Uniqueness theorem for certain 1-dimensional NCCW with non-trivial K_1 -group

Cristian Ivanescu

June 24, 2014

Cristian Ivanescu Uniqueness theorem for certain 1-dimensional NCCW with non-

 \triangleright Uniqueness thm. is a major step in the classification theory

 $2Q$

 \leftarrow \equiv

- \triangleright Uniqueness thm. is a major step in the classification theory
- idea: given *-homomorphisms ψ , ϕ : $A \rightarrow B$ such that

- \triangleright Uniqueness thm. is a major step in the classification theory
- idea: given *-homomorphisms ψ , ϕ : $A \rightarrow B$ such that
- $\blacktriangleright \phi^* \cong \psi^*$ at the level of **the invariant** then

 $\mathcal{A} \subseteq \mathcal{B} \cup \mathcal{A} \subseteq \mathcal{B}$

- \triangleright Uniqueness thm. is a major step in the classification theory
- idea: given *-homomorphisms ψ , ϕ : $A \rightarrow B$ such that
- $\blacktriangleright \phi^* \cong \psi^*$ at the level of **the invariant** then
- \blacktriangleright ϕ and ψ are **equivalent** in a suitable sense

A BA A BA

- \triangleright Uniqueness thm. is a major step in the classification theory
- idea: given *-homomorphisms ψ , ϕ : $A \rightarrow B$ such that
- $\blacktriangleright \phi^* \cong \psi^*$ at the level of **the invariant** then
- \blacktriangleright ϕ and ψ are **equivalent** in a suitable sense
- \triangleright often one of the maps $\phi : A \rightarrow B$ is a *-homomorphism of special form

often called "standard form" or "diagonal form"

A BAY A BAY

non-zero *-homomorphisms $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$ exists only if

医蛋白 医蛋白

 298

 \blacktriangleright

non-zero *-homomorphisms $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$ exists only if

 $k \leq n$

御き メミメ メミメー

 \equiv

 298

- **•** non-zero *-homomorphisms $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$ exists only if \blacktriangleright $k \leq n$
- If $k \le n$ then the non-zero *-homomorphisms are precisely

 $2Q$

医骨盆 医骨盆

I

• non-zero *-homomorphisms $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$ exists only if \blacktriangleright $k \leq n$

If $k \le n$ then the non-zero *-homomorphisms are precisely

$$
a \to Udiag(a, a, \ldots, a, 0)U^*
$$

 $\mathcal{A} \subset \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$

- **•** non-zero *-homomorphisms $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$ exists only if \blacktriangleright $k \leq n$
- If $k \le n$ then the non-zero *-homomorphisms are precisely \blacktriangleright $a \rightarrow Udiag(a, a, \ldots, a, 0)U^*$
- **Im m=multiplicity=** number of repetitions of a on the diagonal

AD - 4 E - 4 E - 1

- **•** non-zero *-homomorphisms $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$ exists only if \blacktriangleright $k \leq n$
- If $k \le n$ then the non-zero *-homomorphisms are precisely \blacktriangleright $a \rightarrow Udiag(a, a, \ldots, a, 0)U^*$
- **Im m=multiplicity=** number of repetitions of a on the diagonal
- In the diagonal block **0** is a $r \times r$ matrix so that $n = mk + r$;

A BAR A BAR

- **•** non-zero *-homomorphisms $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$ exists only if \blacktriangleright
	- $k \leq n$
- If $k \le n$ then the non-zero *-homomorphisms are precisely \blacktriangleright

$$
a \to Udiag(a, a, \ldots, a, 0)U^*
$$

- **Im m=multiplicity=** number of repetitions of a on the diagonal
- In the diagonal block **0** is a $r \times r$ matrix so that $n = mk + r$;
- \blacktriangleright $r = 0$ means unital *-homomorphism

医骨盆 医骨盆的

► Def. Two *-homomorphisms $\phi, \psi : A \rightarrow B$ are unitarily equivalent if

