Completely bounded isomorphisms and similarity to complete isometries

Raphaël Clouâtre

University of Waterloo

COSy 2014 Fields Institute

・ロト ・回ト ・ヨト ・ヨト

Jordan canonical form of a matrix

Let $T \in M_n(\mathbb{C})$.

イロト イヨト イヨト イヨト

Jordan canonical form of a matrix

Let $T \in M_n(\mathbb{C})$. There exists a polynomial p such that p(T) = 0.

・ロト ・回ト ・ヨト ・ヨト

Let $T \in M_n(\mathbb{C})$. There exists a polynomial p such that p(T) = 0. There exists an invertible matrix X such that XTX^{-1} is in Jordan form.

イロン イロン イヨン イヨン

Let $J \in M_n(\mathbb{C})$ be the usual Jordan cell with eigenvalue 0,

$$J = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & & 0 \end{pmatrix}$$

・ロト ・回ト ・ヨト ・ヨト

Let $J \in M_n(\mathbb{C})$ be the usual Jordan cell with eigenvalue 0,

$$J = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}$$

Consider the Hardy space $H^2 = \{f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$. The unilateral shift S acts on H^2 as (Sf)(z) = zf(z).

Let $J \in M_n(\mathbb{C})$ be the usual Jordan cell with eigenvalue 0,

$$J = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & & 0 \end{pmatrix}$$

Consider the Hardy space $H^2 = \{f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$. The unilateral shift *S* acts on H^2 as (Sf)(z) = zf(z). Let $\theta(z) = z^n$ and consider the space

$$K_{\theta} = (\theta H^2)^{\perp}.$$

Let $J \in M_n(\mathbb{C})$ be the usual Jordan cell with eigenvalue 0,

$$J = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & & 0 \end{pmatrix}$$

Consider the Hardy space $H^2 = \{f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$. The unilateral shift *S* acts on H^2 as (Sf)(z) = zf(z). Let $\theta(z) = z^n$ and consider the space

$$K_{\theta} = (\theta H^2)^{\perp}.$$

Up to unitary equivalence, we have that $J = P_{\kappa_{\theta}}S|\kappa_{\theta}$.

イロン イヨン イヨン イヨン

Let $J \in M_n(\mathbb{C})$ be the usual Jordan cell with eigenvalue 0,

$$J = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & & 0 \end{pmatrix}$$

Consider the Hardy space $H^2 = \{f(z) = \sum_{n=0}^{\infty} a_n z^n : \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$. The unilateral shift *S* acts on H^2 as (Sf)(z) = zf(z). Let $\theta(z) = z^n$ and consider the space

$$K_{\theta} = (\theta H^2)^{\perp}.$$

Up to unitary equivalence, we have that $J = P_{\kappa_{\theta}}S|\kappa_{\theta}$.

Allowing for functions θ with more than one root, we see that any linear operator on a finite dimensional Hilbert space is similar to such a functional model.

・ロト ・回ト ・ヨト ・ヨトー

Functional models in infinite dimension?

メロト メポト メヨト メヨト

Functional models in infinite dimension?

Let $T \in B(\mathcal{H})$ be a completely non-unitary contraction. Define

$$D_T = (I - T^*T)^{1/2}, \mathcal{D}_T = \overline{D_T \mathcal{H}}$$
$$D_{T^*} = (I - TT^*)^{1/2}, \mathcal{D}_{T^*} = \overline{D_{T^*} \mathcal{H}}.$$

The characteristic function of T is the contractive operator-valued holomorphic function

$$\Theta_T: \mathbb{D} \to B(\mathcal{D}_T, \mathcal{D}_{T^*})$$

defined as

$$\Theta_{\mathcal{T}}(\lambda) = (-T + \lambda D_{\mathcal{T}^*} (1 - \lambda T^*)^{-1} D_{\mathcal{T}}) |\mathcal{D}_{\mathcal{T}}.$$

