Rank Constrained Homotopies

Kaushika De Silva

Department of Mathematics, Purdue University

42nd Canadian Operator Algebras Symposium June 23rd, 2014

ヘロン 人間 とくほ とくほ とう

3

Main Result Motivation

Notation and Statement of the Main Theorem

Notation

- X: Compact Hausdorff space of finite covering dimension.
- $(M_n)_+$: non-negative definite $n \times n$ matrices over \mathbb{C}
- $S(n, k, l) = \{b \in (M_n)_+ | l \le \operatorname{rank}(b) \le k\}$
- $F(X, S(n, k, l)) = \{f \colon X \to S(n, k, l) \colon f \text{ is continuous}\}$

Theorem

For any $n, k, l \in \mathbb{N}$, if $\lfloor \frac{\dim X}{2} \rfloor \leq k - l$, then F(X, S(n, k, l)) is path connected. In particular, $\forall n, k, l \in \mathbb{N}$, $\pi_r(S(n, k, l)) = 0$, whenever $r \leq 2(k - l) + 1$.

・ロト ・ 理 ト ・ ヨ ト ・

Main Result Motivation

Notation and Statement of the Main Theorem

Notation

- X: Compact Hausdorff space of finite covering dimension.
- $(M_n)_+$: non-negative definite $n \times n$ matrices over \mathbb{C}
- $S(n, k, l) = \{b \in (M_n)_+ | l \le \operatorname{rank}(b) \le k\}$
- $F(X, S(n, k, l)) = \{f \colon X \to S(n, k, l) \colon f \text{ is continuous}\}$

Theorem

For any $n, k, l \in \mathbb{N}$, if $\lfloor \frac{\dim X}{2} \rfloor \leq k - l$, then F(X, S(n, k, l)) is path connected. In particular, $\forall n, k, l \in \mathbb{N}$, $\pi_r(S(n, k, l)) = 0$, whenever $r \leq 2(k - l) + 1$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Main Result Motivation

Notation and Statement of the Main Theorem

Notation

- X: Compact Hausdorff space of finite covering dimension.
- $(M_n)_+$: non-negative definite $n \times n$ matrices over \mathbb{C}
- $S(n, k, l) = \{b \in (M_n)_+ | l \le \operatorname{rank}(b) \le k\}$
- $F(X, S(n, k, l)) = \{f \colon X \to S(n, k, l) \colon f \text{ is continuous}\}$

Theorem

For any $n, k, l \in \mathbb{N}$, if $\lfloor \frac{\dim X}{2} \rfloor \leq k - l$, then F(X, S(n, k, l)) is path connected. In particular, $\forall n, k, l \in \mathbb{N}$, $\pi_r(S(n, k, l)) = 0$, whenever $r \leq 2(k - l) + 1$.

イロト 不得 とくほ とくほ とうほ

Main Result Motivation

Notation and Statement of the Main Theorem

Notation

- X: Compact Hausdorff space of finite covering dimension.
- $(M_n)_+$: non-negative definite $n \times n$ matrices over \mathbb{C}

•
$$S(n,k,l) = \{b \in (M_n)_+ | l \le \operatorname{rank}(b) \le k\}$$

• $F(X, S(n, k, l)) = \{f \colon X \to S(n, k, l) \colon f \text{ is continuous}\}$

Theorem

For any $n, k, l \in \mathbb{N}$, if $\lfloor \frac{\dim X}{2} \rfloor \leq k - l$, then F(X, S(n, k, l)) is path connected. In particular, $\forall n, k, l \in \mathbb{N}$, $\pi_r(S(n, k, l)) = 0$, whenever $r \leq 2(k - l) + 1$.

イロト 不得 とくほ とくほ とう

Main Result Motivation

Notation and Statement of the Main Theorem

Notation

- X: Compact Hausdorff space of finite covering dimension.
- $(M_n)_+$: non-negative definite $n \times n$ matrices over \mathbb{C}

•
$$S(n, k, l) = \{b \in (M_n)_+ | l \le \operatorname{rank}(b) \le k\}$$

• $F(X, S(n, k, l)) = \{f \colon X \to S(n, k, l) \colon f \text{ is continuous}\}$

Theorem

For any $n, k, l \in \mathbb{N}$, if $\lfloor \frac{\dim X}{2} \rfloor \leq k - l$, then F(X, S(n, k, l)) is path connected. In particular, $\forall n, k, l \in \mathbb{N}$, $\pi_r(S(n, k, l)) = 0$, whenever $r \leq 2(k - l) + 1$.

ヘロン ヘアン ヘビン ヘビン

Main Resul Motivation

Motivation

- Homotopy properties of the space S(n, k, l) has applications in C*-algebra theory.
- Let A be a unital C*-algebra with $T(A) \neq \emptyset$, where T(A) is the tracial state space of A.
- Any $a \in A_+$, induce a lower semi-continuous affine function ι_a on T(A), given by,

$$\iota_a(\tau) = \lim_n (\tau(a^{1/n}))$$

If K denote the compacts on a separable Hilbert space, ι_a extends to (A ⊗ K)₊ in a natural way.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 Homotopy properties of the space S(n, k, l) has applications in C*-algebra theory.

• Let A be a unital C^* -algebra with $T(A) \neq \emptyset$, where T(A) is the tracial state space of A.

Motivation

Any *a* ∈ *A*₊, induce a lower semi-continuous affine function *ι_a* on *T*(*A*), given by,

$$\iota_a(\tau) = \lim_n (\tau(a^{1/n}))$$

If K denote the compacts on a separable Hilbert space, ι_a extends to (A ⊗ K)₊ in a natural way.

イロト 不得 とくほ とくほ とうほ

Motivation

Main Result Motivation

- Homotopy properties of the space S(n, k, l) has applications in C*-algebra theory.
- Let A be a unital C*-algebra with T(A) ≠ Ø, where T(A) is the tracial state space of A.
- Any $a \in A_+$, induce a lower semi-continuous affine function ι_a on T(A), given by,

$$\iota_{a}(\tau) = \lim_{n} (\tau(a^{1/n}))$$

If K denote the compacts on a separable Hilbert space, ι_a extends to (A ⊗ K)₊ in a natural way.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Main Resul Motivation

Motivation

- Homotopy properties of the space S(n, k, l) has applications in C*-algebra theory.
- Let A be a unital C*-algebra with $T(A) \neq \emptyset$, where T(A) is the tracial state space of A.
- Any $a \in A_+$, induce a lower semi-continuous affine function ι_a on T(A), given by,

$$\iota_a(\tau) = \lim_n (\tau(a^{1/n}))$$

If K denote the compacts on a separable Hilbert space, ι_a extends to (A ⊗ K)₊ in a natural way.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Motivation

Question ?

For a unital, simple C^* -algebra A, is it possible to approximate strictly positive continuous affine functions $(Aff(T(A))_{++})$ by functions of the form ι_a , $a \in (A \otimes K)_+$?

Motivation

- (Andrew Toms, 2009), For (unital, simple) *ASH* algebras with slow dimension growth, the question has a positive answer.
- Following is a key proposition in the proof of the above.

Lemma (Toms)

For any $n, k, l \in \mathbb{N}$, if $4 \dim X \le k - l$, then F(X, S(n, k, l)) is path connected.

・ロット (雪) () () () ()

Motivation

Question ?

For a unital, simple C^* -algebra A, is it possible to approximate strictly positive continuous affine functions $(Aff(T(A))_{++})$ by functions of the form $\iota_a, a \in (A \otimes K)_+$?

Motivation

• (Andrew Toms, 2009), For (unital, simple) ASH algebras with slow dimension growth, the question has a positive answer

Following is a key proposition in the proof of the above.

For any $n, k, l \in \mathbb{N}$, if $4 \dim X \leq k - l$, then F(X, S(n, k, l)) is

・ロット (雪) () () () ()

Motivation

• Question ?

For a unital, simple C^* -algebra A, is it possible to approximate strictly positive continuous affine functions $(Aff(T(A))_{++})$ by functions of the form ι_a , $a \in (A \otimes K)_+$?

Motivation

- (Andrew Toms, 2009), For (unital, simple) ASH algebras with slow dimension growth, the question has a positive answer.
- Following is a key proposition in the proof of the above.

Lemma (Toms)

For any $n, k, l \in \mathbb{N}$, if 4dim $X \leq k - l$, then F(X, S(n, k, l)) is path connected.

ヘロン 人間 とくほ とくほう

Motivation

Question ?

For a unital, simple C^* -algebra A, is it possible to approximate strictly positive continuous affine functions $(Aff(T(A))_{++})$ by functions of the form $\iota_a, a \in (A \otimes K)_+$?

Motivation

- (Andrew Toms, 2009), For (unital, simple) ASH algebras with slow dimension growth, the guestion has a positive answer
- Following is a key proposition in the proof of the above.

Lemma (Toms)

For any $n, k, l \in \mathbb{N}$, if $4 \dim X \leq k - l$, then F(X, S(n, k, l)) is path connected.

イロト イポト イヨト イヨト

Recap from Vector bundle theory

Recall...

