbb{N}$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Assume there is a *-map $\alpha : S \rightarrow S$ which is a complete order map satisfying the Schwarz inequality for all $k \in \mathbb{N}$.

Then since $\iota: \mathcal{S} \to C^*((\mathcal{S}, \preceq, \mathcal{M}))$ is a complete order representation, the composition $\beta = \iota \circ \alpha : D_1 \to \mathsf{C}^* ((D_1, \preceq, \mathcal{M}))$ is a complete order map satisfying the (complete) Schwarz inequality.

Assume there is a *-map $\alpha : S \rightarrow S$ which is a complete order map satisfying the Schwarz inequality for all $k \in \mathbb{N}$.

Then since $\iota: \mathcal{S} \to C^*((\mathcal{S}, \preceq, \mathcal{M}))$ is a complete order representation, the composition $\beta = \iota \circ \alpha : D_1 \to \mathsf{C}^* ((D_1, \preceq, \mathcal{M}))$ is a complete order map satisfying the (complete) Schwarz inequality.

The map β is therefore completely positive and we can form the Hilbert module $\mathcal{E}_{C^*(S, \prec, \mathcal{M})}$.

KORK (FRAGE) EL POLO

Furthermore, if the left action of S extends to an action by adjointable maps on the Hilbert module \mathcal{E}_C , and if

$$
I: S \to \mathcal{L}(\mathcal{E}_{C^*((S, \preceq, \mathcal{M}))})
$$

is additionally a complete order representation of the matricially ordered $*$ -semigroup S, the universal property yields a *-representation

$$
\phi:C^*((S,\preceq,\mathcal{M}))\to\mathcal{L}(\mathcal{E}_{C^*((S,\preceq,\mathcal{M}))})
$$

defining a correspondence $\mathcal E$ over the C*-algebra $C^*((S,\preceq,\mathcal M)).$

There is a *-semigroup D_1 for which one can describe an ordering, and matricial ordering, where the steps in this process hold. It is nonunital, and not left cancellative, so existing procedures for forming C*-algebras from semigroups, which seem largely motivated by versions of a 'left regular representation', do not apply.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

There is a *-semigroup D_1 for which one can describe an ordering, and matricial ordering, where the steps in this process hold. It is nonunital, and not left cancellative, so existing procedures for forming C*-algebras from semigroups, which seem largely motivated by versions of a 'left regular representation', do not apply.

The three universal C*-algebras $C_F^*(S)$ for the three families F of contractive *-representations, order representations, and complete order representations are not (canonically) isomorphic.

KID KA KERKER KID KO

There is a *-semigroup D_1 for which one can describe an ordering, and matricial ordering, where the steps in this process hold. It is nonunital, and not left cancellative, so existing procedures for forming C*-algebras from semigroups, which seem largely motivated by versions of a 'left regular representation', do not apply.

The three universal C*-algebras $C_F^*(S)$ for the three families F of contractive *-representations, order representations, and complete order representations are not (canonically) isomorphic.

A relative Cuntz-Pimsner C*-algebra associated with the above C*-correspondence over the C*-algebra $C^*((D_1, \preceq, \mathcal{M}))$ is isomorphic to the universal C^* -algebra $\mathcal P$ generated by a partial isometry.

KORK (FRAGE) EL POLO

There are elementary *-semigroups which are quotients of D_1 which yield basic C*-algebras.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

There are elementary *-semigroups which are quotients of D_1 which yield basic C*-algebras.

For example with S the single element *-semigroup consisting of the identity, and α the only possible map on S, this process yields the universal C*-algebra generated by a unitary. The orderings play no role here.

There are elementary *-semigroups which are quotients of D_1 which yield basic C*-algebras.

For example with S the single element *-semigroup consisting of the identity, and α the only possible map on S, this process yields the universal C*-algebra generated by a unitary. The orderings play no role here.

Let S be the two element unital (unit u) two element *-semigroup $\{u, s\}$ with s a selfadjoint idempotent and α the map sending both elements to u . The above Cuntz-Pimsner algebra over the C*-algebra of this semigroup is the universal C*-algebra generated by an isometry.

KID KA KERKER KID KO

The *-semigroup A is a quotient of A_c . Form the equivalence relation generated by the relation

KORKAR KERKER E VOOR

$$
(n_0, n_1, ..., n_k) \sim (n_0, n_1, ..., n_{i-1} \pm 1 + n_{i+1}, ... n_k)
$$

whenever $n_i = \pm 1$ for $1 \le i \le k - 1$.

The *-semigroup A is a quotient of A_c . Form the equivalence relation generated by the relation

$$
(n_0, n_1, ..., n_k) \sim (n_0, n_1, ..., n_{i-1} \pm 1 + n_{i+1}, ... n_k)
$$

whenever $n_i = \pm 1$ for $1 \le i \le k - 1$.

The map $\alpha : A \rightarrow A$ is defined by $\alpha(n) = (-1)n(1)$. The elements $(-1,1)$ and $(1,-1)$ of \mathcal{A}^{0} are idempotents, and $\alpha(1,-1) = (-1,1).$

KORKAR KERKER E VOOR

The *-semigroup A is a quotient of A_c . Form the equivalence relation generated by the relation

$$
(n_0, n_1, ..., n_k) \sim (n_0, n_1, ..., n_{i-1} \pm 1 + n_{i+1}, ... n_k)
$$

whenever $n_i = \pm 1$ for $1 \le i \le k - 1$.

The map $\alpha : A \rightarrow A$ is defined by $\alpha(n) = (-1)n(1)$. The elements $(-1,1)$ and $(1,-1)$ of \mathcal{A}^{0} are idempotents, and $\alpha(1,-1) = (-1,1).$

The *-semigroup D_1 is the smallest α -closed (*-)subsemigroup of A containing the element $(1, -1)$.

KORKAR KERKER E VOOR