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Example

Hilbert space H = L2(T), fix basis {hn := 1√
2π

eint}n∈Z.

Consider B(L2(T)).

• self-adjoint unbounded operator D = 1
i

d
dt (so D maps hn to n ·hn)

• unitary operator u the adjoint of the bilateral shift (maps hn to hn+1).

Consider the path t 7→ D + t ·1.
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Example (cont’d)

On the previous slide, we defined D = 1
i

d
dt (so hn 7→ n ·hn for n ∈ Z) and

denoted by u the adjoint of the bilateral shift (hn 7→ hn+1 for n ∈ Z).

Let D0 = D and Dt = D0 + t ·1.
Then D1 = u∗Du;
in general, Dt takes hn to (n + t)hn.

From the picture,
spectral flow({Dt}) = 1.
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spectral flow in B(H ): defined for paths of self-adjoint Fredholm operators (either
bounded or unbounded).
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Spectral flow in von Neumann algebras: mise-en-scène

B(H ) N with a semifinite, faithful, normal trace τ

compact operators K (H ) τ-compact operators, KN
(the norm closed ideal generated by finite trace projections)

Calkin algebra generalized Calkin algebra N /KN
Fredholm operators Breuer-Fredholm operators

(operators which are invertible modulo the τ-compacts)
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Definitions of Spectral Flow:
Bounded Operators

Definition (Phillips, 1997)

Suppose {Ft} is a path of self-adjoint Breuer-Fredholm operators. Let
Pt = χ[0,∞)(Ft ). Then π(Pt ) is continuous, so we can find indices i0, i1, . . . in such that
‖π(Pt1 )−π(Pt2 )‖< 1 for all t1, t2 ∈ [ik , ik+1]. This ensures that Ptik

Ptik+1
is a

Breuer-Fredholm operator when considered as an operator between Ptik+1
H and

Ptik
H and we can define

sf({Ft}) = ∑ ind(Ptik
Ptik+1

).
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Definitions of Spectral Flow:
Unbounded Operators

• gap continuous unbounded operators

The Cayley map
D 7→ (D− i)(D + i)−1

allows us to change a gap-
continuous path of unbounded op-
erators to a path of unitary opera-
tors.

−1
0
1

real axis

imaginary axis

1−1

−i

i

Definition (Wahl, 2008)

Apply a normalization function Ξ to Dt (warning: Ξ(Dt ) is bounded, but t 7→ Ξ(Dt ) is
not continuous), and let Ut = eπi(Ξ(Dt )+1). Define

sf({Dt}) = winding number({Ut}) =
1

2πi

∫ 1

0
τ(U−1

t
d
dt (Ut −1))dt.
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Context

D - unbounded self-adjoint Breuer-Fredholm operator with (1 + D2)−1 ∈KN and
u ∈N - unitary such that [D,u] is bounded
Let P = χ[0,∞](D) (the projection onto the non-negative spectral subspace of D).

The PuP is a Breuer-Fredholm operator and ind(PuP) = sf(D,uDu∗).

This is connected to the pairing between (odd) K-theory and K-homology.

In certain conditions, there are integral formulas for spectral flow. Proving that such a
formula calculates spectral flow is a non-trivial proposition, though worth the effort, as
having the integral formula allows for different kinds of algebraic manipulation (e.g. the
proof of the Local Index Theorem given by Carey, Phillips, Rennie and Sukochev,
2006).
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Properties of spectral flow

Concatenation:

ρ
ξ

sf(ρ∗ξ) = sf(ρ) + sf(ξ)

Homotopy:

ρ

ξ

sf(ρ) = sf(ξ)

NOTE: can change the homotopy requirement so that ρ and ξ do not have the same
endpoints, but the endpoints are invertible operators and remain invertible throughout
the homotopy.
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Characterization of Spectral Flow (type I∞ factor)

CF sa - unbounded self-adjoint Fredholm operators (necessarily closed and
densely-defined)

Theorem (Lesch, 2005)

Let µ : Ω(CF sa,(CF sa)×)→ Z be a map which satisfies the concatenation and
homotopy property (as suggested by the previous slide). Suppose in addition that the
following property holds:

’Normalization’ property: Fix T0 ∈ (Fsa,∗)× with σ(T0) = {±1}. Suppose that there
exists a rank one projection P ∈ B(H ) such that (1−P)T0(1−P) ∈ B(P⊥H ) is
invertible and such that

µ({t⊕P⊥T0P⊥}t∈[− 1
2 ,

1
2 ]) = 1.

Then µ = sf.

Overview of proof: Use the gaps in the spectrum to break up the path in such a way
that the ’action’ is happening on a finite-dimensional corner. Appeal to the result for
finite-dimensional matrices to get the result.
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Characterization of Spectral Flow (type II factor)
Setting: N is a factor (i.e. the center is trivial)

Theorem

N - type II factor
Ω(BF sa,BF ×sa) - paths of (bounded) Breuer-Fredholm self-adjoint operators with
invertible endpoints
Suppose µ : Ω(BF sa,BF ×sa)→ R is a map which satisfies the following three
properties

• homotopy: if ξ,ρ : Ω(BF sa,BF ×sa) and ξ,ρ are homotopic (with endpoints not
necessarily fixed, but remaining invertible) then µ(ξ) = µ(ρ).