- A (complex) vector bundle over X is a triple (E, p, X), where E is a topological space, p: E → X is a continuous map with each fiber p⁻¹(x) = E_x admitting a C-vector space structure.
- Let θ^k(X) = (X × C^k, π, X), where π is the projection onto X. θ^k is called the k-dimensional product bundle.
- $\alpha = (E, p, X)$ is called trivial if $\alpha \cong \theta^k(X)$ for some *k*.

Definition

 $\alpha = (E, p, X)$ is locally trivial if X has an open covering $\{U_{\lambda}\}$ such that $\alpha|_{U_{\lambda}} \cong \theta^{k}(U_{\lambda})$ for each λ .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Recap from Vector bundle theory

Recall...

- A (complex) vector bundle over X is a triple (E, p, X), where E is a topological space, p: E → X is a continuous map with each fiber p⁻¹(x) = E_x admitting a C-vector space structure.
- Let θ^k(X) = (X × C^k, π, X), where π is the projection onto X. θ^k is called the k-dimensional product bundle.
- $\alpha = (E, p, X)$ is called trivial if $\alpha \cong \theta^k(X)$ for some *k*.

Definition

 $\alpha = (E, p, X)$ is locally trivial if X has an open covering $\{U_{\lambda}\}$ such that $\alpha|_{U_{\lambda}} \cong \theta^{k}(U_{\lambda})$ for each λ .

・ロット (雪) () () () ()

Recap from Vector bundle theory

Recall...

- A (complex) vector bundle over X is a triple (E, p, X), where E is a topological space, p: E → X is a continuous map with each fiber p⁻¹(x) = E_x admitting a C-vector space structure.
- Let θ^k(X) = (X × C^k, π, X), where π is the projection onto X. θ^k is called the k-dimensional product bundle.
- $\alpha = (E, p, X)$ is called trivial if $\alpha \cong \theta^k(X)$ for some k.

Definition

 $\alpha = (E, p, X)$ is locally trivial if X has an open covering $\{U_{\lambda}\}$ such that $\alpha|_{U_{\lambda}} \cong \theta^{k}(U_{\lambda})$ for each λ .

イロト 不得 とくほ とくほとう

Recap from Vector bundle theory

Recall...

- A (complex) vector bundle over X is a triple (E, p, X), where E is a topological space, p: E → X is a continuous map with each fiber p⁻¹(x) = E_x admitting a C-vector space structure.
- Let θ^k(X) = (X × C^k, π, X), where π is the projection onto X. θ^k is called the k-dimensional product bundle.
- $\alpha = (E, p, X)$ is called trivial if $\alpha \cong \theta^k(X)$ for some k.

Definition

 $\alpha = (E, p, X)$ is locally trivial if X has an open covering $\{U_{\lambda}\}$ such that $\alpha|_{U_{\lambda}} \cong \theta^{k}(U_{\lambda})$ for each λ .

・ロト ・ 理 ト ・ ヨ ト ・

Stability properties of locally trivial bundles

 Let Bun_k(X) denote the category of all locally trivial (Complex) vector bundles over X, of dimension k.

Theorem

Let X be a (para) compact, Hausdorff and finite dimensional topological space.

- If $\alpha \in \mathbf{Bun}_k(X)$, then there is a trivial vector bundle δ over X with dim $\delta \ge k \lfloor \frac{\dim X}{2} \rfloor$, such that δ is a direct summand of α . i.e. $\alpha = \delta \oplus \eta$, for some bundle η
- Let α, β ∈ Bun_k(X). If k ≥ dimX/2 and α ⊕ γ ≅ β ⊕ γ for some bundle γ over X, then α ≅ β.

くロト (過) (目) (日)

Stability properties of locally trivial bundles

 Let Bun_k(X) denote the category of all locally trivial (Complex) vector bundles over X, of dimension k.

Theorem

Let X be a (para) compact, Hausdorff and finite dimensional topological space.

- If α ∈ Bun_k(X), then there is a trivial vector bundle δ over X with dim δ ≥ k − [dim X/2], such that δ is a direct summand of α. i.e. α = δ ⊕ η, for some bundle η
- Let α, β ∈ Bun_k(X). If k ≥ dimX/2 and α ⊕ γ ≅ β ⊕ γ for some bundle γ over X, then α ≅ β.

ヘロト ヘ戸ト ヘヨト ヘヨト

Stability properties of locally trivial bundles

 Let Bun_k(X) denote the category of all locally trivial (Complex) vector bundles over X, of dimension k.

Theorem

Let X be a (para) compact, Hausdorff and finite dimensional topological space.

- If α ∈ Bun_k(X), then there is a trivial vector bundle δ over X with dim δ ≥ k − [dim X/2], such that δ is a direct summand of α. i.e. α = δ ⊕ η, for some bundle η
- Let α, β ∈ Bun_k(X). If k ≥ dimX/2 and α ⊕ γ ≅ β ⊕ γ for some bundle γ over X, then α ≅ β.

ヘロト ヘアト ヘビト ヘビト

Stability properties of locally trivial bundles

 Let Bun_k(X) denote the category of all locally trivial (Complex) vector bundles over X, of dimension k.

Theorem

Let X be a (para) compact, Hausdorff and finite dimensional topological space.

- If α ∈ Bun_k(X), then there is a trivial vector bundle δ over X with dim δ ≥ k − [dim X/2], such that δ is a direct summand of α. i.e. α = δ ⊕ η, for some bundle η
- Let α, β ∈ Bun_k(X). If k ≥ dimX/2 and α ⊕ γ ≅ β ⊕ γ for some bundle γ over X, then α ≅ β.

イロト イポト イヨト イヨト

Projections and Vector Bundles

Given a projection *p* ∈ *M_n*(*C*(*X*)), there is an associated vector bundle *ϵ*(*p*) = (*E_p*, *π*, *X*), with

 $E(\rho) = \{(x, v) \colon x \in X, v \in \rho(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n.$

- Moreover, every locally trivial vector bundle over *X* can be realized in the above form [R. G. Swan, 1961].
- That is, fixed n ≥ k + dimX/2, for each α ∈ Bun_k(X) there is a projection p_α ∈ M_n(C(X)) such that ε(p_α) ≅ α.
- Moreover, $\alpha \cong \beta$ iff $p_{\alpha} \sim_{M,V} p_{\beta}$.

<ロ> (四) (四) (三) (三) (三)

Projections and Vector Bundles

Given a projection *p* ∈ *M_n*(*C*(*X*)), there is an associated vector bundle *ϵ*(*p*) = (*E_p*, *π*, *X*), with

 $E(p) = \{(x, v) \colon x \in X, v \in p(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n.$

- Moreover, every locally trivial vector bundle over X can be realized in the above form [R. G. Swan, 1961].
- That is, fixed n ≥ k + dimX/2, for each α ∈ Bun_k(X) there is a projection p_α ∈ M_n(C(X)) such that ε(p_α) ≅ α.

• Moreover, $\alpha \cong \beta$ iff $p_{\alpha} \sim_{M,V} p_{\beta}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Projections and Vector Bundles

Given a projection *p* ∈ *M_n*(*C*(*X*)), there is an associated vector bundle *ϵ*(*p*) = (*E_p*, *π*, *X*), with

 $E(p) = \{(x, v) \colon x \in X, v \in p(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n.$

- Moreover, every locally trivial vector bundle over X can be realized in the above form [R. G. Swan, 1961].
- That is, fixed $n \ge k + \frac{\dim X}{2}$, for each $\alpha \in \operatorname{Bun}_k(X)$ there is a projection $p_{\alpha} \in M_n(C(X))$ such that $\epsilon(p_{\alpha}) \cong \alpha$.
- Moreover, $\alpha \cong \beta$ iff $p_{\alpha} \sim_{M,V} p_{\beta}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Projections and Vector Bundles

Given a projection *p* ∈ *M_n*(*C*(*X*)), there is an associated vector bundle *ϵ*(*p*) = (*E_p*, *π*, *X*), with

 $E(p) = \{(x, v) \colon x \in X, v \in p(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n.$

- Moreover, every locally trivial vector bundle over X can be realized in the above form [R. G. Swan, 1961].
- That is, fixed $n \ge k + \frac{\dim X}{2}$, for each $\alpha \in \operatorname{Bun}_k(X)$ there is a projection $p_{\alpha} \in M_n(C(X))$ such that $\epsilon(p_{\alpha}) \cong \alpha$.
- Moreover, $\alpha \cong \beta$ iff $p_{\alpha} \sim_{M.V} p_{\beta}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Outline of the proof

• Given $a, b \in F(X, S(n, k, l))$ with $k - l \ge \lfloor \frac{\dim X}{2} \rfloor$, need to show that $\exists h : [0, 1] \rightarrow F(X, (n, k, l))$ with h(0) = a, h(1) = b.

