C*-algebras of Matricially Ordered *-Semigroups

Berndt Brenken

COSy 2014

(ロ)、(型)、(E)、(E)、 E) の(の)

Preface

Universal C*-algebras involving an automorphism realized via an implementing unitary, or an endomorphism via an isometry, have played a fundamental role in operator algebras. Such maps preserve algebraic structure.

・ロト・日本・モート モー うへで

Preface

Universal C*-algebras involving an automorphism realized via an implementing unitary, or an endomorphism via an isometry, have played a fundamental role in operator algebras. Such maps preserve algebraic structure.

A map of a C*-algebra defined via an implementing partial isometry does not preserve algebra structure. It is, however, a completely positive *-linear map.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preface

Universal C*-algebras involving an automorphism realized via an implementing unitary, or an endomorphism via an isometry, have played a fundamental role in operator algebras. Such maps preserve algebraic structure.

A map of a C*-algebra defined via an implementing partial isometry does not preserve algebra structure. It is, however, a completely positive *-linear map.

We consider *-semigroups S, matricial partial order orders on S, along with a universal C*-algebra associated with S and a matricial ordering on S.

For a particular example of a matrically ordered *-semigroup S along with complete order map on S, we obtain a C*-correspondence over the associated C*-algebra of S. The complete order map is implemented by a partial isometry in the Cuntz-Pimsner C*-algebra associated with the correspondence.

・ロト・日本・モート モー うへぐ

For a particular example of a matrically ordered *-semigroup S along with complete order map on S, we obtain a C*-correspondence over the associated C*-algebra of S. The complete order map is implemented by a partial isometry in the Cuntz-Pimsner C*-algebra associated with the correspondence.

The resulting Cuntz-Pimsner C*-algebra for this example is the universal C*-algebra \mathcal{P} generated by a partial isometry.

For a particular example of a matrically ordered *-semigroup S along with complete order map on S, we obtain a C*-correspondence over the associated C*-algebra of S. The complete order map is implemented by a partial isometry in the Cuntz-Pimsner C*-algebra associated with the correspondence.

The resulting Cuntz-Pimsner C*-algebra for this example is the universal C*-algebra \mathcal{P} generated by a partial isometry.

It is known that ${\cal P}$ is nonunital, nonexact, residually finite dimensional, and Morita equivalent to the universal C*-algebra generated by a contraction.

A *-semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

A *-semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

・ロト・日本・モート モー うへで

A *-semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples:

Any abelian semigroup (with $a^* = a$)

A *-semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples:

Any abelian semigroup (with $a^* = a$)

A group *G*, or an inverse semigroup *S*, are examples of *-semigroups, where $a^* = a^{-1}$.

A *-semigroup is a semigroup, so a set S with an associative binary operation, along with an involutive antihomomorphism, denoted *.

There may be different involutive *-maps on the same underlying semigroup.

Examples:

Any abelian semigroup (with $a^* = a$)

A group *G*, or an inverse semigroup *S*, are examples of *-semigroups, where $a^* = a^{-1}$.

For *B* a C*-algebra, the contractions (or strict contractions) in *B* viewed as a semigroup under multiplication, with * the usual involution. In particular, for \mathcal{H} a Hilbert space and $B = \mathcal{B}(\mathcal{H})$.

Matricial order

For a semigroup S the set of $k \times k$ matrices with entries in S, $M_k(S)$, does not inherit much algebraic structure through S. However, the *-structure, along with multiplication of specific types of matrices over S is sufficient to provide some context for an order structure.

Matricial order

For a semigroup S the set of $k \times k$ matrices with entries in S, $M_k(S)$, does not inherit much algebraic structure through S. However, the *-structure, along with multiplication of specific types of matrices over S is sufficient to provide some context for an order structure.

For $k \in \mathbb{N}$, let $[n_i]$ denote an element $[n_1, ..., n_k] \in M_{1,k}(S)$, the $1 \times n$ matrices with entries in S.