We also have the pointwise defect function

$$\Delta_{\mathcal{T}}:\mathbb{T}\to B(\mathcal{D}_{\mathcal{T}})$$

such that

$$\Delta_{\mathcal{T}}(\zeta) = (I - \Theta_{\mathcal{T}}(\zeta)^* \Theta_{\mathcal{T}}(\zeta))^{1/2}.$$

One check that Δ_T is essentially bounded. Finally, put

$$\begin{split} \mathcal{K}_{\Theta_{\mathcal{T}}} &= (H^2(\mathcal{D}_{\mathcal{T}^*}) \oplus \overline{\Delta_{\mathcal{T}} L^2(\mathcal{D}_{\mathcal{T}})}) \ominus \{\Theta_{\mathcal{T}} u \oplus \Delta_{\mathcal{T}} u : u \in H^2(\mathcal{D}_{\mathcal{T}})\}\\ S_{\Theta_{\mathcal{T}}} &= P_{K_{\Theta_{\mathcal{T}}}}(S \oplus U) | K_{\Theta_{\mathcal{T}}}. \end{split}$$

Then, T is unitarily equivalent to S_{Θ_T} (this whole machinery is known as the Sz.-Nagy–Foias model theory).

By restricting the class of contractions we consider, we can get a much simpler model, which is a much closer analogue of the Jordan form for matrices.

・ロト ・回ト ・ヨト ・ヨト

By restricting the class of contractions we consider, we can get a much simpler model, which is a much closer analogue of the Jordan form for matrices.

Let T be a contraction on a Hilbert space \mathcal{H} . In general, there is no polynomial such that p(T) = 0.

By restricting the class of contractions we consider, we can get a much simpler model, which is a much closer analogue of the Jordan form for matrices.

Let T be a contraction on a Hilbert space \mathcal{H} . In general, there is no polynomial such that p(T) = 0.

Definition

A (completely non-unitary) contraction $T \in B(\mathcal{H})$ is said to be of *class* C_0 if the associated H^{∞} -functional calculus has non-trivial kernel.

イロト イヨト イヨト イヨト

By restricting the class of contractions we consider, we can get a much simpler model, which is a much closer analogue of the Jordan form for matrices.

Let T be a contraction on a Hilbert space \mathcal{H} . In general, there is no polynomial such that p(T) = 0.

Definition

A (completely non-unitary) contraction $T \in B(\mathcal{H})$ is said to be of *class* C_0 if the associated H^{∞} -functional calculus has non-trivial kernel.

Theorem (Sz.-Nagy–Foias, Bercovici,...)

Let $T \in B(\mathcal{H})$ be a C_0 contraction. Then, there exists a unique Jordan operator $J \in B(\mathcal{K})$ which is quasisimilar to T: there exist two bounded linear injective operators $W : \mathcal{H} \to \mathcal{K}, Z : \mathcal{K} \to \mathcal{H}$ with dense range and the property that WT = JW, ZJ = TZ.

By restricting the class of contractions we consider, we can get a much simpler model, which is a much closer analogue of the Jordan form for matrices.

Let T be a contraction on a Hilbert space \mathcal{H} . In general, there is no polynomial such that p(T) = 0.

Definition

A (completely non-unitary) contraction $T \in B(\mathcal{H})$ is said to be of *class* C_0 if the associated H^{∞} -functional calculus has non-trivial kernel.

Theorem (Sz.-Nagy–Foias, Bercovici,...)

Let $T \in B(\mathcal{H})$ be a C_0 contraction. Then, there exists a unique Jordan operator $J \in B(\mathcal{K})$ which is quasisimilar to T: there exist two bounded linear injective operators $W : \mathcal{H} \to \mathcal{K}, Z : \mathcal{K} \to \mathcal{H}$ with dense range and the property that WT = JW, ZJ = TZ.

The relation of quasisimilarity is rather weak...Can this be improved?