Lemma (A)

If $k - l \ge \lfloor \frac{\dim X}{2} \rfloor$, then $\forall a \in F(X, S(n, k, l)), \exists p \in M_n(C(X))$ a trivial projection of rank l such that

$$dim[(p(x) + a(x))(\mathbb{C}^n)] \le k, \forall x \in X$$

_emma (B]

Suppose $n \ge l + \frac{\dim X}{2}$ and let $p, q \in M_n(C(X))$ be trivial projections of rank *l*. Then $\exists h : [0,1] \rightarrow Proj(M_n(C(X)))$ with h(0) = p and h(1) = q.

Outline of the proof

• Given $a, b \in F(X, S(n, k, l))$ with $k - l \ge \lfloor \frac{\dim X}{2} \rfloor$, need to show that $\exists h : [0, 1] \rightarrow F(X, (n, k, l))$ with h(0) = a, h(1) = b.

Lemma (A)

If $k - l \ge \lfloor \frac{\dim X}{2} \rfloor$, then $\forall a \in F(X, S(n, k, l)), \exists p \in M_n(C(X))$ a trivial projection of rank l such that

$$dim[(p(x) + a(x))(\mathbb{C}^n)] \le k, \forall x \in X$$

_emma (B)

Suppose $n \ge l + \frac{\dim X}{2}$ and let $p, q \in M_n(C(X))$ be trivial projections of rank l. Then $\exists h : [0, 1] \rightarrow Proj(M_n(C(X)))$ with h(0) = p and h(1) = q.

Outline of the proof

• Given $a, b \in F(X, S(n, k, l))$ with $k - l \ge \lfloor \frac{\dim X}{2} \rfloor$, need to show that $\exists h : [0, 1] \rightarrow F(X, (n, k, l))$ with h(0) = a, h(1) = b.

Lemma (A)

If $k - l \ge \lfloor \frac{\dim X}{2} \rfloor$, then $\forall a \in F(X, S(n, k, l)), \exists p \in M_n(C(X))$ a trivial projection of rank l such that

$$dim[(p(x) + a(x))(\mathbb{C}^n)] \le k, \forall x \in X$$

Lemma (B)

Suppose $n \ge l + \frac{\dim X}{2}$ and let $p, q \in M_n(C(X))$ be trivial projections of rank *l*. Then $\exists h: [0, 1] \rightarrow Proj(M_n(C(X)))$ with h(0) = p and h(1) = q.

Idea of the proof of Lemma A

• Given $a \in F(X, S(n, k, l))$ there associates a vector bundle $\epsilon(a) = (E(a), p, X)$. Here,

 $E(a) = \{(x, v) \colon x \in X, v \in a(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n$

- Then, to get the trivial projection given in the conclusion of Lemma A, we apply stability properties of locally trivial bundles discussed before, to restricted bundles.
- To define the trivial projection globally we will use some extension results due to Chris Phillips and Andrew Toms.

Idea of the proof of Lemma A

• Given $a \in F(X, S(n, k, l))$ there associates a vector bundle $\epsilon(a) = (E(a), p, X)$. Here,

 $E(a) = \{(x, v) \colon x \in X, v \in a(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n$

- However, we can partition X so that the restriction ε(a) to each set in the partition is a locally trivial bundle.
- Then, to get the trivial projection given in the conclusion of Lemma A, we apply stability properties of locally trivial bundles discussed before, to restricted bundles.
- To define the trivial projection globally we will use some extension results due to Chris Phillips and Andrew Toms.

Idea of the proof of Lemma A

• Given $a \in F(X, S(n, k, l))$ there associates a vector bundle $\epsilon(a) = (E(a), p, X)$. Here,

 $E(a) = \{(x, v) \colon x \in X, v \in a(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n$

- However, we can partition X so that the restriction ε(a) to each set in the partition is a locally trivial bundle.
- Then, to get the trivial projection given in the conclusion of Lemma A, we apply stability properties of locally trivial bundles discussed before, to restricted bundles.
- To define the trivial projection globally we will use some extension results due to Chris Phillips and Andrew Toms.

Idea of the proof of Lemma A

• Given $a \in F(X, S(n, k, l))$ there associates a vector bundle $\epsilon(a) = (E(a), p, X)$. Here,

 $E(a) = \{(x, v) \colon x \in X, v \in a(x)(\mathbb{C}^n)\} \subset X \times \mathbb{C}^n$

- Then, to get the trivial projection given in the conclusion of Lemma A, we apply stability properties of locally trivial bundles discussed before, to restricted bundles.
- To define the trivial projection globally we will use some extension results due to Chris Phillips and Andrew Toms.

Idea of the proof of Lemma A

- Let a ∈ F(X, S(n, k, l)) and suppose the rank values of a are n₁ < n₂ < < n_L. For simplicity let ε = ε(a).
- For 1 ≤ i ≤ L, set E_i = {x ∈ X: rank a(x) = n_i}. Then ε|_{Ei} is locally trivial. The support projection of a|_{Ei} is continuous and ε|_{Ei} is the bundle corresponding to this projection.

Definition (Toms)

A positive element $a \in M_n(C(X))_+$ is well-supported, if $\forall 1 \le i \le L, \exists p_i \colon \overline{E}_i \to \operatorname{Proj}(M_n)$ such that for each i,

 $p_i(x) = \lim_n \left(a(x) \right)^{1/n}, \, \forall \, x \in E_i$ and

for each pair (i, l) with $j \ge i$,

Idea of the proof of Lemma A

- Let a ∈ F(X, S(n, k, l)) and suppose the rank values of a are n₁ < n₂ < < n_L. For simplicity let ε = ε(a).
- For 1 ≤ *i* ≤ *L*, set *E_i* = {*x* ∈ *X*: rank *a*(*x*) = *n_i*}. Then *ϵ*|*_{E_i} is locally trivial*. The support projection of *a*|*_{E_i} is continuous* and *ϵ*|*_{E_i} is the bundle corresponding to this projection*.

Definition (Toms)

A positive element $a \in M_n(C(X))_+$ is *well-supported*, if $\forall 1 \le i \le L, \exists p_i \colon \overline{E}_i \to Proj(M_n)$ such that for each *i*,

$$p_i(x) = \lim_n (a(x))^{1/n}, \forall x \in E_i$$
 and

for each pair (i, I) with $j \ge i$,

Idea of the proof of Lemma A

- Let a ∈ F(X, S(n, k, l)) and suppose the rank values of a are n₁ < n₂ < < n_L. For simplicity let ε = ε(a).
- For 1 ≤ *i* ≤ *L*, set *E_i* = {*x* ∈ *X*: rank *a*(*x*) = *n_i*}. Then *ε*|*<sub>E_i* is locally trivial. The support projection of *a*|*<sub>E_i* is continuous and *ε*|*<sub>E_i* is the bundle corresponding to this projection.
 </sub></sub></sub>

Definition (Toms)

A positive element $a \in M_n(C(X))_+$ is *well-supported*, if $\forall 1 \le i \le L, \exists p_i \colon \overline{E}_i \to Proj(M_n)$ such that for each *i*,

$$p_i(x) = \lim_n (a(x))^{1/n}, \forall x \in E_i \text{ and }$$

for each pair (i, I) with $j \ge i$,

Kaushika De Silva

Rank Constrained Homotopies

Introduction and Motivation Classical Vector Bundle Theory Proof of the main Theorem

Continuity of path connectedness of F(X, S(n, k, l))

Idea of the proof of Lemma A

Theorem (Toms)

Let $a \in M_n(C(X))_+$ then there exists a well-supported $b \in M_n(C(X))_+$ such that the set of rank values of b is same as the set of rank values of a and $b \le a$.

Corollary

Given $a \in F(X, S(n, k, l))$, there is $b \in F(X, S(n, k, l))$ with b homotopic to a.

 Corollary reduces the proof of Lemma A to the case of a ∈ F(X, S(n, k, l)) being well- supported.

イロト 不得 とくほ とくほ とうほ

Introduction and Motivation Classical Vector Bundle Theory Proof of the main Theorem

Continuity of path connectedness of F(X, S(n, k, l))

Idea of the proof of Lemma A

Theorem (Toms)

Let $a \in M_n(C(X))_+$ then there exists a well-supported $b \in M_n(C(X))_+$ such that the set of rank values of b is same as the set of rank values of a and $b \le a$.

Corollary

Given $a \in F(X, S(n, k, l))$, there is $b \in F(X, S(n, k, l))$ with b homotopic to a.

 Corollary reduces the proof of Lemma A to the case of a ∈ F(X, S(n, k, l)) being well- supported.

イロト 不得 とくほ とくほ とうほ

Idea of the proof of Lemma A

Theorem (Toms)

Let $a \in M_n(C(X))_+$ then there exists a well-supported $b \in M_n(C(X))_+$ such that the set of rank values of b is same as the set of rank values of a and $b \le a$.

Corollary

Given $a \in F(X, S(n, k, l))$, there is $b \in F(X, S(n, k, l))$ with b homotopic to a.

 Corollary reduces the proof of Lemma A to the case of a ∈ F(X, S(n, k, l)) being well- supported.