Then $[n_i]^* \in M_{k,1}(S)$, a $k \times 1$ matrix over S,

Matricial order

For a semigroup S the set of $k \times k$ matrices with entries in S, $M_k(S)$, does not inherit much algebraic structure through S. However, the *-structure, along with multiplication of specific types of matrices over S is sufficient to provide some context for an order structure.

For $k \in \mathbb{N}$, let $[n_i]$ denote an element $[n_1, ..., n_k] \in M_{1,k}(S)$, the $1 \times n$ matrices with entries in S.

Then $[n_i]^* \in M_{k,1}(S)$, a $k \times 1$ matrix over S, and the element $[n_i]^*[n_j] = [n_i^*n_j] \in M_k(S)^{sa}$.

For the case of a C*-algebra B, the sequence of partially ordered sets $M_k(B)^{sa}$ satisfy some basic interconnections among their positive elements.

For the case of a C*-algebra B, the sequence of partially ordered sets $M_k(B)^{sa}$ satisfy some basic interconnections among their positive elements.

For example, if

$$\left(\begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array}\right)$$

is positive in $M_2(B)^{sa}$ then

$$\left(\begin{array}{cccc} a_{1,1} & a_{1,2} & a_{1,2} \\ a_{2,1} & a_{2,2} & a_{2,2} \\ a_{2,1} & a_{2,2} & a_{2,2} \end{array}\right)$$

is also positive in $M_3(B)^{sa}$.

We may describe this property using d-tuples of natural numbers as ordered partitions of k where zero summands are allowed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We may describe this property using d-tuples of natural numbers as ordered partitions of k where zero summands are allowed.

Notation: For $d, k \in \mathbb{N}$ and $d \leq k$, set

$$\mathcal{P}(d,k) = \left\{ (t_1,...,t_d) \in (\mathbb{N}_0)^d \mid \sum_{r=1}^d t_r = k
ight\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We may describe this property using d-tuples of natural numbers as ordered partitions of k where zero summands are allowed.

Notation: For $d, k \in \mathbb{N}$ and $d \leq k$, set

$$\mathcal{P}(d,k) = \left\{ (t_1,...,t_d) \in (\mathbb{N}_0)^d \mid \sum_{r=1}^d t_r = k \right\}.$$

Each $\tau = (t_1, ..., t_d) \in \mathcal{P}(d, k)$ yields a *-map $\iota_{\tau} : M_d(B) \to M_k(B)$. For $[a_{i,j}] \in M_d(B)$ the element $\iota_{\tau}([a_{i,j}]) := [a_{i,j}]_{\tau} \in M_k(B)$ is the matrix obtained using matrix blocks; the i, j block of $[a_{i,j}]_{\tau}$ is the $t_i \times t_j$ matrix with the constant entry $a_{i,j}$.

(日) (同) (三) (三) (三) (○) (○)

The following Lemma shows that the maps ι_{τ} map positive elements to positive elements.

The following Lemma shows that the maps ι_{τ} map positive elements to positive elements.

Lemma For $\tau = (t_1, ..., t_d) \in \mathcal{P}(d, k)$ and $[b_{i,j}] \in M_{r,d}(B)$. There is $[c_{i,j}] \in M_{r,k}(B)$, whose entries appear in $[b_{i,j}]$, such that $\iota_{\tau}([b_{i,j}]^* [b_{i,j}]) = [c_{i,j}]^* [c_{i,j}]$.

Proof.

For $1 \leq i \leq r$ let the $r \times k$ matrix $[c_{i,j}]$ have *i*-th row

$$[b_{i1}, ..., b_{i1}, b_{i2}, ..., b_{i2}, ..., b_{id}, ..., b_{id}]$$

where each element b_{ij} appears repeated t_i consecutive times.

Note that the maps ι_{τ} are defined even if the matrix entries are from a set, so in particular for matrices with entries from a *-semigroup *S*, and although there is no natural 'positivity' for matrices with entries in *S* one can still use partial orderings.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note that the maps ι_{τ} are defined even if the matrix entries are from a set, so in particular for matrices with entries from a *-semigroup *S*, and although there is no natural 'positivity' for matrices with entries in *S* one can still use partial orderings.