Unitary equivalence

• (Arveson 1967, C. 2013) Let T_1 and T_2 be two quasisimilar C_0 contractions (satisfying some mild technical conditions). Assume that there exists a completely isometric algebra isomorphism

$$\varphi: \{T_1\}' \to \{T_2\}'$$

such that $\varphi(T_1) = T_2$. Then, T_1 and T_2 are unitarily equivalent.

・ロト ・回ト ・ヨト ・ヨト

Unitary equivalence

• (Arveson 1967, C. 2013) Let T_1 and T_2 be two quasisimilar C_0 contractions (satisfying some mild technical conditions). Assume that there exists a completely isometric algebra isomorphism

$$\varphi: \{T_1\}' \to \{T_2\}'$$

such that $\varphi(T_1) = T_2$. Then, T_1 and T_2 are unitarily equivalent.

 What about similarity between T₁ and T₂? Can it be obtained under the weaker assumption that φ be only a completely bounded homomorphism with completely bounded inverse?

イロト イポト イヨト イヨト

Unitary equivalence

• (Arveson 1967, C. 2013) Let T_1 and T_2 be two quasisimilar C_0 contractions (satisfying some mild technical conditions). Assume that there exists a completely isometric algebra isomorphism

$$\varphi: \{T_1\}' \to \{T_2\}'$$

such that $\varphi(T_1) = T_2$. Then, T_1 and T_2 are unitarily equivalent.

- What about similarity between T₁ and T₂? Can it be obtained under the weaker assumption that φ be only a completely bounded homomorphism with completely bounded inverse?
- Possible strategy: up to similarity, reduce to the situation addressed by the theorem

イロト イポト イヨト イヨト

Paulsen's similarity theorem

Theorem (Paulsen 1984)

Let \mathcal{A} be a unital operator algebra and $\varphi : \mathcal{A} \to B(\mathcal{H})$ be a unital completely bounded homomorphism. Then, there exists an invertible operator X with

$$||X||^2 = ||X^{-1}||^2 = ||\varphi||_{cb}$$

and such that map

$$a\mapsto Xarphi(a)X^{-1}$$

is completely contractive.

イロト イヨト イヨト イヨト

The problem

What about a two-sided version of Paulsen's theorem?

イロン イロン イヨン イヨン

The problem

What about a two-sided version of Paulsen's theorem?

QUESTION Let \mathcal{A}, \mathcal{B} be unital operator algebras and $\varphi : \mathcal{A} \to \mathcal{B}$ be a unital completely bounded homomorphism with completely bounded inverse ("completely bounded isomorphism"). Can we find two invertible operators X and Y with the property that the map

$$XaX^{-1}\mapsto Yarphi(a)Y^{-1}$$

is completely isometric?

イロト 不得下 イヨト イヨト

Theorem (C., 2014)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B} \subset \mathcal{B}(\mathcal{H}_2)$ be unital operator algebras. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a unital completely bounded isomorphism. Then, for any $\varepsilon > 0$ and any finite set $\mathcal{A}_0 \subset \mathcal{A}$, there exist two invertible operators $X \in \mathcal{B}(\mathcal{H}_1)$ and $Y \in \mathcal{B}(\mathcal{H}_2)$ such that the map

$$XaX^{-1}\mapsto Y\varphi(a)Y^{-1}$$

is a complete contraction and such that

$$\|XaX^{-1}\| \leq (1+\varepsilon)(1+\varepsilon/
ho(\varepsilon)) \|Yarphi(a)Y^{-1}\|$$

for every $a \in A_0$, where $\rho(\varepsilon)$ is a positive constant depending only on ε .