イロト 不得 とくほ とくほ とうほ

Proof of Lemma A

- Let a ∈ F(X, S(n, k, l)) be well supported and choose
 E₁, E₂, ...E_L and p₁, p₂, ...p_L be as given by the definition of well-supportedness. Write F_i = E_i.
- Choose a trivial projection $q_1 \in M_n(C(F_1))$, with

rank
$$q_1 = n_1 - \left\lfloor \frac{d}{2} \right\rfloor$$
 and $q_1 \leq p_1$.

• By Corollaries 1 and 2, extend *q* to a trivial projection $q_1 \in M_n(C(X))$ such that $\forall 1 \le i \le L$,

$$q_1(x) \leq p_i(x), \forall x \in F_i.$$

$$q_1^{\perp} M_n(C(X)) q_1^{\perp} \cong M_{n-n_1+\lfloor \frac{d}{2} \rfloor}(C(X))$$

Proof of Lemma A

- Let a ∈ F(X, S(n, k, l)) be well supported and choose
 E₁, E₂, ...E_L and p₁, p₂, ...p_L be as given by the definition of well-supportedness. Write F_i = E_i.
- Choose a trivial projection $q_1 \in M_n(C(F_1))$, with

rank
$$q_1 = n_1 - \left\lfloor \frac{d}{2} \right\rfloor$$
 and $q_1 \leq p_1$.

• By Corollaries 1 and 2, extend *q* to a trivial projection $q_1 \in M_n(C(X))$ such that $\forall 1 \le i \le L$,

 $q_1(x) \leq p_i(x), \forall x \in F_i.$

$$q_1^{\perp} M_n(C(X)) q_1^{\perp} \cong M_{n-n_1+\lfloor \frac{d}{2} \rfloor}(C(X))$$

Proof of Lemma A

- Let a ∈ F(X, S(n, k, l)) be well supported and choose
 E₁, E₂, ...E_L and p₁, p₂, ...p_L be as given by the definition of well-supportedness. Write F_i = E_i.
- Choose a trivial projection $q_1 \in M_n(C(F_1))$, with

rank
$$q_1 = n_1 - \left\lfloor \frac{d}{2} \right\rfloor$$
 and $q_1 \leq p_1$.

• By Corollaries 1 and 2, extend *q* to a trivial projection $q_1 \in M_n(C(X))$ such that $\forall 1 \le i \le L$,

$$q_1(x) \leq p_i(x), \forall x \in F_i.$$

$$q_1^{\perp} M_n(C(X)) q_1^{\perp} \cong M_{n-n_1 + \lfloor \frac{d}{2} \rfloor} (C(X))$$

Proof of Lemma A

- Let a ∈ F(X, S(n, k, l)) be well supported and choose
 E₁, E₂, ...E_L and p₁, p₂, ...p_L be as given by the definition of well-supportedness. Write F_i = E_i.
- Choose a trivial projection $q_1 \in M_n(C(F_1))$, with

rank
$$q_1 = n_1 - \left\lfloor \frac{d}{2} \right\rfloor$$
 and $q_1 \leq p_1$.

• By Corollaries 1 and 2, extend *q* to a trivial projection $q_1 \in M_n(C(X))$ such that $\forall 1 \le i \le L$,

$$q_1(x) \leq p_i(x), \forall x \in F_i.$$

$$q_1^{\perp} M_n(C(X)) q_1^{\perp} \cong M_{n-n_1+\lfloor \frac{d}{2} \rfloor}(C(X))$$

Proof of Lemma B

Lemma (B)

- Sketch of the proof of Lemma B:
 - Lemma holds when X is a CW-complex. (Is a consequnce of the homotopy classification theorem for bundles over CW-complexes)
 - If X is a compact metric space, X is the inverse limit of inverse system {X_α, ψ_{α,β}} of finite CW-complexes and we use a standard approximation argument to prove the result.
 - For a general compact Hausdorff space X, X is the inverse limit of compact metric spaces each of dimension at most the dimension of X.

Proof of Lemma B

Lemma (B)

Suppose $n \ge l + \frac{\dim X}{2}$ and let $p, q \in M_n(C(X))$ be trivial projections of rank *l*. Then $\exists h: [0, 1] \rightarrow Proj(M_n(C(X)))$ with h(0) = p and h(1) = q.

• Sketch of the proof of Lemma B:

- Lemma holds when X is a CW-complex. (Is a consequnce of the homotopy classification theorem for bundles over CW-complexes)
- If X is a compact metric space, X is the inverse limit of inverse system {X_α, ψ_{α,β}} of finite CW-complexes and we use a standard approximation argument to prove the result.
- For a general compact Hausdorff space X, X is the inverse limit of compact metric spaces each of dimension at most the dimension of X.

Proof of Lemma B

Lemma (B)

- Sketch of the proof of Lemma B:
 - Lemma holds when X is a CW-complex. (Is a consequnce of the homotopy classification theorem for bundles over CW-complexes)
 - If X is a compact metric space, X is the inverse limit of inverse system {X_α, ψ_{α,β}} of finite CW-complexes and we use a standard approximation argument to prove the result.
 - For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*.

Proof of Lemma B

Lemma (B)

Suppose $n \ge l + \frac{\dim X}{2}$ and let $p, q \in M_n(C(X))$ be trivial projections of rank *l*. Then $\exists h: [0, 1] \rightarrow Proj(M_n(C(X)))$ with h(0) = p and h(1) = q.

- Sketch of the proof of Lemma B:
 - Lemma holds when X is a CW-complex. (Is a consequnce of the homotopy classification theorem for bundles over CW-complexes)
 - If X is a compact metric space, X is the inverse limit of inverse system {X_α, ψ_{α,β}} of finite CW-complexes and we use a standard approximation argument to prove the result.

• For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*.

Proof of Lemma B

Lemma (B)

- Sketch of the proof of Lemma B:
 - Lemma holds when X is a CW-complex. (Is a consequnce of the homotopy classification theorem for bundles over CW-complexes)
 - If X is a compact metric space, X is the inverse limit of inverse system {X_α, ψ_{α,β}} of finite CW-complexes and we use a standard approximation argument to prove the result.
 - For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*.

Proof of Lemma B

Lemma (B)

- Sketch of the proof of Lemma B:
 - Lemma holds when X is a CW-complex. (Is a consequnce of the homotopy classification theorem for bundles over CW-complexes)
 - If X is a compact metric space, X is the inverse limit of inverse system {X_α, ψ_{α,β}} of finite CW-complexes and we use a standard approximation argument to prove the result.
 - For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*.

Proof of Lemma B

Lemma (B)

- Sketch of the proof of Lemma B:
 - Lemma holds when X is a CW-complex. (Is a consequnce of the homotopy classification theorem for bundles over CW-complexes)
 - If X is a compact metric space, X is the inverse limit of inverse system {X_α, ψ_{α,β}} of finite CW-complexes and we use a standard approximation argument to prove the result.
 - For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*.

Continuity of path connectedness of F(X, (S(n, k, l)))

Theorem

Suppose for each finite simplicial complex *Z* with dim $Z \le d$, the function space F(Z, S(n, k, l)) is path connected. Then F(X, S(n, k, l)) is path connected for any compact Hausdorff space *X* with dim $X \le d$.

Corollary

If $\pi_r(S(n, k, l)) = 0$ for each $r \le d$ then, F(X, S(n, k, l)) is path connected for any compact Hausdorff space X with dim $X \le d$.

 Fixed n, k, l ∈ N with n > k > l find a non vanishing homotopy group of S(n, k, l)?

ヘロア ヘビア ヘビア・

Continuity of path connectedness of F(X, (S(n, k, l)))

Theorem

Suppose for each finite simplicial complex *Z* with dim $Z \le d$, the function space F(Z, S(n, k, l)) is path connected. Then F(X, S(n, k, l)) is path connected for any compact Hausdorff space *X* with dim $X \le d$.

Corollary

If $\pi_r(S(n, k, l)) = 0$ for each $r \le d$ then, F(X, S(n, k, l)) is path connected for any compact Hausdorff space X with dim $X \le d$.

• Fixed $n, k, l \in \mathbb{N}$ with n > k > l find a non vanishing homotopy group of S(n, k, l)?

・ロト ・ 理 ト ・ ヨ ト ・

Continuity of path connectedness of F(X, (S(n, k, l)))

Theorem

Suppose for each finite simplicial complex Z with dim $Z \le d$, the function space F(Z, S(n, k, l)) is path connected. Then F(X, S(n, k, l)) is path connected for any compact Hausdorff space X with dim $X \le d$.

Corollary

If $\pi_r(S(n, k, l)) = 0$ for each $r \le d$ then, F(X, S(n, k, l)) is path connected for any compact Hausdorff space X with dim $X \le d$.

 Fixed n, k, l ∈ N with n > k > l find a non vanishing homotopy group of S(n, k, l)?

ヘロン ヘアン ヘビン ヘビン

Thank you!

Kaushika De Silva Rank Constrained Homotopies

ヘロト 人間 とくほとくほとう

₹ 990

Some required definitions and results...