Definition

A *-semigroup S is matricially ordered, write (S, \leq, \mathcal{M}) , if there is a sequence of partially ordered sets $(\mathcal{M}_k(S), \leq)$, $\mathcal{M}_k(S) \subseteq M_k(S)^{sa}$ $(k \in \mathbb{N})$, with $\mathcal{M}_1(S) = S^{sa}$, satisfying (for $[n_i] \in M_{1,k}(S)$)

a.
$$[n_i]^*[n_j] = [n_i^*n_j] \in \mathcal{M}_k(S)$$

b. if $[a_{i,j}] \preceq [b_{i,j}]$ in $\mathcal{M}_k(S)$ then $[n_i^*a_{i,j}n_j] \preceq [n_i^*b_{i,j}n_j]$ in $\mathcal{M}_k(S)$
c. the maps $\iota_\tau : \mathcal{M}_d(S) \to \mathcal{M}_k(S)$ are order maps for all
 $\tau \in \mathcal{P}(d, k)$.

The lemma above showed that a C*-algebra B has a matricial order where $\mathcal{M}_k(B)$ is the usual partially ordered set $\mathcal{M}_k(B)^{sa}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The lemma above showed that a C*-algebra B has a matricial order where $\mathcal{M}_k(B)$ is the usual partially ordered set $\mathcal{M}_k(B)^{sa}$.

We may define *-maps $\beta : S \to T$ of matricially ordered *-semigroups S and T that are *complete order maps* - so $\beta_k : \mathcal{M}_k(S) \to \mathcal{M}_k(T)$ is defined, and an order map of partially ordered sets. A completely positive map of C*-algebras is then a complete order map.

A complete order representation of a matricially ordered *-semigroup S into a C*-algebra is a *-homomorphism which is a complete order map.

C*-algebras of S

If *F* is a specified collection of *-representations of *S* in C*-algebras, for example *-representations, contractive *-representations, or complete order *-representations, then the universal C*-algebra of *S* is a C*-algebra $C_F^*(S)$ along with a *-semigroup homomorphism $\iota: S \to C_F^*(S)$ in *F* satisfying the universal property

$$\begin{array}{ccc} S \\ \downarrow \iota & \searrow \gamma & \in F \\ C^*(S) & \pi_\gamma \dashrightarrow & C \end{array}$$

Given $\gamma: S \to C, \gamma \in F$, there is a unique *-homomorphism $\pi_{\gamma} = \pi: C_{F}^{*}(S) \to C$ with $\pi_{\gamma} \circ \iota = \gamma$.

C*-algebras of S

If *F* is a specified collection of *-representations of *S* in C*-algebras, for example *-representations, contractive *-representations, or complete order *-representations, then the universal C*-algebra of *S* is a C*-algebra $C_F^*(S)$ along with a *-semigroup homomorphism $\iota: S \to C_F^*(S)$ in *F* satisfying the universal property

$$\begin{array}{ccc} S \\ \downarrow \iota & \searrow \gamma & \in F \\ C^*(S) & \pi_\gamma \dashrightarrow & C \end{array}$$

Given $\gamma: S \to C, \gamma \in F$, there is a unique *-homomorphism $\pi_{\gamma} = \pi: C_{F}^{*}(S) \to C$ with $\pi_{\gamma} \circ \iota = \gamma$.

For an arbitrary *-semigroup one can also form the universal C*-algebra where F is the collection of contractive *-representations.

Hilbert modules

Definition

Let $\beta: S \to T$ be a *-map of a *-semigroup S to a matricially ordered *-semigroup $(T, \preceq, \mathcal{M})$. The map β_k has the Schwarz property for k, if

 $\beta_k([n_i])^*\beta_k([n_j]) \preceq \beta_k([n_i]^*[n_j])$

in $\mathcal{M}_k(T)$ for $[n_i] \in M_{1,k}(S)$. Here $\beta_k([n_i])^*\beta_k([n_j])$ is the selfadjoint element $[\beta(n_i)^*\beta(n_j)]$ in $\mathcal{M}_k(T)$.

