Cartan MASAs and Exact Sequences of Inverse Semigroups

Adam H. Fuller (University of Nebraska - Lincoln) joint work with Allan P. Donsig and David R. Pitts

COSY 2014, Field's Institute, Toronto

Let $\mathcal M$ be a von Neumann algebra. A maximal abelian subalgebra (MASA) $\mathcal D$ in $\mathcal M$ is a *Cartan MASA* if

- the unitaries U ∈ M such that UDU* ⊆ D span a weak-* dense subset in M;
- there is a normal, faithful conditional expectation $E: \mathcal{M} \to \mathcal{D}$. We will call the pair $(\mathcal{M}, \mathcal{D})$ a *Cartan pair*.

What Feldman & Moore did

Feldman and Moore (1977) explored Cartan pairs $(\mathcal{M}, \mathcal{D})$ where \mathcal{M}_* is separable and $\mathcal{D} = L^{\infty}(X, \mu)$. They showed:

• there is a measurable equivalence relation R on X with countable equivalence classes and a 2-cocycle σ on R s.t.

$$\mathcal{M} \simeq \mathbf{M}(R, \sigma)$$
 and $\mathcal{D} \simeq \mathbf{A}(R, \sigma)$,

where $\mathbf{M}(R, \sigma)$ are "functions on R" and $\mathbf{A}(R, \sigma)$ are the "functions" supported on diag. $\{(x, x) : x \in X\}$;

2 every sep. acting pair $(\mathcal{M}, \mathcal{D})$ arises this way.

What Feldman & Moore did

Feldman and Moore (1977) explored Cartan pairs $(\mathcal{M}, \mathcal{D})$ where \mathcal{M}_* is separable and $\mathcal{D} = L^{\infty}(X, \mu)$. They showed:

• there is a measurable equivalence relation R on X with countable equivalence classes and a 2-cocycle σ on R s.t.

$$\mathcal{M} \simeq \mathbf{M}(R, \sigma)$$
 and $\mathcal{D} \simeq \mathbf{A}(R, \sigma)$,

where $\mathbf{M}(R, \sigma)$ are "functions on R" and $\mathbf{A}(R, \sigma)$ are the "functions" supported on diag. $\{(x, x) : x \in X\}$;

2 every sep. acting pair $(\mathcal{M}, \mathcal{D})$ arises this way.

Feldman and Moore's work is great, and has had a great impact, but has issues:

- Feldman-Moore philosophy is point-based (measure theoretic);
- Feldman-Moore needs equivalence relations with countable equivalence classes and \mathcal{M}_* separable.

Our Objective: Give an alternative approach using algebraic rather than measure theoretic tools which

- conceptually simpler;
- applies to the non-separably acting case.

A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique "inverse" element s^{\dagger} such that

$$ss^{\dagger}s = s$$
 and $s^{\dagger}ss^{\dagger} = s^{\dagger}$.

We denote the idempotents in an inverse semigroup S by $\mathcal{E}(S)$. The idempotents form an abelian semigroup. A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique "inverse" element s^{\dagger} such that

$$ss^{\dagger}s = s$$
 and $s^{\dagger}ss^{\dagger} = s^{\dagger}$.

We denote the idempotents in an inverse semigroup S by $\mathcal{E}(S)$. The idempotents form an abelian semigroup.

An inverse semigroup S has a natural partial order defined by

 $s \leq t$ if and only if s = te

for some idempotent $e \in \mathcal{E}(S)$.

Let S and P be inverse semigroups. An *idempotent separating* extension of S by P is an inverse semigroup G with

$$P \xrightarrow{\iota} G \xrightarrow{q} S$$

and

- *ι* is an injective homomorphism;
- q is a surjective homomorphism;
- $q(g) \in \mathcal{E}(S)$ if and only if $g = \iota(p)$ for some $p \in P$.

Note that $\mathcal{E}(P) \cong \mathcal{E}(G) \cong \mathcal{E}(S)$.