医骨盆 医骨盆

Def. Two *-homomorphisms $\phi, \psi : A \rightarrow B$ are unitarily equivalent if

$$
\mathit{AdU} \circ \phi = \psi
$$

for some unitary $U \in M(B)$, denoted $\phi \sim_U \psi$

I

医骨盆 医骨盆

Def. Two *-homomorphisms $\phi, \psi : A \rightarrow B$ are unitarily equivalent if

$$
\mathsf{Ad}U\circ\phi=\psi
$$

for some unitary $U \in M(B)$, denoted $\phi \sim_U \psi$

I

Example: any non-zero *-homomorphism $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$

Def. Two *-homomorphisms $\phi, \psi : A \rightarrow B$ are unitarily equivalent if

$$
\mathit{AdU} \circ \phi = \psi
$$

for some unitary $U \in M(B)$, denoted $\phi \sim_U \psi$

I

 \blacktriangleright

Example: any non-zero *-homomorphism $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$

 $\phi \sim_U diag(a, \ldots, a, 0)$

A BA A BA

Def. Two *-homomorphisms $\phi, \psi : A \rightarrow B$ are unitarily equivalent if

$$
\mathit{AdU} \circ \phi = \psi
$$

for some unitary $U \in M(B)$, denoted $\phi \sim_U \psi$

Example: any non-zero *-homomorphism $\phi : M_k(\mathbb{C}) \to M_n(\mathbb{C})$

$$
\phi \sim_U diag(a,\ldots,a,0)
$$

▶ Application: one-step Bratteli diagram

I

I

$\blacktriangleright A = M_{k_1}(\mathbb{C}) \oplus \cdots \oplus M_{k_p}(\mathbb{C})$ and $B = M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_s}(\mathbb{C})$

→ 御き → 君き → 君き → 君

 2990

 $\blacktriangleright A = M_{k_1}(\mathbb{C}) \oplus \cdots \oplus M_{k_p}(\mathbb{C})$ and $B = M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_s}(\mathbb{C})$ ► using $M_{k_i}(\mathbb{C}) \to A \to B \to M_{n_j}(\mathbb{C})$

御 ▶ ス ヨ ▶ ス ヨ ▶ ...

 $2Q$

后

- $\blacktriangleright A = M_{k_1}(\mathbb{C}) \oplus \cdots \oplus M_{k_p}(\mathbb{C})$ and $B = M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_s}(\mathbb{C})$
- ► using $M_{k_i}(\mathbb{C}) \to A \to B \to M_{n_j}(\mathbb{C})$
- **•** define the multiplicity matrix $[m_{ii}]$ the $s \times p$ matrix; the entry (i, j) is the multiplicity of $M_{k_i}(\mathbb{C})$ into $M_{n_j}(\mathbb{C})$.

イ押 トラ ミュート・エ

- $\blacktriangleright A = M_{k_1}(\mathbb{C}) \oplus \cdots \oplus M_{k_p}(\mathbb{C})$ and $B = M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_s}(\mathbb{C})$
- ► using $M_{k_i}(\mathbb{C}) \to A \to B \to M_{n_j}(\mathbb{C})$
- **•** define the multiplicity matrix $[m_{ii}]$ the $s \times p$ matrix; the entry (i, j) is the multiplicity of $M_{k_i}(\mathbb{C})$ into $M_{n_j}(\mathbb{C})$.
- ► Note: $\sum_{i=1}^{p} m_{ij} k_j \leq n_i$, for $1 \leq i \leq s$, with equality if the map is unital.

 $A \cap \overline{A} \cup A \cup \overline{A} \cup A \cup \overline{A} \cup A \cup \overline{A}$

Bratteli diagrams

 \blacktriangleright Example of a one step Bratteli diagram

∢ 重う

 \leftarrow \equiv

 \sim

Bratteli diagrams

 \blacktriangleright

 \blacktriangleright Example of a one step Bratteli diagram

 $2Q$

重

Ξ

I

 \blacktriangleright Example of a one step Bratteli diagram

F representing a non-zero map ϕ from $\mathbb{C} \oplus \mathbb{C} \to M_3(\mathbb{C}) \oplus M_2(\mathbb{C})$ with multiplicity matrix a 2 \times 2

$$
\left[\begin{array}{cc}2&1\\0&1\end{array}\right]
$$

I

I

 \blacktriangleright Example of a one step Bratteli diagram

3 2 **F** representing a non-zero map ϕ from $\mathbb{C} \oplus \mathbb{C} \to M_3(\mathbb{C}) \oplus M_2(\mathbb{C})$ with multiplicity matrix a 2 \times 2