Theorem (C., 2014)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B} \subset \mathcal{B}(\mathcal{H}_2)$ be unital operator algebras. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a unital completely bounded isomorphism. Then, for any $\varepsilon > 0$ and any finite set $\mathcal{A}_0 \subset \mathcal{A}$, there exist two invertible operators $X \in \mathcal{B}(\mathcal{H}_1)$ and $Y \in \mathcal{B}(\mathcal{H}_2)$ such that the map

$$XaX^{-1}\mapsto Yarphi(a)Y^{-1}$$

is a complete contraction and such that

$$\|XaX^{-1}\| \leq (1+\varepsilon)(1+\varepsilon/
ho(\varepsilon)) \|Yarphi(a)Y^{-1}\|$$

for every $a \in A_0$, where $\rho(\varepsilon)$ is a positive constant depending only on ε . Moreover, if the subset A_0 contains no non-trivial quasi-nilpotent element, then we have the sharper inequality

$$\|XaX^{-1}\| \le (1 + \varepsilon / \rho) \|Y\varphi(a)Y^{-1}\|$$

for every $a \in A_0$, where

$$\rho = \inf_{a \in \mathcal{A}_0} r(a).$$

イロン イヨン イヨン イヨン

Theorem (C., 2014)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B} \subset \mathcal{B}(\mathcal{H}_2)$ be unital operator algebras. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a unital completely bounded isomorphism. Then, for any $\varepsilon > 0$ and any finite set $\mathcal{A}_0 \subset \mathcal{A}$, there exist two invertible operators $X \in \mathcal{B}(\mathcal{H}_1)$ and $Y \in \mathcal{B}(\mathcal{H}_2)$ such that the map

$$XaX^{-1}\mapsto Yarphi(a)Y^{-1}$$

is a complete contraction and such that

$$\|XaX^{-1}\| \leq (1+arepsilon)\left(1+arepsilon/
ho(arepsilon)
ight)\|Yarphi(a)Y^{-1}\|$$

for every $a \in A_0$, where $\rho(\varepsilon)$ is a positive constant depending only on ε . Moreover, if the subset A_0 contains no non-trivial quasi-nilpotent element, then we have the sharper inequality

$$\|XaX^{-1}\| \le (1 + \varepsilon / \rho) \|Y\varphi(a)Y^{-1}\|$$

for every $a \in A_0$, where

$$\rho = \inf_{a \in \mathcal{A}_0} r(a).$$

Paulsen's theorem does not give lower bounds.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Theorem (C., 2014)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B} \subset \mathcal{B}(\mathcal{H}_2)$ be unital operator algebras. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a unital completely bounded isomorphism. Then, for any $\varepsilon > 0$ and any finite set $\mathcal{A}_0 \subset \mathcal{A}$, there exist two invertible operators $X \in \mathcal{B}(\mathcal{H}_1)$ and $Y \in \mathcal{B}(\mathcal{H}_2)$ such that the map

$$XaX^{-1}\mapsto Yarphi(a)Y^{-1}$$

is a complete contraction and such that

$$\|XaX^{-1}\| \leq (1+arepsilon)\left(1+arepsilon/
ho(arepsilon)
ight)\|Yarphi(a)Y^{-1}\|$$

for every $a \in A_0$, where $\rho(\varepsilon)$ is a positive constant depending only on ε . Moreover, if the subset A_0 contains no non-trivial quasi-nilpotent element, then we have the sharper inequality

$$\|XaX^{-1}\| \le (1 + \varepsilon / \rho) \|Y\varphi(a)Y^{-1}\|$$

for every $a \in A_0$, where

$$\rho = \inf_{a \in \mathcal{A}_0} r(a).$$

Paulsen's theorem does not give lower bounds. Can we do better?

