The Spectral Geometry of Curved Noncommutative Tori

Masoud Khalkhali

COSY 2014

Spectral Triples (Connes)

 \triangleright Noncommutative geometric spaces are described by spectral triples (first order elliptic PDE's on NC spaces), (A, H, D) , where

$$
\pi: \mathcal{A} \to \mathcal{L}(\mathcal{H}) \qquad (*representation),
$$

\n
$$
D = D^* : Dom(D) \subset \mathcal{H} \to \mathcal{H}, \qquad s.a.
$$

\n
$$
D \pi(a) - \pi(a) D \in \mathcal{L}(\mathcal{H}), \qquad bounded commutators,
$$

\n
$$
D \text{ has compact reselvant.}
$$

Example: The Dirac spectral triple $(C^{\infty}(M), L^2(M, S), D)$, e.g. $D=\frac{1}{i}\frac{d}{dx}$, or the Cauchy-Riemann operator $\frac{\partial}{\partial \bar{z}}.$

The scalar curvature of a spectral triple

- \triangleright Connes' distance formula recovers the metric from D, but a more difficult issue is how to define and compute the scalar curvature using D .
- \triangleright A spectral triple is a NC Riemannian manifold. It is tempting to think that one might be able to define a Levi-Civita type connection for a spectral triple and then define the curvature of this connection. For many reasons this algebraic approach does not work in NCG in general.
- Instead one needs to import ideas of spectral geometry to NCG.

Spectral geometry: can one hear the shape of a drum?

 \blacktriangleright Weyl's law: for a compact Riemannian manifold M

$$
N(\lambda) \sim \frac{\omega_n \text{Vol}(M)}{(2\pi)^n} \lambda^{\frac{n}{2}} \qquad \lambda \to \infty,
$$

where $N(\lambda) = \#\{\lambda_i \leq \lambda\}$ is the eigenvalue counting function for the Laplacian Δ on M .

Spectral geometry: can one hear the shape of a drum?

 \blacktriangleright Weyl's law: for a compact Riemannian manifold M

$$
N(\lambda) \sim \frac{\omega_n \text{Vol}(M)}{(2\pi)^n} \lambda^{\frac{n}{2}} \qquad \lambda \to \infty,
$$

where $N(\lambda) = \#\{\lambda_i \leq \lambda\}$ is the eigenvalue counting function for the Laplacian Δ on M .

 \triangleright A better way to think of Weyl's law: quantize the classical Hamiltonian $h(x,p) = \frac{p^2}{2m} + V(x)$, to the quantum Hamiltonian $H = -\frac{\hbar^2}{2m}\Delta + V(x).$ Then

$$
N(a \le \lambda \le b) = \frac{1}{(2\pi\hbar)^d} \text{Vol}\left\{a \le h \le b\right\} + o(\hbar^{-d})
$$

(Physics proof: by Heisenberg unceratinly relation, each quantum state occupies a volume of $\sim (2\pi\hbar)^d$ in phase space. quantized energy levels are approximated by phase space volumes; Bohr's correspondence principle; semiclassical approximation)

 \triangleright Weyl's law: One can hear the volume and dimension of a manifold. We shall see one can hear the volume and scalar curvature of curved noncommutative tori too.

Beyond Weyl's law

 (M, q) = closed Riemannian manifold. Laplacian on forms

$$
\triangle = (d + d^*)^2 : \Omega^p(M) \to \Omega^p(M),
$$

has pure point spectrum:

$$
0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \to \infty
$$

 \triangleright Fact: Dimension, volume, total scalar curvature, Betti numbers, and hence the Euler characteristic of M are fully determined by the spectrum of Δ (on all p-forms).

Heat trace asymptotics

 \blacktriangleright $N(\lambda) = \text{Tr } P_{\lambda}$ is too brutal. Mollify it by a smoothing operator like $\textsf{Tr}(e^{-t\Delta})$ and use Tauberian theorems to obtain information about $N(\lambda)$.

► $k(t, x, y) =$ kernel of $e^{-t\Delta}$. Asymptotic expansion near $t = 0$:

$$
k(t,x,x) \sim \frac{1}{(4\pi t)^{m/2}} (a_0(x,\triangle) + a_1(x,\triangle)t + a_2(x,\triangle)t^2 + \cdots)
$$

 \blacktriangleright $a_i(x, \triangle)$, Seeley-De Witt-Gilkey coefficients.

