A reconstruction theorem for noncommutative *G*-manifolds

Branimir Ćaćić

Department of Mathematics Texas A&M University

Canadian Operator Symposium Fields Institute, Toronto, ON June 27, 2014

Spectral triples

Definition

A spectral triple (\mathcal{A}, H, D) consists of

- a unital *-algebra \mathcal{A} faithfully *-represented on
- *H* a Hilbert space, together with
- D self-adjoint on H with $(D^2 + 1)^{-1/2} \in \mathcal{K}(H)$, $[D, a] \in B(H)$ for all $a \in \mathcal{A}$.

If, in addition $\mathcal{A} + [D, \mathcal{A}] \subset \bigcap_k \text{Dom } \delta^k$ for $\delta(T) := [|D|, T]$, then (\mathcal{A}, H, D) is called *regular*.

Example

If X is a compact oriented Riemannian p-manifold, then

```
(C^{\infty}(X), L^2(X, \wedge T^*_{\mathbb{C}}X), d+d^*)
```

is a *p*-dimensional *commutative* spectral triple.

Theorem (Connes 1996, 2013, cf. Rennie–Várilly 2006)

A spectral triple (\mathcal{A}, H, D) is commutative with dimension $p \in \mathbb{N}$ iff $(\mathcal{A}, H, D) \cong (C^{\infty}(X), L^{2}(X, E), D)$ for

- X a p-dimensional compact oriented Riemannian manifold,
- $E \rightarrow X$ a Hermitian vector bundle,
- D a symmetric Dirac-type operator on E, i.e.,

 $D^2 = -g^{ij}\partial_i\partial_j + lower order terms.$

Definition

Let G be a compact abelian Lie group, e.g., $G = \mathbb{T}^N$. A G-equivariant regular spectral triple is

- a regular spectral triple (\mathcal{A}, H, D) , together with
- a strongly smooth, isometric action $\alpha : G \to \operatorname{Aut}(\mathcal{A})$ and
- a strongly continuous unitary action $U: G \rightarrow U(H)$,

such that

- for all $t \in G$, $U_t L(\cdot) U_t^* = L \circ \alpha_t$,
- for all $t \in G$, $U_t D U_t^* = D$.

Observation

The *G*-action on (\mathcal{A}, H, D) , by Fourier analysis, yields a \widehat{G} -grading of (\mathcal{A}, H, D) , where *D* has degree $\mathbf{0} \in \widehat{G}$.

(4 個) トイヨト イヨト

Theorem (Kleppner 1965)

Let Γ be a discrete abelian group, e.g., $\Gamma = \widehat{G}$ for G a compact abelian Lie group.

• Every U(1)-valued 2-cocycle is cohomologous to a U(1)-valued bicharacter, which in turn is cohomologically trivial iff it is symmetric. Hence,

$$H^{2}(\Gamma, \mathbb{T}) \cong \operatorname{Hom}(\Gamma^{\otimes 2}, U(1)) / \operatorname{Hom}(S^{2}\Gamma, U(1)).$$

• We have a canonical injection $\lambda : H^2(\Gamma, \mathbb{T}) \hookrightarrow \operatorname{Hom}(\wedge^2\Gamma, U(1)), \text{ defined for } \theta \in H^2(\widehat{G}, \mathbb{T}) \text{ by}$ $\lambda_{\theta}(\mathbf{x}, \mathbf{y}) := \sigma(\mathbf{x}, \mathbf{y})^{-1} \sigma(\mathbf{y}, \mathbf{x}), \quad \sigma \in \theta \subset \operatorname{Hom}(\Gamma^{\otimes 2}, U(1)).$

Connes-Landi deformation

Theorem (Yamashita 2010, after Connes–Landi 2001, Connes–Dubois-Violette 2002, cf. Rieffel 1993)

Let (\mathcal{A}, H, D) be a *G*-equivariant regular spectral triple and let $\sigma \in \theta \in H^2(\widehat{G}, \mathbb{T})$. Then $(\mathcal{A}_{\theta}, H, D)$ is a *G*-equivariant regular spectral triple, where:

• \mathcal{A}_{θ} is \mathcal{A} with the multiplication, *-operation

$$a_{\mathbf{x}} \star_{\theta} b_{\mathbf{y}} := \sigma(\mathbf{x}, \mathbf{y}) a_{\mathbf{x}} b_{\mathbf{y}}, \quad (a_{\mathbf{x}})^{*_{\theta}} := \sigma(\mathbf{x}, \mathbf{x}) (a_{\mathbf{x}})^{*};$$

•
$$L_{\sigma} := \pi_{\sigma} \circ L : \mathcal{A}_{\theta} \to B(H)$$
 is defined by

$$L_{\sigma}(a_{\mathbf{x}})\xi_{\mathbf{y}} := \pi_{\sigma}(L(a_{\mathbf{x}}))\xi_{\mathbf{y}} := \sigma(\mathbf{x},\mathbf{y})L(a_{\mathbf{x}})\xi_{\mathbf{y}}.$$

Observation (cf. Venselaar 2013)

Up to *G*-equivariant unitary equivalence, the construction above only depends on the *cohomology class* $\theta \in H^2(\widehat{G}, \mathbb{T})$.

Example

Noncommutative 2-tori $(C^2(\mathbb{T}^2_{\theta}), L^2(\mathbb{T}^2_{\theta})^{\oplus 2}, \not D)$, where $\theta \in \mathbb{T} \cong H^2(\mathbb{Z}^2, \mathbb{T})$.

Example (Connes–Landi 2001; Connes–Dubois-Violette 2002; Landi, Van Suijlekom et al.)

More generally, $(C^{\infty}(X)_{\theta}, L^{2}(X, E), D)$ for

- X a p-dimensional compact oriented Riemannian G-manifold,
- $E \rightarrow X$ a *G*-equivariant Hermitian vector bundle,
- *D* a *G*-invariant symmetric Dirac-type operator on *E*,
- $\theta \in H^2(\widehat{G}, \mathbb{T}).$

These are *concrete noncommutative G-manifolds*, termed *toric noncommutative manifolds* when $G = \mathbb{T}^N$ by Van Suijlekom.

Definition (Ć. 2014, cf. Connes 1996, 2013)

We call a *G*-equivariant regular spectral triple (\mathcal{A}, H, D) a *noncommutative G-manifold* with *metric dimension* $p \in \mathbb{N}$ and *deformation parameter* $\theta \in H^2(\widehat{G}, \mathbb{T})$ if the following conditions hold:

Order zero

 $R := \pi_{\lambda_{\theta}} \circ L : \mathcal{A}^{\mathrm{op}} \to B(H)$ makes *H* into a *A*-bimodule.

Implications of order zero

- \mathcal{A} satisfies the commutation relations $b_{\mathbf{y}}a_{\mathbf{x}} = \lambda_{\theta}(\mathbf{x}, \mathbf{y})a_{\mathbf{x}}b_{\mathbf{y}}$.
- **Q** \mathcal{H}_{∞} is an \mathcal{A} -bimodule.

Order one

For all,
$$a, b \in \mathcal{A}$$
, $[[D, L(a], R(b)] = 0$.

Metric dimension

$$\lambda_k((D^2+1)^{-1/2}) = O(k^{-1/p})$$
 as $k \to +\infty$.

Finiteness and absolute continuity

 $\mathcal{H}_{\infty} := \bigcap_k \operatorname{Dom} |D|^k$ defines a *G*-equivariant finitely generated projective right \mathcal{A} -module, admitting a *G*-equivariant Hermitian metric $(\cdot, \cdot)_{\mathcal{A}}$, such that for all $\xi, \eta \in \mathcal{H}_{\infty}$,

$$\langle \xi, \eta \rangle = \operatorname{Tr}_{\omega} \left(\left(\xi, \eta \right)_{\mathcal{A}} \left(D^2 + 1 \right)^{-p/2} \right)$$