1 1 $|| \times ||$

$$
\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}
$$

$$
\phi(\lambda, \mu) = \left[\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix} \right]
$$

 \triangleright Thm. (Bratteli) If A and B are two AF-algebras that have the same Bratteli diagram then they are isomorphic

メタメメ ミメメ ミメ

 298

后

- \triangleright Thm. (Bratteli) If A and B are two AF-algebras that have the same Bratteli diagram then they are isomorphic
- \triangleright Note: an (AF)-algebra can have different (equivalent) Bratteli diagrams

K 御 と K 唐 と K 唐 と…

- \triangleright Thm. (Bratteli) If A and B are two AF-algebras that have the same Bratteli diagram then they are isomorphic
- \triangleright Note: an (AF)-algebra can have different (equivalent) Bratteli diagrams
- **Thm. (Elliott)** If A and B are two AF-algebras that have the isomorphic K_0 such that the dimension range is mapped to the dimension range then

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is a set of \mathbb{R} is a set of \mathbb{R}

I

- \triangleright Thm. (Bratteli) If A and B are two AF-algebras that have the same Bratteli diagram then they are isomorphic
- \triangleright Note: an (AF)-algebra can have different (equivalent) Bratteli diagrams
- **Thm. (Elliott)** If A and B are two AF-algebras that have the isomorphic K_0 such that the dimension range is mapped to the dimension range then

$$
A\cong \mathit{B}
$$

イ押 トラ ミトラ ミトー

$$
\phi_0 = \psi_0|_{K_0} \Longrightarrow \phi \cong_U \psi
$$

医骨盆 医骨盆

 \sim

$$
\phi_0 = \psi_0|_{K_0} \Longrightarrow \phi \cong_U \psi
$$

 \triangleright the classification has "permanence" properties relative to **dom** ain algebra:

 \rightarrow \pm \rightarrow

$$
\phi_0 = \psi_0|_{K_0} \Longrightarrow \phi \cong_U \psi
$$

- \triangleright the classification has "permanence" properties relative to **dom** ain algebra:
- ightharpoontanal view $M_n(\mathbb{C})$ then is possible for:

医骨盆 医骨盆

$$
\phi_0 = \psi_0|_{K_0} \Longrightarrow \phi \cong_U \psi
$$

- \triangleright the classification has "permanence" properties relative to **dom** ain algebra:
- ightharpoontanal view $M_n(\mathbb{C})$ then is possible for:
- \blacktriangleright finite direct sums

医骨盆 医骨盆

$$
\phi_0 = \psi_0|_{K_0} \Longrightarrow \phi \cong_U \psi
$$

- \blacktriangleright the classification has "permanence" properties relative to **dom** ain algebra:
- ightharpoontanal view $M_n(\mathbb{C})$ then is possible for:
- \blacktriangleright finite direct sums
- \blacktriangleright sequential inductive limits

医骨盆 医骨盆

$$
\phi_0 = \psi_0|_{K_0} \Longrightarrow \phi \cong_U \psi
$$

- \triangleright the classification has "permanence" properties relative to **dom** ain algebra:
- ightharpoontanal view $M_n(\mathbb{C})$ then is possible for:
- \blacktriangleright finite direct sums
- \triangleright sequential inductive limits
- \blacktriangleright stably isomorphic algebras
\triangleright We say that *-homomorphisms are classified by the functor K_0 if

$$
\phi_0 = \psi_0|_{K_0} \Longrightarrow \phi \cong_U \psi
$$

- \triangleright the classification has "permanence" properties relative to **dom** ain algebra:
- ightharpoontanal view $M_n(\mathbb{C})$ then is possible for:
- \blacktriangleright finite direct sums
- \triangleright sequential inductive limits
- \triangleright stably isomorphic algebras
- \triangleright (Robert) extended this for 1-dim NCCW with K_1 -group trivial, using Cuntz semigroup

A + + = + + = +

- \triangleright For more general algebras, we use aproximate equivalence of *-homomorphisms
- \blacktriangleright Def ϕ, ψ are approximately unitarily equivalent