Hilbert modules

Definition

Let $\beta: S \to T$ be a *-map of a *-semigroup S to a matricially ordered *-semigroup (T, \leq, \mathcal{M}) . The map β_k has the Schwarz property for k, if

$$\beta_k([n_i])^*\beta_k([n_j]) \preceq \beta_k([n_i]^*[n_j])$$

in $\mathcal{M}_k(T)$ for $[n_i] \in M_{1,k}(S)$. Here $\beta_k([n_i])^*\beta_k([n_j])$ is the selfadjoint element $[\beta(n_i)^*\beta(n_j)]$ in $\mathcal{M}_k(T)$.

A *-homomorphism $\sigma: S \to T$ of *-semigroups has the Schwarz property (since $\sigma_k([n_i])^* \sigma_k([n_j]) = \sigma_k([n_i]^*[n_j])$ for $[n_i] \in M_{1,k}(S)$).

Note that if $\beta : R \to S$ and $\sigma : S \to T$ are complete order maps, β with the Schwarz property and σ a *-semigroup homomorphism, then $\sigma\beta$ is a complete order map with the Schwarz property.

A (complete) Schwarz map to a C*-algebra C is necessarily completely positive:

Definition

A *-map $\beta : S \to C$ from a *-semigroup S into a C*-algebra C is completely positive if the matrix $[\beta(n_i^*n_j)]$ is positive in $M_k(C)$ for any finite set $n_1, ..., n_k$ in S.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A (complete) Schwarz map to a C*-algebra C is necessarily completely positive:

Definition

A *-map $\beta : S \to C$ from a *-semigroup S into a C*-algebra C is completely positive if the matrix $[\beta(n_i^*n_j)]$ is positive in $M_k(C)$ for any finite set $n_1, ..., n_k$ in S.

Completely positive maps yield Hilbert modules; so for $\beta : S \to C$ completely positive from a *-semigroup S into a C*-algebra C then $X = \mathbb{C}[S] \otimes_{alg} C$ has a C valued (pre) inner product (for $x = s \otimes c, y = t \otimes d$, with $s, t \in S, c, d$ in C

set
$$\langle x, y \rangle = \langle c, \beta(s^*t)d \rangle = c^*\beta(s^*t)d),$$

After moding out by 0 vectors and completing obtain a right Hilbert module $\mathcal{E}_{\mathcal{C}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume there is a *-map $\alpha : S \to S$ which is a complete order map satisfying the Schwarz inequality for all $k \in \mathbb{N}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume there is a *-map $\alpha : S \to S$ which is a complete order map satisfying the Schwarz inequality for all $k \in \mathbb{N}$.

Then since $\iota : S \to C^*((S, \leq, \mathcal{M}))$ is a complete order representation, the composition $\beta = \iota \circ \alpha : D_1 \to C^*((D_1, \leq, \mathcal{M}))$ is a complete order map satisfying the (complete) Schwarz inequality.

Assume there is a *-map $\alpha : S \to S$ which is a complete order map satisfying the Schwarz inequality for all $k \in \mathbb{N}$.

Then since $\iota: S \to C^*((S, \leq, \mathcal{M}))$ is a complete order representation, the composition $\beta = \iota \circ \alpha : D_1 \to C^*((D_1, \leq, \mathcal{M}))$ is a complete order map satisfying the (complete) Schwarz inequality.

The map β is therefore completely positive and we can form the Hilbert module $\mathcal{E}_{C^*(S, \preceq, \mathcal{M})}$.

Furthermore, if the left action of S extends to an action by adjointable maps on the Hilbert module \mathcal{E}_C , and if

$$I: S \to \mathcal{L}(\mathcal{E}_{C^*((S, \preceq, \mathcal{M}))})$$

is additionally a complete order representation of the matricially ordered *-semigroup S, the universal property yields a *-representation

$$\phi: \mathcal{C}^*((\mathcal{S}, \preceq, \mathcal{M})) \to \mathcal{L}(\mathcal{E}_{\mathcal{C}^*((\mathcal{S}, \preceq, \mathcal{M}))})$$

defining a correspondence \mathcal{E} over the C*-algebra $C^*((S, \leq, \mathcal{M}))$.