Theorem (Chris Phillips)

Let X be a compact, Hausdorff space of dimension d, and let $Y \subset X$ be closed. Let $p, q \in M_n(C(X))$ be projections with the property that $rank(q(x)) + \lfloor \frac{d}{2} \rfloor \leq rank(p(x)), \forall x \in X$. Let $s_0 \in M_n(C(Y))$ be such that $s_0^*s_0 = q|_Y$ and $s_0s_0^* \leq p|_Y$. It follows that there is $s \in M_n(C(X))$ such that $s^*s = q$, $ss^* \leq p$, and $s_0 = s \upharpoonright_Y$.

Corollary (1)

Any trivial projection $q \in M_n(C(Y))$ with rank $(q) \le n - \lfloor \frac{d}{2} \rfloor$, extends to a trivial projection in $M_n(C(X))$.

イロト 不得 とくほ とくほう 二日

Some required definitions and results...

Theorem (Chris Phillips)

Let X be a compact, Hausdorff space of dimension d, and let $Y \subset X$ be closed. Let $p, q \in M_n(C(X))$ be projections with the property that $rank(q(x)) + \lfloor \frac{d}{2} \rfloor \leq rank(p(x)), \forall x \in X$. Let $s_0 \in M_n(C(Y))$ be such that $s_0^*s_0 = q|_Y$ and $s_0s_0^* \leq p|_Y$. It follows that there is $s \in M_n(C(X))$ such that $s^*s = q$, $ss^* \leq p$, and $s_0 = s \upharpoonright_Y$.

Corollary (1)

Any trivial projection $q \in M_n(C(Y))$ with rank $(q) \le n - \lfloor \frac{d}{2} \rfloor$, extends to a trivial projection in $M_n(C(X))$.

ヘロン 人間 とくほ とくほ とう

э

Some required definitions and results...

Corollary (2, Andrew Toms)

Let $q \in M_n(C(X))$ and $F_1, ..., F_k$ be a closed cover of X. $\forall 1 \leq i \leq k$, let $p_i \in Proj(M_n(C(F_i)))$ of constant rank n_i . Assume $n_1 < n_2 < \cdots < n_k$ and $p_i(x) \leq p_j(x)$, $\forall i \leq j, x \in F_i \cap F_j$. Say $n_i - rank(q) \geq \lfloor \frac{d}{2} \rfloor$, $\forall 1 \leq i \leq L$. The following hold. If $Y \subset X$ is closed, $q \upharpoonright_Y$ is trivial and,

$$q(y) \leq \bigwedge_{\{i|y\in E_i\}} p_i(y), \, \forall y \in Y,$$

then $q \upharpoonright_Y$ extends to trivial a projection \tilde{q} on X with,

$$\widetilde{q}(x) \leq \bigwedge_{\{i \mid x \in E_i\}} p_i(x), \forall x \in X.$$

Proof of Lemma A

• For each $1 \le i \le L$, let $p_i^{(1)}(x) = p_i(x) - q_1(x), \forall x \in F_i$. Then,

$$p_i^{(1)} \in q_1^{\perp} M_n(C(F_i)) q_1^{\perp} \cong M_{n-n_1+\lfloor \frac{d}{2} \rfloor}(C(F_i))$$

- Choose a trivial projection $q_2 \in M_n(F_2)$ with $q_2 \le p_2^{(1)}$ and rank $q_2 = n_2 - (n_1 - \lfloor \frac{d}{2} \rfloor) - \lfloor \frac{d}{2} \rfloor = n_2 - n_1.$
- Write $X_1 = F_2 \cup F_2 \cup .. \cup F_L$. Extend q_2 to a trivial projection $q_2 \in M_n(C(X_1))$, such that $\forall 2 \le i \le L$,

$$q_2(x) \leq p_i^{(1)}(x), \forall x \in F_i$$

• Extend q_2 to a trivial projection $q_2 \in M_q(C(X))$.

Proof of Lemma A

• For each $1 \le i \le L$, let $p_i^{(1)}(x) = p_i(x) - q_1(x), \forall x \in F_i$. Then,

$$p_i^{(1)} \in q_1^{\perp} M_n(C(F_i)) q_1^{\perp} \cong M_{n-n_1+\lfloor \frac{d}{2} \rfloor}(C(F_i))$$

- Choose a trivial projection $q_2 \in M_n(F_2)$ with $q_2 \le p_2^{(1)}$ and rank $q_2 = n_2 - (n_1 - \lfloor \frac{d}{2} \rfloor) - \lfloor \frac{d}{2} \rfloor = n_2 - n_1$.
- Write $X_1 = F_2 \cup F_2 \cup .. \cup F_L$. Extend q_2 to a trivial projection $q_2 \in M_n(C(X_1))$, such that $\forall 2 \le i \le L$,

• Extend q_2 to a trivial projection $q_2 \in M_q(C(X))$.

Proof of Lemma A

• For each $1 \le i \le L$, let $p_i^{(1)}(x) = p_i(x) - q_1(x), \forall x \in F_i$. Then,

$$p_i^{(1)} \in q_1^{\perp} M_n(C(F_i)) q_1^{\perp} \cong M_{n-n_1+\lfloor \frac{d}{2} \rfloor}(C(F_i))$$

• Choose a trivial projection $q_2 \in M_n(F_2)$ with $q_2 \le p_2^{(1)}$ and

rank
$$q_2 = n_2 - (n_1 - \left\lfloor \frac{d}{2} \right\rfloor) - \left\lfloor \frac{d}{2} \right\rfloor = n_2 - n_1.$$

• Write $X_1 = F_2 \cup F_2 \cup .. \cup F_L$. Extend q_2 to a trivial projection $q_2 \in M_n(C(X_1))$, such that $\forall 2 \le i \le L$, $q_2(x) \le p_i^{(1)}(x), \forall x \in F_i$

• Extend q_2 to a trivial projection $q_2 \in M_q(C(X_2), \dots, X_n)$

Proof of Lemma A

• For each $1 \le i \le L$, let $p_i^{(1)}(x) = p_i(x) - q_1(x), \forall x \in F_i$. Then,

$$p_i^{(1)} \in q_1^{\perp} M_n(C(F_i)) q_1^{\perp} \cong M_{n-n_1+\lfloor \frac{d}{2} \rfloor}(C(F_i))$$

• Choose a trivial projection $q_2 \in M_n(F_2)$ with $q_2 \le p_2^{(1)}$ and

rank
$$q_2 = n_2 - (n_1 - \left\lfloor \frac{d}{2} \right\rfloor) - \left\lfloor \frac{d}{2} \right\rfloor = n_2 - n_1.$$

- Write $X_1 = F_2 \cup F_2 \cup .. \cup F_L$. Extend q_2 to a trivial projection $q_2 \in M_n(C(X_1))$, such that $\forall 2 \le i \le L$, $q_2(x) \le p_i^{(1)}(x), \forall x \in F_i$
- Extend q_2 to a trivial projection $q_2 \in M_n(C(X))$.

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any x ∈ F₂ ∪ F₃ ∪ .. ∪ F_L, Q₂(x)(ℂⁿ) ⊂ a(x)(ℂⁿ).
For any x ∈ F₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

- Repeat the steps to find a trivial projection $Q_L \in M_n(C(X))$ s.t.,
 - rank $(Q_L) = n_L \lfloor \frac{d}{2} \rfloor$ • rank $(a(x) + Q_L(x)) \le n_L \le k, \forall x \in X.$

★ 문 ► ★ 문 ►

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any *x* ∈ *F*₂ ∪ *F*₃ ∪ .. ∪ *F*_L, *Q*₂(*x*)(ℂⁿ) ⊂ *a*(*x*)(ℂⁿ).
For any *x* ∈ *F*₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

- Repeat the steps to find a trivial projection $Q_L \in M_n(C(X))$ s.t.,
 - rank $(Q_L) = n_L \lfloor \frac{d}{2} \rfloor$ • rank $(a(x) + Q_L(x)) \le n_L \le k, \forall x \in$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any x ∈ F₂ ∪ F₃ ∪ .. ∪ F_L, Q₂(x)(ℂⁿ) ⊂ a(x)(ℂⁿ).
For any x ∈ F₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

- Repeat the steps to find a trivial projection $Q_L \in M_n(C(X))$ s.t.,
 - rank $(Q_L) = n_L \lfloor \frac{d}{2} \rfloor$ • rank $(a(x) + Q_L(x)) \le n_L \le 1$

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any x ∈ F₂ ∪ F₃ ∪ .. ∪ F_L, Q₂(x)(ℂⁿ) ⊂ a(x)(ℂⁿ).
For any x ∈ F₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

• Repeat the steps to find a trivial projection $Q_L \in M_n(C(X))$ s.t.,

• rank
$$(Q_L) = n_L - \lfloor \frac{d}{2} \rfloor$$

 $\operatorname{rank}(a(x) + Q_L(x)) \leq n_L \leq k, \, \forall x \in X.$

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any x ∈ F₂ ∪ F₃ ∪ .. ∪ F_L, Q₂(x)(ℂⁿ) ⊂ a(x)(ℂⁿ).
For any x ∈ F₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

• rank
$$(Q_L) = n_L - \lfloor \frac{d}{2} \rfloor$$

• rank $(a(x) + Q_L(x)) \le n_L \le k, \forall x \in X.$

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any x ∈ F₂ ∪ F₃ ∪ .. ∪ F_L, Q₂(x)(ℂⁿ) ⊂ a(x)(ℂⁿ).
For any x ∈ F₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