 Ω

4 E 6 4 E 6

- \triangleright For more general algebras, we use aproximate equivalence of *-homomorphisms
- \blacktriangleright Def ϕ, ψ are approximately unitarily equivalent
- \triangleright if for every $\epsilon > 0$ and every finite $F \subset A$ there is a unitary $U \in M(B)$ such that:

I

- \triangleright For more general algebras, we use aproximate equivalence of *-homomorphisms
- \blacktriangleright Def ϕ, ψ are approximately unitarily equivalent
- \triangleright if for every $\epsilon > 0$ and every finite $F \subset A$ there is a unitary $U \in M(B)$ such that:

$$
||U\phi(a)U^* - \psi(a)|| < \epsilon, \ \ \forall a \in F
$$

I

- \triangleright For more general algebras, we use aproximate equivalence of *-homomorphisms
- **Def** ϕ, ψ are approximately unitarily equivalent
- \triangleright if for every $\epsilon > 0$ and every finite $F \subset A$ there is a unitary $U \in M(B)$ such that:

$$
||U\phi(a)U^* - \psi(a)|| < \epsilon, \ \ \forall a \in F
$$

► Def If there is a net $\{U_t\}_{t\in I} \in \mathbb{M}(B)$ such that $AdU_t \circ \phi \to \psi$, $\forall x \in A$ then ϕ , ψ are also unitarily equivalent

A BAY A BAY

I

- \triangleright For more general algebras, we use aproximate equivalence of *-homomorphisms
- **Def** ϕ, ψ are approximately unitarily equivalent
- \triangleright if for every $\epsilon > 0$ and every finite $F \subset A$ there is a unitary $U \in M(B)$ such that:

$$
||U\phi(a)U^* - \psi(a)|| < \epsilon, \ \ \forall a \in F
$$

- ► Def If there is a net $\{U_t\}_{t\in I} \in \mathbb{M}(B)$ such that $AdU_t \circ \phi \to \psi$, $\forall x \in A$ then ϕ , ψ are also unitarily equivalent
- \blacktriangleright The index set *I* can be chosen to be pairs (F, ϵ) with order: $(F, \epsilon) \prec (F', \epsilon')$ if $F \subseteq F'$ and $\epsilon' \leq \epsilon$.

 $A \cap B \cup A \subseteq A \cup A \subseteq A \cup B$

 \triangleright "point-line" alg. can be described by two one step Bratteli diagram: given f.d. C and D and two *-homo (left and right) from C to D with prescribed Bratteli diagrams so that C is mapped inj. into D , then alg. A is bdd. cont. from real line to D, convg. at inf. to the left/right images of $*$ -homo.

A BAY A BAY

- \triangleright "point-line" alg. can be described by two one step Bratteli diagram: given f.d. C and D and two *-homo (left and right) from C to D with prescribed Bratteli diagrams so that C is mapped inj. into D , then alg. A is bdd. cont. from real line to D, convg. at inf. to the left/right images of $*$ -homo.
- ► Algebras A are: extensions of $M_n(\mathbb{C}) \otimes C_0(0,1)$ by a finite dimensional algebra $M_q(\mathbb{C})$

$$
0\to M_n(\mathbb{C})\otimes C_0(0,1)\to A\to M_q(\mathbb{C})\to 0
$$

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \oplus \mathcal{B}$

- \triangleright "point-line" alg. can be described by two one step Bratteli diagram: given f.d. C and D and two *-homo (left and right) from C to D with prescribed Bratteli diagrams so that C is mapped inj. into D , then alg. A is bdd. cont. from real line to D, convg. at inf. to the left/right images of $*$ -homo.
- ► Algebras A are: extensions of $M_n(\mathbb{C}) \otimes C_0(0,1)$ by a finite dimensional algebra $M_a(\mathbb{C})$

$$
0\to M_n(\mathbb{C})\otimes C_0(0,1)\to A\to M_q(\mathbb{C})\to 0
$$

If alternative description, assuming $n = (a + 2)q$, for some a positive integer: $A = \{f \in C([0, 1], M_0(\mathbb{C}) : f(0) = \text{diag}(M_\alpha, \dots M_\alpha, 0), f(1) = 0\}$ $diag(M_{a}, \ldots M_{a})\}$