There is a *-semigroup D_1 for which one can describe an ordering, and matricial ordering, where the steps in this process hold. It is nonunital, and not left cancellative, so existing procedures for forming C*-algebras from semigroups, which seem largely motivated by versions of a 'left regular representation', do not apply.

・ロト・日本・モート モー うへぐ

There is a *-semigroup D_1 for which one can describe an ordering, and matricial ordering, where the steps in this process hold. It is nonunital, and not left cancellative, so existing procedures for forming C*-algebras from semigroups, which seem largely motivated by versions of a 'left regular representation', do not apply.

The three universal C*-algebras $C_F^*(S)$ for the three families F of contractive *-representations, order representations, and complete order representations are not (canonically) isomorphic.

There is a *-semigroup D_1 for which one can describe an ordering, and matricial ordering, where the steps in this process hold. It is nonunital, and not left cancellative, so existing procedures for forming C*-algebras from semigroups, which seem largely motivated by versions of a 'left regular representation', do not apply.

The three universal C*-algebras $C_F^*(S)$ for the three families F of contractive *-representations, order representations, and complete order representations are not (canonically) isomorphic.

A relative Cuntz-Pimsner C*-algebra associated with the above C*-correspondence over the C*-algebra $C^*((D_1, \preceq, \mathcal{M}))$ is isomorphic to the universal C*-algebra \mathcal{P} generated by a partial isometry.

There are elementary *-semigroups which are quotients of D_1 which yield basic C*-algebras.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

There are elementary *-semigroups which are quotients of D_1 which yield basic C*-algebras.

For example with S the single element *-semigroup consisting of the identity, and α the only possible map on S, this process yields the universal C*-algebra generated by a unitary. The orderings play no role here.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are elementary *-semigroups which are quotients of D_1 which yield basic C*-algebras.

For example with S the single element *-semigroup consisting of the identity, and α the only possible map on S, this process yields the universal C*-algebra generated by a unitary. The orderings play no role here.

Let S be the two element unital (unit u) two element *-semigroup $\{u, s\}$ with s a selfadjoint idempotent and α the map sending both elements to u. The above Cuntz-Pimsner algebra over the C*-algebra of this semigroup is the universal C*-algebra generated by an isometry.

The *-semigroup A is a quotient of A_c . Form the equivalence relation generated by the relation

$$(n_0, n_1, ..., n_k) \sim (n_0, n_1, ..., n_{i-1} \pm 1 + n_{i+1}, ..., n_k)$$

whenever $n_i = \pm 1$ for $1 \le i \le k - 1$.

The *-semigroup A is a quotient of A_c . Form the equivalence relation generated by the relation

$$(n_0, n_1, ..., n_k) \sim (n_0, n_1, ..., n_{i-1} \pm 1 + n_{i+1}, ..., n_k)$$

whenever $n_i = \pm 1$ for $1 \le i \le k - 1$.

The map $\alpha : A \to A$ is defined by $\alpha(n) = (-1)n(1)$. The elements (-1, 1) and (1, -1) of A^0 are idempotents, and $\alpha(1, -1)) = (-1, 1)$.

(日) (同) (三) (三) (三) (○) (○)

The *-semigroup A is a quotient of A_c . Form the equivalence relation generated by the relation

$$(n_0, n_1, ..., n_k) \sim (n_0, n_1, ..., n_{i-1} \pm 1 + n_{i+1}, ..., n_k)$$

whenever $n_i = \pm 1$ for $1 \le i \le k - 1$.

The map $\alpha : A \to A$ is defined by $\alpha(n) = (-1)n(1)$. The elements (-1, 1) and (1, -1) of A^0 are idempotents, and $\alpha(1, -1)) = (-1, 1)$.

The *-semigroup D_1 is the smallest α -closed (*-)subsemigroup of A containing the element (1, -1).