イロン イヨン イヨン イヨン

Theorem (C., 2014)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B} \subset \mathcal{B}(\mathcal{H}_2)$ be unital operator algebras. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a unital completely bounded isomorphism. Then, for any $\varepsilon > 0$ and any finite set $\mathcal{A}_0 \subset \mathcal{A}$, there exist two invertible operators $X \in \mathcal{B}(\mathcal{H}_1)$ and $Y \in \mathcal{B}(\mathcal{H}_2)$ such that the map

$$XaX^{-1}\mapsto Yarphi(a)Y^{-1}$$

is a complete contraction and such that

$$\|XaX^{-1}\| \leq (1+\varepsilon)(1+\varepsilon/
ho(\varepsilon)) \|Yarphi(a)Y^{-1}\|$$

for every $a \in A_0$, where $\rho(\varepsilon)$ is a positive constant depending only on ε . Moreover, if the subset A_0 contains no non-trivial quasi-nilpotent element, then we have the sharper inequality

$$\|XaX^{-1}\| \le (1 + \varepsilon/\rho) \|Y\varphi(a)Y^{-1}\|$$

for every $a \in A_0$, where

$$\rho = \inf_{a \in \mathcal{A}_0} r(a).$$

Paulsen's theorem does not give lower bounds. Can we do better? Can we get a complete isometry?

Special case

Theorem (C.,2014)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B} \subset \mathcal{B}(\mathcal{H}_2)$ be unital operator algebras. Assume that there exists a unital completely bounded isomorphism $\theta : \mathcal{C} \to \mathcal{A}$ where \mathcal{C} is either a \mathcal{C}^* -algebra or a uniform algebra. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a unital completely bounded isomorphism. Then, there exist two invertible operators $X \in \mathcal{B}(\mathcal{H}_1)$ and $Y \in \mathcal{B}(\mathcal{H}_2)$ such that the map

$$XaX^{-1}\mapsto Y\varphi(a)Y^{-1}$$

is a complete isometry.

▲□→ ▲圖→ ▲温→ ▲温→

The previous theorem shows that we can deal with any algebra that is similar to a C^* -algebra.

・ロト ・回ト ・ヨト ・ヨト

The previous theorem shows that we can deal with any algebra that is similar to a C^* -algebra.

In particular, it covers the case of commutative amenable operator algebras (Marcoux-Popov, 2013).

・ロト ・回ト ・ヨト ・ヨト

The previous theorem shows that we can deal with any algebra that is similar to a C^* -algebra.

In particular, it covers the case of commutative amenable operator algebras (Marcoux-Popov, 2013).

What about general amenable operator algebras?

The previous theorem shows that we can deal with any algebra that is similar to a C^* -algebra.

In particular, it covers the case of commutative amenable operator algebras (Marcoux-Popov, 2013).

What about general amenable operator algebras?

Example (Choi-Farah-Ozawa, 2013)

Let $\mathcal{C} = \ell^{\infty}(\mathbb{N}, M_2(\mathbb{C}))$ and $\mathcal{J} = c_0(\mathbb{N}, M_2(\mathbb{C}))$. Denote by $Q : \mathcal{C} \to \mathcal{C} / \mathcal{J}$ the quotient map. Let Γ be an abelian group and $\pi : \Gamma \to Q(\mathcal{C})$ be a uniformly bounded representation. A clever choice of Γ and π yields that the operator algebra

$$\mathcal{A} = Q^{-1}\left(\overline{ ext{span } \pi(\Gamma)}
ight)$$

is amenable but not similar to a C^* -algebra.

The previous theorem shows that we can deal with any algebra that is similar to a C^* -algebra.

In particular, it covers the case of commutative amenable operator algebras (Marcoux-Popov, 2013).

What about general amenable operator algebras?

Example (Choi-Farah-Ozawa, 2013)

Let $\mathcal{C} = \ell^{\infty}(\mathbb{N}, M_2(\mathbb{C}))$ and $\mathcal{J} = c_0(\mathbb{N}, M_2(\mathbb{C}))$. Denote by $Q : \mathcal{C} \to \mathcal{C} / \mathcal{J}$ the quotient map. Let Γ be an abelian group and $\pi : \Gamma \to Q(\mathcal{C})$ be a uniformly bounded representation. A clever choice of Γ and π yields that the operator algebra

$$\mathcal{A} = Q^{-1}\left(\overline{ ext{span } \pi(\Gamma)}
ight)$$

is amenable but not similar to a C^* -algebra.