The main definition continued

• Define
$$\epsilon_{\theta} : \mathcal{A}^{\otimes (p+1)} \to \mathcal{A}^{\otimes (p+1)}$$
 by

$$a_0 \otimes a_1 \otimes \cdots \otimes a_p \mapsto \sum_{\pi \in S_p} \left(\prod_{\substack{i < j \\ \pi(i) > \pi(j)}} (-\lambda_\theta(\mathbf{x}_{\pi(i)}, \mathbf{x}_{\pi(j)})) \right) a_0 \otimes a_{\pi(1)} \otimes \cdots \otimes a_{\pi(p)}$$

for
$$a_0 \otimes a_1 \otimes \cdots \otimes a_p$$
 with $a_k \in \mathcal{A}_{\mathbf{x}_k}$.
• Define $L_D : \mathcal{A}^{\otimes (p+1)} \to B(H)$ by

$$a_0 \otimes a_1 \otimes \cdots \otimes a_p \mapsto L(a_0)[D, L(a_1)] \cdots [D, L(a_p)].$$

Orientability

There exists $\mathbf{c} \in (\mathcal{A}^{\otimes (p+1)})^G$ with $\epsilon_{\theta}(\mathbf{c}) = \mathbf{c}$, such that $\chi := L_D(\mathbf{c})$ is self-adjoint and unitary, and

$$\forall a \in \mathcal{A}, \quad \chi a = a\chi, \quad \chi[D,a] = (-1)^{p+1}[D,a]\chi$$

The main definition continued

Implications of orientability

- Since $\epsilon_{\theta}(\mathbf{c}) = \mathbf{c}$, **c** is a Hochschild *p*-cycle.
- One can view c as a G-invariant p-form in the (deformed) Kähler differential calculus on A with relations

$$\begin{split} b_{\mathbf{y}} a_{\mathbf{x}} &= \lambda_{\theta}(\mathbf{x}, \mathbf{y}) a_{\mathbf{x}} b_{\mathbf{y}}, \quad db_{\mathbf{y}} \wedge a_{\mathbf{x}} &= \lambda_{\theta}(\mathbf{x}, \mathbf{y}) a_{\mathbf{x}} \wedge db_{\mathbf{y}}, \\ db_{\mathbf{y}} \wedge da_{\mathbf{x}} &= -\lambda_{\theta}(\mathbf{x}, \mathbf{y}) da_{\mathbf{x}} \wedge db_{\mathbf{y}}. \end{split}$$

Strong regularity

$$\operatorname{End}_{\mathcal{A}^{\operatorname{op}}}(\mathcal{H}_{\infty}) \subset \cap_{k} \operatorname{Dom} \delta^{k}$$
, where $\delta(T) := [|D|, T]$.

Overall observation

The cohomological datum θ serves as the gauge of noncommutativity. In particular, if $\theta = 0$, one gets a *commutative* spectral triple.

(日)

э

Theorem (Ć. 2014, cf. Connes–Landi 2001, Connes–Dubois-Violette 2002)

Let

- (\mathcal{A}, H, D) be a noncommutative *G*-manifold with deformation parameter $\theta \in H^2(\widehat{G}, \mathbb{T})$ and dimension $p \in \mathbb{N}$,
- $\theta' \in H^2(\widehat{G}, \mathbb{T}).$

Then $(\mathcal{A}_{\theta'}, H, D)$ is a noncommutative *G*-manifold with deformation parameter $\theta + \theta'$ and dimension *p*.

Remark

In particular, the construction of the orientation cycle for the deformed noncommutative *G*-manifold from that of the original generalises the construction of orientation cycles for noncommutative tori.

Theorem (Ć. 2014, cf. Connes 2013)

Let (\mathcal{A}, H, D) be a noncommutative *G*-manifold with metric dimension $p \in \mathbb{N}$ and deformation parameter $\theta \in H^2(\widehat{G}, \mathbb{T})$. Then $(\mathcal{A}, H, D) \cong_G (C^{\infty}(X)_{\theta}, L^2(X, E), D)$ for

- X a p-dimensional compact oriented Riemannian G-manifold,
- $E \rightarrow X a G$ -equivariant Hermitian vector bundle,
- D a G-invariant symmetric Dirac-type operator on E.

Proof.

- Deform by $-\theta$ to get something with deformation parameter $\theta \theta = 0$, which is therefore *commutative*.
- Apply Connes's reconstruction theorem for commutative spectral triples [2013]!