 \blacktriangleright Theorem: $a_i(x, \triangle)$ are universal polynomials in the curvature tensor $R=R^1_{jkl}$ and its covariant derivatives:

$$
a_0(x, \triangle) = 1
$$
 Weyl's law
\n
$$
a_1(x, \triangle) = \frac{1}{6}S(x)
$$
 scalar curvature
\n
$$
a_2(x, \triangle) = \frac{1}{360}(2|R(x)|^2 - 2|Ric(x)|^2 + 5|S(x)|^2)
$$

\n
$$
a_3(x, \triangle) = \cdots
$$

Noncommutative Local Invariants

 \blacktriangleright Local geometric invariants such as scalar curvature of (A, H, D) are detected by the high frequency behavior of the spectrum of D and the action of A via heat kernel asymptotic expansions of the form

Trace
$$
(a e^{-tD^2}) \sim \sum_{j=0}^{\infty} a_j(a, D^2) t^{(-n+j)/2}, \quad t \searrow 0, \qquad a \in A.
$$

Example: Gauss-Bonnet

 \blacktriangleright For surfaces

$$
\chi(\Sigma) = \frac{1}{2\pi} \int_{\Sigma} K dA
$$

► Spectral zeta function: Let $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$ be the eigenvalues of \triangle . and

$$
\zeta_{\triangle}(s) = \sum \lambda_j^{-s}, \qquad \Re(s) > 1.
$$

It has a mermorphic extension to $\mathbb C$ with a simple pole at $s=\frac{1}{2}$. G-B is equivalent to

 $\zeta_{\triangle}(s) + 1 = 0$

Curved noncommutative tori

► A_{θ} : universal C^* -algebra generated by unitaries U and V $VU = e^{2\pi i \theta} UV.$

\blacktriangleright Smooth structure:

$$
A_{\theta}^{\infty} = \left\{ \sum_{m,n \in \mathbb{Z}} a_{m,n} U^m V^n : \quad (a_{m,n}) \in \mathcal{S}(\mathbb{Z}^2) \right\}.
$$

► Derivations $\delta_1, \delta_2 : A_{\theta}^{\infty} \to A_{\theta}^{\infty}$

$$
\delta_1(U) = U, \quad \delta_1(V) = 0, \quad \delta_2(U) = 0, \quad \delta_2(V) = V,
$$

► Canonical trace $\varphi_0 : A_\theta \to \mathbb{C}$

Complex structure on A_{θ}

Fix $\tau = \tau_1 + i\tau_2$, $\tau_2 = \Im(\tau) > 0$, and define the Dolbeault operators

$$
\partial:=\delta_1+\tau\delta_2,\qquad \partial^*:=\delta_1+\bar\tau\delta_2.
$$

- \blacktriangleright Let $\mathcal{H}_0 = L^2(A_\theta)$ GNS completion of A_θ w.r.t. φ_0 .
- \blacktriangleright $\mathcal{H}^{(1,0)}$ = Hilbert space of $(1,0)$ -forms: completion of finite sums $\sum a \partial b, \ a, b \in A_\theta^\infty$, under

$$
\langle a\partial b, a'\partial b'\rangle := \varphi_0((a'\partial b')^*a\partial b).
$$

► ∂^* is the formal adjoint of $\partial:\mathcal{H}_0\to\mathcal{H}^{(1,0)}.$

\blacktriangleright Flat Dolbeault Laplacian:

$$
\Delta = \partial^* \partial = \delta_1^2 + 2\tau_1 \delta_1 \delta_2 + |\tau|^2 \delta_2^2.
$$

For $\tau = i$, we get

$$
\Delta = \delta_1^2 + \delta_2^2.
$$

Conformal perturbation of the metric

► Fix a Weyl factor: $h = h^* \in A_\theta^\infty$. Replace φ_0 by

$$
\varphi(a) = \varphi_0(a e^{-h}).
$$

 $\blacktriangleright \varphi$ is a KMS state

$$
\varphi(a b) = \varphi(b \Delta(a)),
$$

with modular automorphism

$$
\Delta(a) = \sigma_i(a) = e^{-h} a e^h,
$$

and modular group

$$
\sigma_t(a) = e^{ith} \, a \, e^{-ith}.
$$

 \triangleright Warning: \triangle and \triangle are very different operators!

Curved Laplacian

► Hilbert space $\mathcal{H}_{\varphi} = GNS$ completion of A_{θ} under

$$
\varphi(a) = \varphi_0(a e^{-h}).
$$

 \blacktriangleright Let $\partial_\varphi = \delta_1 + \tau \delta_2 : \mathcal{H}_{\varphi} \to \mathcal{H}^{(1,0)}.$ It has an adjoint

$$
\partial_{\varphi}^* = R_{k^2} \partial^* : \mathcal{H}^{(1,0)} \to \mathcal{H}_{\varphi}.
$$

 \blacktriangleright Curved Laplacian

$$
\triangle'=\partial_\varphi^*\partial_\varphi:\mathcal{H}_\varphi\to\mathcal{H}_\varphi.
$$

A Spectral Triple $(A_\theta^\infty, \mathcal{H}, D)$

$$
\mathcal{H}:=\mathcal{H}_{\varphi}\oplus\mathcal{H}^{(1,0)},
$$

$$
a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : \mathcal{H} \to \mathcal{H},
$$

$$
D := \begin{pmatrix} 0 & \partial_{\varphi}^{*} \\ \partial_{\varphi} & 0 \end{pmatrix} : \mathcal{H} \to \mathcal{H},
$$

$$
\partial_{\varphi} := \partial = \delta_{1} + \bar{\tau} \delta_{2} : \mathcal{H}_{\varphi} \to \mathcal{H}^{(1,0)}.
$$