• rank
$$(Q_L) = n_L - \lfloor \frac{d}{2} \rfloor$$

• rank $(a(x) + Q_L(x)) \le n_L \le k, \forall x \in X.$

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any x ∈ F₂ ∪ F₃ ∪ .. ∪ F_L, Q₂(x)(ℂⁿ) ⊂ a(x)(ℂⁿ).
For any x ∈ F₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

• rank
$$(Q_L) = n_L - \lfloor \frac{d}{2} \rfloor$$

• rank $(a(x) + Q_L(x)) \le n_L \le k, \forall x \in X.$

Proof of Lemma A

• Now, $Q_2 = q_1 \oplus q_2 \in M_n(C(X))$ is a trivial projection with

$$\operatorname{rank}(Q_2) = n_1 - \left\lfloor \frac{d}{2} \right\rfloor + (n_2 - n_1) = n_2 - \left\lfloor \frac{d}{2} \right\rfloor$$

For any x ∈ F₂ ∪ F₃ ∪ .. ∪ F_L, Q₂(x)(ℂⁿ) ⊂ a(x)(ℂⁿ).
For any x ∈ F₁,

$$\operatorname{rank}(a(x) + Q_2(x)) \leq \operatorname{rank} p_1 + \operatorname{rank} q_2$$
$$= n_1 + (n_2 - n_1) = n_2$$

• rank
$$(Q_L) = n_L - \lfloor \frac{d}{2} \rfloor$$

• rank $(a(x) + Q_L(x)) \le n_L \le k, \forall x \in X.$

Proof of Lemma A

• If $n_L = k$, rank $Q_L = k - \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.

• If $n_L < k$,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \left\lfloor \frac{d}{2} \right\rfloor) \ge (k - n_L) + \left\lfloor \frac{d}{2} \right\rfloor$$

• Choose a trivial projection $r \in M_n(C(X))$ with,

•
$$r(x) \leq (1_n - Q_L)(x), \forall x \in X$$

• rank $r = k - n_L$

- Now $p = Q_L + r$ is trivial with rank $p = k \left|\frac{d}{2}\right| \ge l$ and,
 - $\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$ $= n_L + (k n_L) = k$
- This completes the proof of Lemma A.

・ロト ・四ト ・ヨト ・ヨト

Proof of Lemma A

- If $n_L = k$, rank $Q_L = k \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.
- If *n_L* < *k*,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \left\lfloor \frac{d}{2} \right\rfloor) \ge (k - n_L) + \left\lfloor \frac{d}{2} \right\rfloor$$

• Choose a trivial projection $r \in M_n(C(X))$ with,

• $r(x) \leq (1_n - Q_L)(x), \forall x \in X$

 \circ rank $r = k - n_L$

• Now $p = Q_L + r$ is trivial with rank $p = k - \left|\frac{d}{2}\right| \ge l$ and,

 $\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$ $= n_L + (k - n_L) = k$

This completes the proof of Lemma A.

・ロト ・回ト ・ヨト ・ヨト

Proof of Lemma A

- If $n_L = k$, rank $Q_L = k \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.
- If $n_L < k$,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \lfloor \frac{d}{2} \rfloor) \ge (k - n_L) + \lfloor \frac{d}{2} \rfloor$$

• Choose a trivial projection $r \in M_n(C(X))$ with,

•
$$r(x) \leq (1_n - Q_L)(x), \forall x \in X$$

• rank $r = k - n_L$.

- Now $p = Q_L + r$ is trivial with rank $p = k \left|\frac{d}{2}\right| \ge l$ and,
 - $\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$ $= n_L + (k n_L) = k$
- This completes the proof of Lemma A.

ヘロア ヘビア ヘビア・

Proof of Lemma A

- If $n_L = k$, rank $Q_L = k \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.
- If *n_L* < *k*,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \lfloor \frac{d}{2} \rfloor) \ge (k - n_L) + \lfloor \frac{d}{2} \rfloor$$

- Choose a trivial projection r ∈ M_n(C(X)) with,
 r(x) ≤ (1_n Q_l)(x), ∀x ∈ X
- Now $p = Q_L + r$ is trivial with rank $p = k \left\lfloor \frac{d}{2} \right\rfloor \ge l$ and,
 - $\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$ $= n_L + (k n_L) = k$
- This completes the proof of Lemma A.

・ロン ・回 と ・ ヨ と ・ ヨ と

Proof of Lemma A

- If $n_L = k$, rank $Q_L = k \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.
- If *n_L* < *k*,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \lfloor \frac{d}{2} \rfloor) \ge (k - n_L) + \lfloor \frac{d}{2} \rfloor$$

- Choose a trivial projection r ∈ M_n(C(X)) with,
 r(x) ≤ (1_n Q_l)(x), ∀x ∈ X
- Now $p = Q_L + r$ is trivial with rank $p = k \left\lfloor \frac{d}{2} \right\rfloor \ge l$ and,
 - $\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$ $= n_L + (k n_L) = k$
- This completes the proof of Lemma A.

・ロン ・回 と ・ ヨ と ・ ヨ と

Proof of Lemma A

- If $n_L = k$, rank $Q_L = k \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.
- If *n_L* < *k*,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \lfloor \frac{d}{2} \rfloor) \ge (k - n_L) + \lfloor \frac{d}{2} \rfloor$$

• Choose a trivial projection $r \in M_n(C(X))$ with,

•
$$r(x) \leq (1_n - Q_L)(x), \forall x \in X$$

• rank
$$r = k - n_L$$
.

• Now $p = Q_L + r$ is trivial with rank $p = k - \lfloor \frac{d}{2} \rfloor \ge l$ and,

 $\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$ $= n_L + (k - n_L) = k$

• This completes the proof of Lemma A.

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof of Lemma A

- If $n_L = k$, rank $Q_L = k \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.
- If *n_L* < *k*,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \lfloor \frac{d}{2} \rfloor) \ge (k - n_L) + \lfloor \frac{d}{2} \rfloor$$

- Choose a trivial projection $r \in M_n(C(X))$ with,
 - $r(x) \leq (1_n Q_L)(x), \forall x \in X$
 - rank $r = k n_L$.
- Now $p = Q_L + r$ is trivial with rank $p = k \lfloor \frac{d}{2} \rfloor \ge l$ and,

$$\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$$
$$= n_L + (k - n_L) = k$$

This completes the proof of Lemma A.

ヘロト 人間ト 人団ト 人団ト

Proof of Lemma A

- If $n_L = k$, rank $Q_L = k \lfloor \frac{d}{2} \rfloor \ge l$. Setting $p = Q_L$ completes the proof of the Lemma.
- If $n_L < k$,

$$\operatorname{rank}(1_n - Q_L) = n - (n_L - \left\lfloor \frac{d}{2} \right\rfloor) \ge (k - n_L) + \left\lfloor \frac{d}{2} \right\rfloor$$

- Choose a trivial projection $r \in M_n(C(X))$ with,
 - $r(x) \leq (1_n Q_L)(x), \forall x \in X$
 - rank $r = k n_L$.
- Now $p = Q_L + r$ is trivial with rank $p = k \lfloor \frac{d}{2} \rfloor \ge l$ and,

$$\operatorname{rank}(a(x) + p(x)) \leq \operatorname{rank}(a(x) + Q_L(x)) + \operatorname{rank}(r(x))$$
$$= n_L + (k - n_L) = k$$

This completes the proof of Lemma A.

・ロット (雪) (日) (日)

Homotopy Classification of Vector bundles

V_k(ℂⁿ) = {(*v*₁, *v*₂, ... *v_k*): *v_i* ∈ ℂⁿ and < *v_i*|*v_j* >= δ_{*i*,*j*}}.
 The complex Grassmann variety, *G_k*(ℂⁿ), is given by *G_k*(ℂⁿ) = *V_k*(ℂⁿ)/ ~,

- We have the natural inclusion, G_k(ℂⁿ) ⊂ G_k(ℂⁿ⁺¹), induced by ℂⁿ ⊂ ℂⁿ⁺¹. Set G_k(ℂ[∞]) = ⋃ G_k(ℂⁿ).
- Let $\gamma_k^n = (E, \pi, G_k(\mathbb{C}^n))$, where $E = \{(V, v) \in G_k(\mathbb{C}^n) \times \mathbb{C}^n : v \in V\}$, and π is the canonical projection. Then, γ_k^n is a locally trivial vector bundle over $G_k(\mathbb{C}^n)$. Again, $\gamma_k^n \subset \gamma_k^{n+1}$. The resulting direct limit, $\gamma_k = \bigcup_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} \gamma_k^n$ determine a vector bundle over $G_k(\mathbb{C}^\infty)$ of dimension k