Definition

Two extensions

of S by P are *equivalent* if there is an isomorphism $\alpha: G_1 \to G_2$ such that the diagram commutes

$$P \xrightarrow{\iota_1} G_1 \xrightarrow{q_1} S$$

$$\| \qquad \alpha \downarrow \qquad \|$$

$$P \xrightarrow{\iota_2} G_2 \xrightarrow{q_2} S.$$

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair. Let

 $G = \{ v \in \mathcal{M} \text{ a partial isometry: } v\mathcal{D}v^* \subseteq \mathcal{D} \text{ and } v^*\mathcal{D}v \subseteq \mathcal{D} \}.$

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair. Let

 $G = \{ v \in \mathcal{M} \text{ a partial isometry: } v\mathcal{D}v^* \subseteq \mathcal{D} \text{ and } v^*\mathcal{D}v \subseteq \mathcal{D} \}.$

Let

 $P = \{ \text{ partial isometries in } \mathcal{D} \}.$

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair. Let

 $G = \{ v \in \mathcal{M} \text{ a partial isometry} \colon v\mathcal{D}v^* \subseteq \mathcal{D} \text{ and } v^*\mathcal{D}v \subseteq \mathcal{D} \}.$

Let

 $P = \{ \text{ partial isometries in } \mathcal{D} \}.$

Let μ be the equivalence relation (Munn equivalence) on G given by

 $v \sim w$ if and only if $vev^* = wew^*$ for all projections $e \in \mathcal{D}$.

Let $S = G/\mu$. Then S is an inverse semigroup and G is an idempotent separating extension of S by P.

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair. Let

 $G = \{ v \in \mathcal{M} \text{ a partial isometry: } v\mathcal{D}v^* \subseteq \mathcal{D} \text{ and } v^*\mathcal{D}v \subseteq \mathcal{D} \}.$

Let

 $P = \{ \text{ partial isometries in } \mathcal{D} \}.$

Let μ be the equivalence relation (Munn equivalence) on ${\it G}$ given by

 $v \sim w$ if and only if $vev^* = wew^*$ for all projections $e \in \mathcal{D}$.

Let $S = G/\mu$. Then S is an inverse semigroup and G is an idempotent separating extension of S by P.

Definition

We call

$$P \hookrightarrow G \to S$$

the extension associated to $(\mathcal{M}, \mathcal{D})$.

Theorem

Let $(\mathcal{M}_1, \mathcal{D}_1)$ and (M_2, \mathcal{D}_2) be two Cartan pairs with associated extensions

$$P_i \hookrightarrow G_i \to S_i$$

for i = 1, 2. Suppose there is a normal isomorphism $\theta \colon \mathcal{M}_1 \to \mathcal{M}_2$ such $\theta(\mathcal{D}_1) = \mathcal{D}_2$. Then the two associated extensions are equivalent.

Theorem

Let $(\mathcal{M}_1, \mathcal{D}_1)$ and (M_2, \mathcal{D}_2) be two Cartan pairs with associated extensions

$$P_i \hookrightarrow G_i \to S_i$$

for i = 1, 2. Suppose there is a normal isomorphism $\theta \colon \mathcal{M}_1 \to \mathcal{M}_2$ such $\theta(\mathcal{D}_1) = \mathcal{D}_2$. Then the two associated extensions are equivalent.

It was shown by Laush (1975) that there is one-to-one correspondence between extensions of S by P and the second cohomology group $H^2(S, P)$.

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair, with associated extension $P \to G \to S$. Then S has the following properties

- **(**) *S* is *fundamental*: $\mathcal{E}(S)$ is maximal abelian in *S*;
- \$\mathcal{E}(S)\$ is a hyperstonean boolean algebra, i.e. the idempotents are the projection lattice of an abelian W*-algebra;
- \bigcirc S is a meet semilattice under the natural partial order on S;
- **4** for every pairwise orthogonal family $\mathcal{F} \subseteq S$, $\bigvee \mathcal{F}$ exists in S.
- \bigcirc S contains 1 and 0.

Definition

An inverse semigroup S, satisfying the conditions above is called a *Cartan inverse monoid*.

Algebras associated to Cartan Inverse Monoids

From now on, let S be a Cartan inverse monoid. Let \widehat{S} be the set of characters on S:

$$f: S \to \{0,1\}$$
 such that $f(s \wedge t) = f(s)f(t)$.

For each $s \in S$ let

$$G_s := \{f \in \widehat{S} : f(s) = 1\}.$$

The sets G_s form a basis for a locally compact topology on \widehat{S} . We are interested in two function algebras:

$$\mathcal{D} := C(\widehat{\mathcal{E}(S)})$$

 $\mathcal{Z} := C_b(\widehat{S})$

Algebras associated to Cartan Inverse Monoids

From now on, let S be a Cartan inverse monoid. Let \hat{S} be the set of characters on S:

$$f \colon S \to \{0,1\}$$
 such that $f(s \wedge t) = f(s)f(t)$.