• concatenation: if ξ,ρ ∈Ω(BF sa,BF ×sa) with ρ(1) = ξ(0) then
µ(ρ∗ξ) = µ(ρ) + µ(ξ).

• normalization: there exists a finite-trace non-zero projection P0 ∈N such that if
Q,R are projections with Q ≤ P0 and R ≤ 1−Q then

µ({ t⊕1⊕−1︸ ︷︷ ︸
∈QH⊕RH⊕(Q+R)⊥H

}t∈[−1,1]) = τ(Q).

Then µ calculates spectral flow for paths in Ω(BF sa,BF ×sa).
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Cayley map revisited

Recall the Cayley map
κ : D 7→ (D− i)(D + i)−1.

−1
0
1

real axis

imaginary axis

1−1

−i

i

Applying the Cayley map to unbounded self-adjoint Breuer-Fredholm operators, we
get unitaries U such that 1 + U is Breuer-Fredholm, and 1 is not an eigenvalue of U.

Denote by
Uκ the unitaries in the image of the Cayley transform (applied to the unbounded
self-adjoint Breuer-Fredholm operators), and
U+1

κ the unitaries in Uκ which do not have −1 in the spectrum (ie. corresponding to
the self-adjoint invertible operators)
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Lemma

Suppose ρ ∈Ω(Uκ,Uκ
+1) is such that {−i, i} 6∈ σ(ρ(t)) for any t ∈ [0,1]. If µ

satisfies the concatenation, homotopy and normalization properties then µ(ρ) = sf(ρ).

Sketch of proof:

• Pt = χ[ π

2→
3π

2 ](ρ(t)) is continuous, which means that Pt = Ut P0U∗t for some path

of unitaries {Ut}

real axis

imaginary axis

• we can use {Ut} to get a homotopy to some path {
[

At 0
0 Bt

]
} (with respect

to the decomposition P0H ⊕P⊥0 H ); moreover, −1 6∈ σ(Bt ).

• construct a second homotopy to {
[

At 0
0 B0

]
}.

Conclude that we must have µ(

[
At 0
0 B0

]
) = sf(

[
At 0
0 B0

]
) (using the

description of spectral flow for bounded operators in P0N P0), and hence
µ(ρ) = sf(ρ).
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Introducing gaps at ±i

U0

Ur1

U1

On each of the subpaths, can write the operators as

[
Xt Vt
Wt Yt

]
with −1 6∈ σ(Yt ),

and the Xt corner finite-trace. We add the requirement that σ(Xt ) and
σ(Xt −Vt (Yt + 1)−1Wt ) should be contained in an arc of length π

4 around -1. At each
division point, we can add little extrusions (as indicated by the dotted line) to get paths
with endpoints in Uκ

+1.

A technical lemma now gives us the homotopy which allows us to get a gap in the
spectrum at ±i along each of these new paths.
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Technical Lemma

If U =

[
X V

W Y

]
(with respect to some decompostion of H ) is unitary and

−1 6∈ σ(Y ) then, for any fixed s ∈ [0,1],

Zs =

[
X − sV(sY + 1)−1W

√
1− s2V(sY + 1)−1

√
1− s2(sY + 1)−1W (Y + s)(sY + 1)−1

]
is also unitary. Moreover, the following hold:

• −1 6∈ σ(U)⇒−1 6∈ σ(Zs).

• if s 6= 1 then 1 6∈ σ(U)⇒ 1 6∈ σ(Zs).

• if 1 is not an eigenvalue of U then 1 is not an eigenvalue of Zs *except* in the
case when s = 1. Note that (for s = 1) we have

Z1 =

[
X −V(Y + 1)−1W 0

0 1

]
.
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Introducing gaps at ±i (cont’d)

U0

Ur1

U1

We are now dealing with paths in Ω(Uκ,Uκ
+1) for which we can write the operators

as

[
Xt Vt
Wt Yt

]
with −1 6∈ σ(Yt ), and the Xt corner finite-trace. Moreover, σ(Xt ) and

σ(Xt −Vt (Yt + 1)−1Wt ) are contained in an arc of length π

4 around -1.

Apply the magic homotopy indicated by the Technical Lemma at each point along the
path simultaneously to get the appropriate holes at ±i (stop before s = 1 in order to
ensure 1 is not an eigenvalue).
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Conclusion

Given a (gap-continuous) path of self-adjoint Breuer-Fredholm operators, we can
homotope it to a path of operators such that the spectrum of each operator has a gap
at -i and i. This allows us to reduce the question to the bounded case, and hence
conclude that a map which satisfies the homotopy, concatenation and normalization
properties must calculate spectral flow.
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Thank you!
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