イロン イ団ン イミン イミン 一番

- \triangleright "point-line" alg. can be described by two one step Bratteli diagram: given f.d. C and D and two *-homo (left and right) from C to D with prescribed Bratteli diagrams so that C is mapped inj. into D , then alg. A is bdd. cont. from real line to D, convg. at inf. to the left/right images of $*$ -homo.
- ► Algebras A are: extensions of $M_n(\mathbb{C}) \otimes C_0(0,1)$ by a finite dimensional algebra $M_a(\mathbb{C})$

$$
0\to M_n(\mathbb{C})\otimes C_0(0,1)\to A\to M_q(\mathbb{C})\to 0
$$

- **If** alternative description, assuming $n = (a + 2)q$, for some a positive integer: $A = \{f \in C([0, 1], M_n(\mathbb{C}) : f(0) = diag(M_\alpha, \dots M_\alpha, 0), f(1) = 0\}$ $diag(M_{a}, \ldots M_{a})\}$
- \triangleright Note: the size of 0 in $f(0)$ is 2q. It follows that A is non-unital, stably projectionless. イロト イ押 トイチ トイチャー

► building blocks can be realized as the pull-back C*-algebra

A.

- 4 重 8 - 4 重 8

- ► building blocks can be realized as the pull-back C*-algebra
- \triangleright hence they are called 1-dim. NCCW algebras (Eilers, Loring and Pedersen)

医骨盆 医骨盆

More on the building block

- ► building blocks can be realized as the pull-back C*-algebra
- \triangleright hence they are called 1-dim. NCCW algebras (Eilers, Loring and Pedersen)

$$
\blacktriangleright \ K_0(A) = 0 \text{ and } K_1(A) = Z_2
$$

医骨盆 医骨盆

More on the building block

- ► building blocks can be realized as the pull-back C*-algebra
- \triangleright hence they are called 1-dim. NCCW algebras (Eilers, Loring and Pedersen)

$$
\blacktriangleright \ K_0(A) = 0 \text{ and } K_1(A) = Z_2
$$

ightharpoonup using $(a, a + n)$ we can define an algebra I_n such that $K_0(I_n) = 0$ and $K_1(I_n) = Z_n$

5 8 9 9 9 9 9 9 9 9

- ► building blocks can be realized as the pull-back C*-algebra
- \triangleright hence they are called 1-dim. NCCW algebras (Eilers, Loring and Pedersen)
- $K_0(A) = 0$ and $K_1(A) = Z_2$
- ightharpoonup using $(a, a + n)$ we can define an algebra I_n such that $K_0(I_n) = 0$ and $K_1(I_n) = Z_n$
- \blacktriangleright define $K_0(A, \mathbb{Z}_n) := K_1(A \otimes I_n)$ and $K_1(A, \mathbb{Z}_n) := K_0(A \otimes I_n)$

メタメ メミメ メミメン 毛

- ► building blocks can be realized as the pull-back C*-algebra
- \triangleright hence they are called 1-dim. NCCW algebras (Eilers, Loring and Pedersen)
- $K_0(A) = 0$ and $K_1(A) = Z_2$
- ightharpoonup using $(a, a + n)$ we can define an algebra I_n such that $K_0(I_n) = 0$ and $K_1(I_n) = Z_n$
- \blacktriangleright define $K_0(A, \mathbb{Z}_n) := K_1(A \otimes I_n)$ and $K_1(A, \mathbb{Z}_n) := K_0(A \otimes I_n)$
- ► the total K-theory $\underline{K}(A) = \bigoplus_{i \in \{0,1\}} (K_i(A) \oplus \oplus_{n>1} K_i(A, \mathbb{Z}_n))$

 $A\cap\overline{A}^{\ast}A\cap\overline{A}^{\ast}\subset\overline{A}^{\ast}A\cap\overline{A}^{\ast}A\cap\overline{A}^{\ast}A\cap\overline{A}^{\ast}A$