For each $s \in S$ let

$$G_{s} := \{f \in \widehat{S} : f(s) = 1\}.$$

The sets G_s form a basis for a locally compact topology on \widehat{S} . We are interested in two function algebras:

$$\mathcal{D} := C(\widehat{\mathcal{E}(S)})$$

 $\mathcal{Z} := C_b(\widehat{S})$

One can describe \mathcal{D} and \mathcal{Z} in a universal manner: \mathcal{D} is the universal algebra for \wedge -representations of $\mathcal{E}(S)$; \mathcal{Z} is the multiplier algebra of the universal algebra for \wedge -representations of S.

Let
$$\mathcal{D} := C(\widehat{\mathcal{E}(S)})$$
. Let

P := partial isometries in \mathcal{D} .

Let G be any idempotent-separating extension of S by P. **Goal:** Construct a Cartan pair $(\mathcal{M}, \mathcal{D})$ with associated extension $P \hookrightarrow G \to S$. Let G be an idempotent-separating extension of S by P. As a set,

$${\mathcal G}=\{(s,h)\colon s\in S,\,\,h\in P,\,\,s^\dagger s=h^\dagger h\}.$$

We can thus view an element (s, h) in G as function on \widehat{S} with support on $G_{s^{\dagger}s}$, taking the values of h transposed to have support on G_s .

Thus we view the elements of G as being in $\mathcal{Z} = C_b(\widehat{S})$.

Let ψ be a faithful, semifinite weight on \mathcal{D} . Then ψ extends to a faithful semifinite weight on \mathcal{Z} such that $\psi(G_{s^{\dagger}s}) = \psi(G_s)$.

Let ψ be a faithful, semifinite weight on \mathcal{D} . Then ψ extends to a faithful semifinite weight on \mathcal{Z} such that $\psi(G_{s^{\dagger}s}) = \psi(G_s)$. Let (H_{ψ}, π_{ψ}) be the GNS-constriction from ψ . There is a dense subset $\mathfrak{n} \subseteq \mathcal{Z}$ and map $\eta : \mathfrak{n} \to H_{\psi}$, with dense image. Let ψ be a faithful, semifinite weight on \mathcal{D} . Then ψ extends to a faithful semifinite weight on \mathcal{Z} such that $\psi(G_{s^{\dagger}s}) = \psi(G_s)$. Let (H_{ψ}, π_{ψ}) be the GNS-constriction from ψ . There is a dense subset $\mathfrak{n} \subseteq \mathcal{Z}$ and map $\eta \colon \mathfrak{n} \to H_{\psi}$, with dense image. Define a representation of λ of G on H_{ψ} by

$$\lambda(\mathbf{v})\eta(\mathbf{w})=\eta(\mathbf{v}\mathbf{w}).$$

for $v \in G$ and $w \in G \cap \mathfrak{n}$. λ extends to a representation of G on all of H_{ψ} by partial isometries.

Let $\mathcal{M} = \lambda(G)''$, and $\mathcal{D} = \lambda(\mathcal{E}(S))''$. Then $(\mathcal{M}, \mathcal{D})$ is a Cartan pair such that

- **()** The pair $(\mathcal{M}, \mathcal{D})$ is independent of choice of weight ψ on \mathcal{D} ;
- ② The conditional expectation $E: M \to D$ extends the map $E(\lambda((s,h)) = \lambda((s \land 1, h|_{s \land 1})).$
- $\textbf{ I he extension associated to } (\mathcal{M}, \mathcal{D}) \text{ is }$

$$P \hookrightarrow G \to S$$

(the extension we started with).

Theorem (Feldman-Moore; Donsig-F-Pitts)

- If S is a Cartan inverse monoid and P → G → S is an extension of S by P := p.i.(C*(E(S)), then the extension determines a Cartan pair (M, D) which is unique up to isomorphism. Equivalent extensions determine isomorphic Cartan pairs.
- Every Cartan pair (M, D) determines uniquely an extension of a Cartan inverse semigroup S by P, P → G ^q→ S.