Homotopy Classification of Vector bundles

- $V_k(\mathbb{C}^n) = \{(v_1, v_2, ... v_k) : v_i \in \mathbb{C}^n \text{ and } < v_i | v_j >= \delta_{i,j} \}.$
- The complex Grassmann variety, $G_k(\mathbb{C}^n)$, is given by

$$G_k(\mathbb{C}^n) = V_k(\mathbb{C}^n)/\sim,$$

- We have the natural inclusion, G_k(ℂⁿ) ⊂ G_k(ℂⁿ⁺¹), induced by ℂⁿ ⊂ ℂⁿ⁺¹. Set G_k(ℂ[∞]) = ⋃ G_k(ℂⁿ).
- Let $\gamma_k^n = (E, \pi, G_k(\mathbb{C}^n))$, where $E = \{(V, v) \in G_k(\mathbb{C}^n) \times \mathbb{C}^n : v \in V\}$, and π is the canonical projection. Then, γ_k^n is a locally trivial vector bundle over $G_k(\mathbb{C}^n)$. Again, $\gamma_k^n \subset \gamma_k^{n+1}$. The resulting direct limit, $\gamma_k = \bigcup_{n \in \mathbb{N}} \gamma_k^n$ determine a vector bundle over $G_k(\mathbb{C}^\infty)$ of dimension k

Homotopy Classification of Vector bundles

- $V_k(\mathbb{C}^n) = \{(v_1, v_2, ... v_k) : v_i \in \mathbb{C}^n \text{ and } < v_i | v_j >= \delta_{i,j} \}.$
- The complex Grassmann variety, $G_k(\mathbb{C}^n)$, is given by

$$G_k(\mathbb{C}^n) = V_k(\mathbb{C}^n)/\sim,$$

- We have the natural inclusion, G_k(ℂⁿ) ⊂ G_k(ℂⁿ⁺¹), induced by ℂⁿ ⊂ ℂⁿ⁺¹. Set G_k(ℂ[∞]) = ⋃_{n∈ℕ} G_k(ℂⁿ).
- Let $\gamma_k^n = (E, \pi, G_k(\mathbb{C}^n))$, where $E = \{(V, v) \in G_k(\mathbb{C}^n) \times \mathbb{C}^n : v \in V\}$, and π is the canonical projection. Then, γ_k^n is a locally trivial vector bundle over $G_k(\mathbb{C}^n)$. Again, $\gamma_k^n \subset \gamma_k^{n+1}$. The resulting direct limit, $\gamma_k = \bigcup_{n \in \mathbb{N}} \gamma_k^n$ determine a vector bundle over $G_k(\mathbb{C}^\infty)$ of dimension k

Homotopy Classification of Vector bundles

- $V_k(\mathbb{C}^n) = \{(v_1, v_2, ... v_k) : v_i \in \mathbb{C}^n \text{ and } < v_i | v_j >= \delta_{i,j} \}.$
- The complex Grassmann variety, $G_k(\mathbb{C}^n)$, is given by

$$G_k(\mathbb{C}^n) = V_k(\mathbb{C}^n)/\sim,$$

- We have the natural inclusion, G_k(ℂⁿ) ⊂ G_k(ℂⁿ⁺¹), induced by ℂⁿ ⊂ ℂⁿ⁺¹. Set G_k(ℂ[∞]) = ⋃_{n∈ℕ} G_k(ℂⁿ).
- Let $\gamma_k^n = (E, \pi, G_k(\mathbb{C}^n))$, where $E = \{(V, v) \in G_k(\mathbb{C}^n) \times \mathbb{C}^n : v \in V\}$, and π is the canonical projection. Then, γ_k^n is a locally trivial vector bundle over $G_k(\mathbb{C}^n)$. Again, $\gamma_k^n \subset \gamma_k^{n+1}$. The resulting direct limit, $\gamma_k = \bigcup_{n \in \mathbb{N}} \gamma_k^n$ determine a vector bundle over $G_k(\mathbb{C}^\infty)$ of dimension k

Homotopy Classification of Vector bundles

Let f: Y → X be a continuous and α = (E, p, X)
Let f^{*}(α) = (E(f^{*}(α)), π, Y), with

 $E(f^*(\alpha)) = \{(w, y) \in E \times Y \colon f(y) = p(w)\}$

and π = restriction of the canonical projection.

• $f^*(\alpha)$ is called the pullback of α to Y via f.

Theorem (Homotopy Classification of Vector bundles)

The function that maps each homotopy class $[f] : X \to G_k(\mathbb{C}^{\infty})$ to the isomorphism class of $f^*(\gamma_k)$, is a bijection.

Homotopy Classification of Vector bundles

Let *f*: *Y* → *X* be a continuous and *α* = (*E*, *p*, *X*)
 Let *f*^{*}(*α*) = (*E*(*f*^{*}(*α*)), *π*, *Y*), with

 $\boldsymbol{E}(\boldsymbol{f}^*(\alpha)) = \{(\boldsymbol{w}, \boldsymbol{y}) \in \boldsymbol{E} \times \boldsymbol{Y} \colon \boldsymbol{f}(\boldsymbol{y}) = \boldsymbol{p}(\boldsymbol{w})\}$

and π = restriction of the canonical projection.

• $f^*(\alpha)$ is called the pullback of α to Y via f.

Theorem (Homotopy Classification of Vector bundles)

The function that maps each homotopy class $[f] : X \to G_k(\mathbb{C}^{\infty})$ to the isomorphism class of $f^*(\gamma_k)$, is a bijection.

Homotopy Classification of Vector bundles

Let *f*: *Y* → *X* be a continuous and *α* = (*E*, *p*, *X*)
 Let *f*^{*}(*α*) = (*E*(*f*^{*}(*α*)), *π*, *Y*), with

 $\boldsymbol{E}(\boldsymbol{f}^*(\alpha)) = \{(\boldsymbol{w},\boldsymbol{y}) \in \boldsymbol{E} \times \boldsymbol{Y} \colon \boldsymbol{f}(\boldsymbol{y}) = \boldsymbol{p}(\boldsymbol{w})\}$

and π = restriction of the canonical projection.

• $f^*(\alpha)$ is called the pullback of α to Y via f.

Theorem (Homotopy Classification of Vector bundles)

The function that maps each homotopy class $[f] : X \to G_k(\mathbb{C}^\infty)$ to the isomorphism class of $f^*(\gamma_k)$, is a bijection.

Homotopy Classification of Vector bundles

Let *f*: *Y* → *X* be a continuous and *α* = (*E*, *p*, *X*)
 Let *f*^{*}(*α*) = (*E*(*f*^{*}(*α*)), *π*, *Y*), with

 $\boldsymbol{E}(\boldsymbol{f}^*(\alpha)) = \{(\boldsymbol{w}, \boldsymbol{y}) \in \boldsymbol{E} \times \boldsymbol{Y} \colon \boldsymbol{f}(\boldsymbol{y}) = \boldsymbol{p}(\boldsymbol{w})\}$

and π = restriction of the canonical projection.

• $f^*(\alpha)$ is called the pullback of α to Y via f.

Theorem (Homotopy Classification of Vector bundles)

The function that maps each homotopy class $[f] : X \to G_k(\mathbb{C}^\infty)$ to the isomorphism class of $f^*(\gamma_k)$, is a bijection.

Homotopy Classification of Vector bundles

Let *f*: *Y* → *X* be a continuous and *α* = (*E*, *p*, *X*)
 Let *f*^{*}(*α*) = (*E*(*f*^{*}(*α*)), *π*, *Y*), with

 $\boldsymbol{E}(\boldsymbol{f}^*(\alpha)) = \{(\boldsymbol{w},\boldsymbol{y}) \in \boldsymbol{E} \times \boldsymbol{Y} \colon \boldsymbol{f}(\boldsymbol{y}) = \boldsymbol{p}(\boldsymbol{w})\}$

and π = restriction of the canonical projection.

• $f^*(\alpha)$ is called the pullback of α to Y via f.

Theorem (Homotopy Classification of Vector bundles)

The function that maps each homotopy class $[f] : X \to G_k(\mathbb{C}^\infty)$ to the isomorphism class of $f^*(\gamma_k)$, is a bijection.

Proof of Lemma B

- Union of all ψ^T_α(M_n(C(X_α))) is a dense subalgebra of M_n(C(X)).
- Fixed a trivial projection p ∈ M_n(C(X_α)) of rank I, choose α and a projection p_α ∈ M_n(C(X)) with ||p − ψ^T_α(p_α)|| < 1.
- p is homotopic to $\psi_{\alpha}^{T}(p_{\alpha})$. Hence $\psi_{\alpha}^{T}(p_{\alpha})$ is also trivial.
- Moreover, this reduces the Lemma to the case p = ψ^T_α(p_α) and q = ψ^T_α(q_α).
- Write $Y_{\alpha} = \psi_{\alpha}(X) \subset X_{\alpha}$. Since $\psi_{\alpha}^{T}(p_{\alpha})$ is trivial, $p_{\alpha}|_{Y_{\alpha}} \in M_{n}(C(Y_{\alpha}))$ is trivial.
- As Y_{α} is closed, by Corollary (1), there is a trivial projection $\tilde{p}_{\alpha} \in M_n(C(X_{\alpha}))$ which extends $p_{\alpha}|_{Y_{\alpha}}$.