 \blacktriangleright

- ► building blocks can be realized as the pull-back C*-algebra
- \triangleright hence they are called 1-dim. NCCW algebras (Eilers, Loring and Pedersen)

$$
\blacktriangleright \ K_0(A) = 0 \text{ and } K_1(A) = Z_2
$$

- ightharpoonup using $(a, a + n)$ we can define an algebra I_n such that $K_0(I_n) = 0$ and $K_1(I_n) = Z_n$
- \blacktriangleright define $K_0(A, \mathbb{Z}_n) := K_1(A \otimes I_n)$ and $K_1(A, \mathbb{Z}_n) := K_0(A \otimes I_n)$
- ► the total K-theory $\underline{K}(A) = \bigoplus_{i \in \{0,1\}} (K_i(A) \oplus \oplus_{n>1} K_i(A, \mathbb{Z}_n))$

$$
\mathsf{KL}(A, B) \cong \mathsf{Hom}_{\Lambda}(\underline{\mathsf{K}}(A), \underline{\mathsf{K}}(B))
$$

if A satisfies UCT and B is σ -unital.

個 ト メミ ト メミ トー ミ

メロメ メ都 ドメ 君 ドメ 君 ドッ

目

 2990

$$
\blacktriangleright \text{ Assume } \mathcal{A} = \lim_{\rightarrow} A_i \text{ and } \mathcal{B} = \lim_{\rightarrow} B_i \text{ are}
$$

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결

 298

- \blacktriangleright Assume $\mathcal{A} = \lim\limits_{\rightarrow} A_i$ and $\mathcal{B} = \lim\limits_{\rightarrow} B_i$ are
- ightharpoonup simple, bounded traces, where A_i and B_i are "point-line" algebras

in the second property of the second

- \blacktriangleright Assume $\mathcal{A} = \lim\limits_{\rightarrow} A_i$ and $\mathcal{B} = \lim\limits_{\rightarrow} B_i$ are
- ightharpoonup simple, bounded traces, where A_i and B_i are "point-line" algebras
- ► such that $\phi_* : K_*(A) \to K_*(B)$ iso.

A + + = + + = +

- \blacktriangleright Assume $\mathcal{A} = \lim\limits_{\rightarrow} A_i$ and $\mathcal{B} = \lim\limits_{\rightarrow} B_i$ are
- \triangleright simple, bounded traces, where A_i and B_i are "point-line" algebras
- ► such that $\phi_* : K_*(A) \to K_*(B)$ iso.
- $\blacktriangleright \ \phi_{\mathcal{T}}:\,T^+(B)\rightarrow T^+A$ homeo. $\phi_{\mathcal{T}}(\Sigma_B)\subseteq \Sigma_A$

5 8 9 9 9 9 9 9 9 9

- \blacktriangleright Assume $\mathcal{A} = \lim\limits_{\rightarrow} A_i$ and $\mathcal{B} = \lim\limits_{\rightarrow} B_i$ are
- \triangleright simple, bounded traces, where A_i and B_i are "point-line" algebras
- ► such that $\phi_* : K_*(A) \to K_*(B)$ iso.
- $\blacktriangleright \ \phi_{\mathcal{T}}:\,T^+(B)\rightarrow T^+A$ homeo. $\phi_{\mathcal{T}}(\Sigma_B)\subseteq \Sigma_A$
- \blacktriangleright so that ϕ_0 and $\phi_{\mathcal{T}}$ are compatible then

5 8 9 9 9 9 9 9 9 9

- \blacktriangleright Assume $\mathcal{A} = \lim\limits_{\rightarrow} A_i$ and $\mathcal{B} = \lim\limits_{\rightarrow} B_i$ are
- \triangleright simple, bounded traces, where A_i and B_i are "point-line" algebras
- ► such that $\phi_* : K_*(A) \to K_*(B)$ iso.
- $\blacktriangleright \ \phi_{\mathcal{T}}:\,T^+(B)\rightarrow T^+A$ homeo. $\phi_{\mathcal{T}}(\Sigma_B)\subseteq \Sigma_A$
- \blacktriangleright so that ϕ_0 and $\phi_{\mathcal{T}}$ are compatible then
- **In** there is $\Phi : A \rightarrow B$ iso. that induces the given maps at the invariant level

イター・ステート ステート

 \triangleright two other invariants are needed in the proof!