We can answer the question in the affirmative for the algebra \mathcal{A} (C.-Marcoux 2014)

イロン イヨン イヨン イヨン

Theorem (C.,2014)

- Let $\theta \in H^{\infty}$ be an inner function.
- (i) The algebra $H^{\infty}/\theta H^{\infty}$ contains no non-trivial quasi-nilpotent elements if and only if θ is a Blaschke product with simple roots.

Theorem (C.,2014)

Let $\theta \in H^{\infty}$ be an inner function.

- (i) The algebra $H^{\infty}/\theta H^{\infty}$ contains no non-trivial quasi-nilpotent elements if and only if θ is a Blaschke product with simple roots.
- (ii) The algebra $H^{\infty}/\theta H^{\infty}$ is a uniform algebra if and only if θ is an automorphism of the disc. In that case, the algebra is isomorphic to \mathbb{C} . In particular, $H^{\infty}/\theta H^{\infty}$ is a C^* -algebra if and only if it is a uniform algebra.

Theorem (C.,2014)

Let $\theta \in H^{\infty}$ be an inner function.

- (i) The algebra $H^{\infty}/\theta H^{\infty}$ contains no non-trivial quasi-nilpotent elements if and only if θ is a Blaschke product with simple roots.
- (ii) The algebra $H^{\infty}/\theta H^{\infty}$ is a uniform algebra if and only if θ is an automorphism of the disc. In that case, the algebra is isomorphic to \mathbb{C} . In particular, $H^{\infty}/\theta H^{\infty}$ is a C^* -algebra if and only if it is a uniform algebra.
- (iii) The following statements are equivalent.

Theorem (C.,2014)

Let $\theta \in H^{\infty}$ be an inner function.

- (i) The algebra $H^{\infty}/\theta H^{\infty}$ contains no non-trivial quasi-nilpotent elements if and only if θ is a Blaschke product with simple roots.
- (ii) The algebra $H^{\infty}/\theta H^{\infty}$ is a uniform algebra if and only if θ is an automorphism of the disc. In that case, the algebra is isomorphic to \mathbb{C} . In particular, $H^{\infty}/\theta H^{\infty}$ is a C^* -algebra if and only if it is a uniform algebra.
- (iii) The following statements are equivalent.
 - (a) There exists a unital completely bounded isomorphism

 $\Phi: H^{\infty}/\theta H^{\infty} \to \mathcal{F}$

for some uniform algebra \mathcal{F} .

Theorem (C.,2014)

Let $\theta \in H^{\infty}$ be an inner function.

- (i) The algebra $H^{\infty}/\theta H^{\infty}$ contains no non-trivial quasi-nilpotent elements if and only if θ is a Blaschke product with simple roots.
- (ii) The algebra $H^{\infty}/\theta H^{\infty}$ is a uniform algebra if and only if θ is an automorphism of the disc. In that case, the algebra is isomorphic to \mathbb{C} . In particular, $H^{\infty}/\theta H^{\infty}$ is a C^* -algebra if and only if it is a uniform algebra.
- (iii) The following statements are equivalent.
 - (a) There exists a unital completely bounded isomorphism

 $\Phi: H^{\infty}/\theta H^{\infty} \to \mathcal{F}$

for some uniform algebra \mathcal{F} .

(b) There exists a unital completely bounded isomorphism

 $\Phi: H^\infty/\theta H^\infty \to \mathcal{C}$

for some unital C^* -algebra C.

Theorem (C.,2014)

Let $\theta \in H^{\infty}$ be an inner function.

- (i) The algebra $H^{\infty}/\theta H^{\infty}$ contains no non-trivial quasi-nilpotent elements if and only if θ is a Blaschke product with simple roots.
- (ii) The algebra $H^{\infty}/\theta H^{\infty}$ is a uniform algebra if and only if θ is an automorphism of the disc. In that case, the algebra is isomorphic to \mathbb{C} . In particular, $H^{\infty}/\theta H^{\infty}$ is a C^* -algebra if and only if it is a uniform algebra.
- (iii) The following statements are equivalent.
 - (a) There exists a unital completely bounded isomorphism

 $\Phi: H^{\infty}/\theta H^{\infty} \to \mathcal{F}$

for some uniform algebra \mathcal{F} .