Proof of Lemma B

- Union of all ψ^T_α(M_n(C(X_α))) is a dense subalgebra of M_n(C(X)).
- Fixed a trivial projection *p* ∈ *M_n*(*C*(*X_α*)) of rank *I*, choose *α* and a projection *p_α* ∈ *M_n*(*C*(*X*)) with ||*p* − ψ^T_α(*p_α*)|| < 1.
- p is homotopic to $\psi_{\alpha}^{T}(p_{\alpha})$. Hence $\psi_{\alpha}^{T}(p_{\alpha})$ is also trivial.
- Moreover, this reduces the Lemma to the case p = ψ^T_α(p_α) and q = ψ^T_α(q_α).
- Write $Y_{\alpha} = \psi_{\alpha}(X) \subset X_{\alpha}$. Since $\psi_{\alpha}^{T}(p_{\alpha})$ is trivial, $p_{\alpha}|_{Y_{\alpha}} \in M_{n}(C(Y_{\alpha}))$ is trivial.
- As Y_{α} is closed, by Corollary (1), there is a trivial projection $\tilde{p}_{\alpha} \in M_n(C(X_{\alpha}))$ which extends $p_{\alpha}|_{Y_{\alpha}}$.

Proof of Lemma B

- Union of all ψ^T_α(M_n(C(X_α))) is a dense subalgebra of M_n(C(X)).
- Fixed a trivial projection *p* ∈ *M_n*(*C*(*X_α*)) of rank *I*, choose *α* and a projection *p_α* ∈ *M_n*(*C*(*X*)) with ||*p* − ψ^T_α(*p_α*)|| < 1.
- p is homotopic to $\psi_{\alpha}^{T}(p_{\alpha})$. Hence $\psi_{\alpha}^{T}(p_{\alpha})$ is also trivial.
- Moreover, this reduces the Lemma to the case p = ψ^T_α(p_α) and q = ψ^T_α(q_α).
- Write $Y_{\alpha} = \psi_{\alpha}(X) \subset X_{\alpha}$. Since $\psi_{\alpha}^{T}(p_{\alpha})$ is trivial, $p_{\alpha}|_{Y_{\alpha}} \in M_{n}(C(Y_{\alpha}))$ is trivial.
- As Y_{α} is closed, by Corollary (1), there is a trivial projection $\tilde{p}_{\alpha} \in M_n(C(X_{\alpha}))$ which extends $p_{\alpha}|_{Y_{\alpha}}$.

Proof of Lemma B

- Union of all ψ^T_α(M_n(C(X_α))) is a dense subalgebra of M_n(C(X)).
- Fixed a trivial projection *p* ∈ *M_n*(*C*(*X_α*)) of rank *I*, choose *α* and a projection *p_α* ∈ *M_n*(*C*(*X*)) with ||*p* − ψ^T_α(*p_α*)|| < 1.
- p is homotopic to $\psi_{\alpha}^{T}(p_{\alpha})$. Hence $\psi_{\alpha}^{T}(p_{\alpha})$ is also trivial.
- Moreover, this reduces the Lemma to the case p = ψ^T_α(p_α) and q = ψ^T_α(q_α).
- Write $Y_{\alpha} = \psi_{\alpha}(X) \subset X_{\alpha}$. Since $\psi_{\alpha}^{T}(p_{\alpha})$ is trivial, $p_{\alpha}|_{Y_{\alpha}} \in M_{n}(C(Y_{\alpha}))$ is trivial.
- As Y_{α} is closed, by Corollary (1), there is a trivial projection $\tilde{p}_{\alpha} \in M_n(C(X_{\alpha}))$ which extends $p_{\alpha}|_{Y_{\alpha}}$.

Proof of Lemma B

- Union of all ψ^T_α(M_n(C(X_α))) is a dense subalgebra of M_n(C(X)).
- Fixed a trivial projection *p* ∈ *M_n*(*C*(*X_α*)) of rank *I*, choose *α* and a projection *p_α* ∈ *M_n*(*C*(*X*)) with ||*p* − ψ^T_α(*p_α*)|| < 1.
- p is homotopic to $\psi_{\alpha}^{T}(p_{\alpha})$. Hence $\psi_{\alpha}^{T}(p_{\alpha})$ is also trivial.
- Moreover, this reduces the Lemma to the case p = ψ^T_α(p_α) and q = ψ^T_α(q_α).
- Write $Y_{\alpha} = \psi_{\alpha}(X) \subset X_{\alpha}$. Since $\psi_{\alpha}^{T}(p_{\alpha})$ is trivial, $p_{\alpha}|_{Y_{\alpha}} \in M_{n}(C(Y_{\alpha}))$ is trivial.
- As Y_{α} is closed, by Corollary (1), there is a trivial projection $\tilde{p}_{\alpha} \in M_n(C(X_{\alpha}))$ which extends $p_{\alpha}|_{Y_{\alpha}}$.

Proof of Lemma B

- Union of all ψ^T_α(M_n(C(X_α))) is a dense subalgebra of M_n(C(X)).
- Fixed a trivial projection *p* ∈ *M_n*(*C*(*X_α*)) of rank *I*, choose *α* and a projection *p_α* ∈ *M_n*(*C*(*X*)) with ||*p* − ψ^T_α(*p_α*)|| < 1.
- p is homotopic to $\psi_{\alpha}^{T}(p_{\alpha})$. Hence $\psi_{\alpha}^{T}(p_{\alpha})$ is also trivial.
- Moreover, this reduces the Lemma to the case p = ψ^T_α(p_α) and q = ψ^T_α(q_α).
- Write $Y_{\alpha} = \psi_{\alpha}(X) \subset X_{\alpha}$. Since $\psi_{\alpha}^{T}(p_{\alpha})$ is trivial, $p_{\alpha}|_{Y_{\alpha}} \in M_{n}(C(Y_{\alpha}))$ is trivial.
- As Y_{α} is closed, by Corollary (1), there is a trivial projection $\tilde{p}_{\alpha} \in M_n(C(X_{\alpha}))$ which extends $p_{\alpha}|_{Y_{\alpha}}$.

Proof of Lemma B

- May assume, $p = \psi_{\alpha}^{T}(\tilde{p}_{\alpha}), q = \psi_{\alpha}^{T}(\tilde{q}_{\alpha})$, where $\tilde{p}_{\alpha}, (\tilde{q}_{\alpha}) \in M_{n}(C(X_{\alpha}))$ are trivial projections of rank *I*.
- By the homotopy classification of locally trivial vector bundles over *CW*-complexes, there is a projection valued path *H* in $M_n(C(X_\alpha))$ connecting \tilde{p}_α and \tilde{q}_α .
- Taking $h = H \circ \psi_{\alpha}$ completes the proof for compact metric spaces.
- For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*. The conclusion now follows from a exact similar argument as before.

イロン 不良 とくほう 不良 とうほ

Proof of Lemma B

- May assume, $p = \psi_{\alpha}^{T}(\tilde{p}_{\alpha}), q = \psi_{\alpha}^{T}(\tilde{q}_{\alpha})$, where $\tilde{p}_{\alpha}, (\tilde{q}_{\alpha}) \in M_{n}(C(X_{\alpha}))$ are trivial projections of rank *I*.
- By the homotopy classification of locally trivial vector bundles over *CW*-complexes, there is a projection valued path *H* in *M_n*(*C*(*X_α*)) connecting *p
 _α* and *q
 _α*.
- Taking h = H ∘ ψ_α completes the proof for compact metric spaces.
- For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*. The conclusion now follows from a exact similar argument as before.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proof of Lemma B

- May assume, $p = \psi_{\alpha}^{T}(\tilde{p}_{\alpha}), q = \psi_{\alpha}^{T}(\tilde{q}_{\alpha})$, where $\tilde{p}_{\alpha}, (\tilde{q}_{\alpha}) \in M_{n}(C(X_{\alpha}))$ are trivial projections of rank *I*.
- By the homotopy classification of locally trivial vector bundles over *CW*-complexes, there is a projection valued path *H* in *M_n*(*C*(*X_α*)) connecting *p
 _α* and *q
 _α*.
- Taking h = H ∘ ψ_α completes the proof for compact metric spaces.
- For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*. The conclusion now follows from a exact similar argument as before.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proof of Lemma B

- May assume, $p = \psi_{\alpha}^{T}(\tilde{p}_{\alpha}), q = \psi_{\alpha}^{T}(\tilde{q}_{\alpha})$, where $\tilde{p}_{\alpha}, (\tilde{q}_{\alpha}) \in M_{n}(C(X_{\alpha}))$ are trivial projections of rank *I*.
- By the homotopy classification of locally trivial vector bundles over *CW*-complexes, there is a projection valued path *H* in *M_n*(*C*(*X_α*)) connecting *p
 _α* and *q
 _α*.
- Taking h = H ∘ ψ_α completes the proof for compact metric spaces.
- For a general compact Hausdorff space *X*, *X* is the inverse limit of compact metric spaces each of dimension at most the dimension of *X*. The conclusion now follows from a exact similar argument as before.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