御 ▶ イ君 ▶ イ君 ▶

 299

Ξ

- \triangleright two other invariants are needed in the proof!
- **►** bifunctor KL(A,B) and $U(*)/\overline{CU(*)}$ if circles are allowed in the spectrum

A BANK BA

- \triangleright two other invariants are needed in the proof!
- **►** bifunctor KL(A,B) and $U(*)$ / $\overline{CU(*)}$ if circles are allowed in the spectrum
- \triangleright these invariants are "determined" by the Elliott invariant

医骨盆 医骨盆

- \triangleright two other invariants are needed in the proof!
- **►** bifunctor KL(A,B) and $U(*)$ / $\overline{CU(*)}$ if circles are allowed in the spectrum
- \triangleright these invariants are "determined" by the Elliott invariant
- \triangleright NOT "determined" canonically

医骨盆 医骨盆

- \triangleright two other invariants are needed in the proof!
- **►** bifunctor KL(A,B) and $U(*)/\overline{CU(*)}$ if circles are allowed in the spectrum
- \triangleright these invariants are "determined" by the Elliott invariant
- \triangleright NOT "determined" canonically
- \blacktriangleright *-homo. that agree on the Elliott invariant may fail to be approx. unit. equivalent because they may act differently on these additional invariants

 $\mathcal{A} \times \mathbb{R} \rightarrow \mathcal{A} \times \mathbb{R} \rightarrow \mathcal{A}$

- \triangleright two other invariants are needed in the proof!
- **►** bifunctor KL(A,B) and $U(*)/\overline{CU(*)}$ if circles are allowed in the spectrum
- \triangleright these invariants are "determined" by the Elliott invariant
- \triangleright NOT "determined" canonically
- \triangleright *-homo. that agree on the Elliott invariant may fail to be approx. unit. equivalent because they may act differently on these additional invariants
- \triangleright for KL-bifunctor shown by Dadarlat and Loring

→ 重め × 重め

- \triangleright two other invariants are needed in the proof!
- **►** bifunctor KL(A,B) and $U(*)/\overline{CU(*)}$ if circles are allowed in the spectrum
- \triangleright these invariants are "determined" by the Elliott invariant
- \triangleright NOT "determined" canonically
- \triangleright *-homo. that agree on the Elliott invariant may fail to be approx. unit. equivalent because they may act differently on these additional invariants
- \triangleright for KL-bifunctor shown by Dadarlat and Loring
- ► for $U(*)$ / $\overline{CU(*)}$ shown by Nielson and Thomsen

Film. Let A be a building block as above. Let $F \subset A$ be a finite set and let $\epsilon > 0$ be given.

A.

医单位 医骨炎

- **Fhm.** Let A be a building block as above. Let $F \subset A$ be a finite set and let $\epsilon > 0$ be given.
- **►** There is a finite set $H \subset A$ of positive non-zero elements such that if:

不重 经不重要

- **Fhm.** Let A be a building block as above. Let $F \subset A$ be a finite set and let $\epsilon > 0$ be given.
- \triangleright There is a finite set $H \subset A$ of positive non-zero elements such that if:
- ► (i) B is a building block and $\phi, \psi : A \rightarrow B$ *-homomorphisms;

医骨盆 医骨盆

- **Fhm.** Let A be a building block as above. Let $F \subset A$ be a finite set and let $\epsilon > 0$ be given.
- \triangleright There is a finite set $H \subset A$ of positive non-zero elements such that if:
- ► (i) B is a building block and $\phi, \psi : A \rightarrow B$ *-homomorphisms;
- \blacktriangleright (ii) ϕ and ψ induce the same KL-class in KL(A,B);

→ (語)→ (を語)→

- **Fhm.** Let A be a building block as above. Let $F \subset A$ be a finite set and let $\epsilon > 0$ be given.
- \triangleright There is a finite set $H \subset A$ of positive non-zero elements such that if:
- \triangleright (i) B is a building block and $\phi, \psi : A \rightarrow B$ *-homomorphisms;
- \blacktriangleright (ii) ϕ and ψ induce the same KL-class in KL(A,B);
- \blacktriangleright (iii) $\phi_* = \psi_* : U(A)/\overline{CU(A)} \to U(B)/\overline{CU(B)}$