(b) There exists a unital completely bounded isomorphism

$$\Phi: H^{\infty}/\theta H^{\infty} \to \mathcal{C}$$

for some unital C^* -algebra C.

(c) the function θ is a Blaschke product whose roots $\{\lambda_n\}_n \subset \mathbb{D}$ satisfy the Carleson condition

$$\inf_{n}\left\{\prod_{k\neq n}\left|\frac{\lambda_{k}-\lambda_{n}}{1-\overline{\lambda_{k}}\lambda_{n}}\right|\right\}>0.$$

A counter-example (suggested by Ken Davidson) shows that this stronger version does not hold in general, and answers the original question in the negative.

・ロト ・回ト ・ヨト ・ヨト

Idea behind the counterexample

Consider the operator space $\mathscr{D} \subset M_2(\mathbb{C})$ consisting of elements of the form

$$\left(\begin{array}{cc}z_1 & 0\\ 0 & z_2\end{array}\right)$$

where z_1, z_2 are complex numbers, along with the operator space $\mathscr{R} \subset M_2(\mathbb{C})$ consisting of elements of the form

$$\left(\begin{array}{cc}z_1 & z_2\\ 0 & 0\end{array}\right)$$

where z_1, z_2 are complex numbers.

イロト イヨト イヨト イヨト

Idea behind the counterexample

Consider the operator space $\mathscr{D} \subset M_2(\mathbb{C})$ consisting of elements of the form

$$\left(\begin{array}{cc}z_1 & 0\\ 0 & z_2\end{array}\right)$$

where z_1, z_2 are complex numbers, along with the operator space $\mathscr{R} \subset M_2(\mathbb{C})$ consisting of elements of the form

$$\left(\begin{array}{cc} z_1 & z_2 \\ 0 & 0 \end{array}\right)$$

where z_1, z_2 are complex numbers. The map $\psi : \mathscr{R} \to \mathscr{D}$ defined as

$$\psi \left(\begin{array}{cc} z_1 & z_2 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} z_1 & 0 \\ 0 & z_2 \end{array} \right)$$

is easily seen to be a completely bounded linear isomorphism with completely bounded inverse. Intuitively, it is clear that this cannot be made similar to a complete isometry: $\|\cdot\|_2$ gives rise to Hilbert space structure while $\|\cdot\|_{\infty}$ does not.

イロン イヨン イヨン イヨン

Idea behind the counterexample

Consider the operator space $\mathscr{D} \subset M_2(\mathbb{C})$ consisting of elements of the form

$$\left(\begin{array}{cc}z_1 & 0\\ 0 & z_2\end{array}\right)$$

where z_1, z_2 are complex numbers, along with the operator space $\mathscr{R} \subset M_2(\mathbb{C})$ consisting of elements of the form

$$\left(\begin{array}{cc} z_1 & z_2 \\ 0 & 0 \end{array}\right)$$

where z_1, z_2 are complex numbers. The map $\psi : \mathscr{R} \to \mathscr{D}$ defined as

$$\psi \left(\begin{array}{cc} z_1 & z_2 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} z_1 & 0 \\ 0 & z_2 \end{array} \right)$$

is easily seen to be a completely bounded linear isomorphism with completely bounded inverse. Intuitively, it is clear that this cannot be made similar to a complete isometry: $\|\cdot\|_2$ gives rise to Hilbert space structure while $\|\cdot\|_{\infty}$ does not. Embedding these operator spaces in the upper-right corner of an operator algebra together with some easy but tedious computations yields the desired counter-example.

イロト イヨト イヨト イヨト

Thank you!

▲□→ ▲圖→ ▲温→ ▲温→