メ団 トメ ヨ トメ ヨ トー
Uniqueness theorem

- **Fhm.** Let A be a building block as above. Let $F \subset A$ be a finite set and let $\epsilon > 0$ be given.
- \triangleright There is a finite set $H \subset A$ of positive non-zero elements such that if:
- \triangleright (i) B is a building block and $\phi, \psi : A \rightarrow B$ *-homomorphisms;
- \blacktriangleright (ii) ϕ and ψ induce the same KL-class in KL(A,B);
- \blacktriangleright (iii) $\phi_* = \psi_* : U(A)/\overline{CU(A)} \to U(B)/\overline{CU(B)}$
- \blacktriangleright (iv) there exists a $\delta > 0$ such that ϕ and ψ are within δ on traces

i.e. $|\tau(\phi(f) - \psi(f))| < \delta, \tau(\phi(f)) > \delta, \tau(\psi(f)) > \delta, \tau \in \mathcal{T}(B)$

 $f \in H$

 $A \cap \overline{A} \cap A \cap A \cap \overline{A} \cap A \cap \overline{A} \cap A \cap \overline{A} \cap A \cap \overline{A}$

Uniqueness theorem

- **Fhm.** Let A be a building block as above. Let $F \subset A$ be a finite set and let $\epsilon > 0$ be given.
- \triangleright There is a finite set $H \subset A$ of positive non-zero elements such that if:
- \triangleright (i) B is a building block and $\phi, \psi : A \rightarrow B$ *-homomorphisms;
- \blacktriangleright (ii) ϕ and ψ induce the same KL-class in KL(A,B);
- \blacktriangleright (iii) $\phi_* = \psi_* : U(A)/\overline{CU(A)} \to U(B)/\overline{CU(B)}$
- \blacktriangleright (iv) there exists a $\delta > 0$ such that ϕ and ψ are within δ on traces

i.e. $|\tau(\phi(f) - \psi(f))| < \delta, \tau(\phi(f)) > \delta, \tau(\psi(f)) > \delta, \tau \in \mathcal{T}(B)$

 $f \in H$

In then the maps ψ and ϕ are approx. unit. equivalent

メタメメ ミメメ ミメー き

メロメ メタメ メミメ メミメ

 299

\blacktriangleright Thank you

I

メロメ メタメ メミメ メミメ

 299

 \triangleright KK-theory contains both K-homology and K-theory; K-homology (a dual theory to K-theory) is related to C*-algebras extensions

御 ▶ ス ヨ ▶ ス ヨ ▶

 $2Q$

- \triangleright KK-theory contains both K-homology and K-theory; K-homology (a dual theory to K-theory) is related to C*-algebras extensions
- \triangleright KK-theory (Cuntz picture) is made of homotopy classes of quasi-homomorphisms;

for instance a *-homomorphism $\phi : A \to \mathbb{M}(B)$ defines an element in KK(A,B)

イ押 トラ ミトラ ミトー

- \triangleright KK-theory contains both K-homology and K-theory; K-homology (a dual theory to K-theory) is related to C*-algebras extensions
- \triangleright KK-theory (Cuntz picture) is made of homotopy classes of quasi-homomorphisms; for instance a *-homomorphism $\phi : A \to \mathbb{M}(B)$ defines an

element in KK(A,B)

 \blacktriangleright Note: the K-homology group $K^0(A) = KK(A, \mathbb{C})$ Example: $K^0(M_n) = \mathbb{Z}$.

メター・メディ スティー

- \triangleright KK-theory contains both K-homology and K-theory; K-homology (a dual theory to K-theory) is related to C*-algebras extensions
- \triangleright KK-theory (Cuntz picture) is made of homotopy classes of quasi-homomorphisms; for instance a *-homomorphism $\phi : A \to \mathbb{M}(B)$ defines an element in KK(A,B)
- \blacktriangleright Note: the K-homology group $K^0(A) = KK(A, \mathbb{C})$ Example: $K^0(M_n) = \mathbb{Z}$.

\n- Claim:
$$
K^0(A) \cong \mathbb{Z} \oplus K_1(A)
$$
\n

メター・メディ スティー

メロメメ 御き メミメメ ミト

 299

メロメメ 御き メミメメ ミト

 299

\blacktriangleright Thank you

- I
- \blacktriangleright

メロメメ 御き メミメメ ミト

 299

\blacktriangleright Thank you

- I
- I
- i.

メロメメ 御き メミメメ ミト

 299