Anti-Unitary Equivalence of the Laplacians

$$
D^2 = \begin{pmatrix} \partial_{\varphi}^* \partial_{\varphi} & 0 \\ 0 & \partial_{\varphi} \partial_{\varphi}^* \end{pmatrix} : \mathcal{H}_{\varphi} \oplus \mathcal{H}^{(1,0)} \to \mathcal{H}_{\varphi} \oplus \mathcal{H}^{(1,0)}.
$$

Lemma: Let

$$
k = e^{h/2}.
$$

We have

$$
\partial_{\varphi}^{*} \partial_{\varphi} : \mathcal{H}_{\varphi} \to \mathcal{H}_{\varphi} \qquad \sim \qquad k \bar{\partial} \partial k : \mathcal{H}_{0} \to \mathcal{H}_{0},
$$
\n
$$
\partial_{\varphi} \partial_{\varphi}^{*} : \mathcal{H}^{(1,0)} \to \mathcal{H}^{(1,0)} \qquad \sim \qquad \bar{\partial} k^{2} \partial : \mathcal{H}^{(1,0)} \to \mathcal{H}^{(1,0)}.
$$

(The Tomita anti-unitary map J is used.)

Conformal Geometry of \mathbb{T}_{θ}^2 with $\tau=i$ (Cohen-Connes, late 80's)

Let

 $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$ be the eigenvalues of $\partial_{\varphi}^* \partial_{\varphi}$,

and

$$
\zeta(s) = \sum \lambda_j^{-s}, \qquad \Re(s) > 1.
$$

Then

 $\zeta(0) + 1 =$

$$
\varphi\big(f(\Delta)(\delta_1(e^{h/2}))\,\delta_1(e^{h/2})\big) + \varphi\big(f(\Delta)(\delta_2(e^{h/2}))\,\delta_2(e^{h/2})\big),
$$
 where

$$
f(u) = \frac{1}{6}u^{-1/2} - \frac{1}{3} + \mathcal{L}_1(u) - 2(1 + u^{1/2})\mathcal{L}_2(u) + (1 + u^{1/2})^2\mathcal{L}_3(u),
$$

$$
\mathcal{L}_m(u) = (-1)^m(u - 1)^{-(m+1)} \Big(\log u - \sum_{j=1}^m (-1)^{j+1} \frac{(u - 1)^j}{j} \Big).
$$

The Gauss-Bonnet theorem for \mathbb{T}^{2}_{θ}

Theorem. (Connes-Tretkoff; Fathizadeh-Kh.) For any $\theta \in \mathbb{R}$, complex parameter $\tau \in \mathbb{C} \setminus \mathbb{R}$ and Weyl conformal factor $e^h, h =$ $h^*\in A_\theta^\infty$, we have

 $\zeta(0) + 1 = 0.$

Final Part of the Proof

 $\zeta(0) + 1 =$

$$
\frac{2\pi}{\Im(\tau)}\varphi_0\Big(K(\nabla)(\delta_1(\frac{h}{2}))\,\delta_1(\frac{h}{2})\Big)+\frac{2\pi|\tau|^2}{\Im(\tau)}\varphi_0\Big(K(\nabla)(\delta_2(\frac{h}{2}))\,\delta_2(\frac{h}{2})\Big)
$$

$$
+\frac{2\pi\Re(\tau)}{\Im(\tau)}\varphi_0\Big(K(\nabla)(\delta_1(\frac{h}{2}))\,\delta_2(\frac{h}{2})\Big)+\frac{2\pi\Re(\tau)}{\Im(\tau)}\varphi_0\Big(K(\nabla)(\delta_2(\frac{h}{2}))\,\delta_1(\frac{h}{2})\Big),
$$

where

$$
K(x) = -\frac{\left(3x - 3\sinh\left(\frac{x}{2}\right) - 3\sinh(x) + \sinh\left(\frac{3x}{2}\right)\right)\text{csch}^2\left(\frac{x}{2}\right)}{3x^2}
$$

is an odd entire function, and $\nabla = \log \Delta$.

Scalar curvature for A_{θ}

 \blacktriangleright The scalar curvature of the curved nc torus $(\mathbb{T}_\theta^2, \tau, k)$ is the unique element $R\in A_\theta^\infty$ satisfying

$$
\operatorname{Trace}\left(a\triangle^{-s}\right)_{|_{s=0}}+\operatorname{Trace}\left(aP\right)=\operatorname{t}\left(aR\right),\qquad\forall a\in A_{\theta}^{\infty},
$$

where P is the projection onto the kernel of \triangle .

 \triangleright In practice this is done by finding an asymptotic expansin for the kernel of the operator $ae^{-t\Delta}$,

Trace
$$
(a e^{-tD^2}) \sim \sum_{n\geq 0} B_n(a, D^2) t^{\frac{n-2}{2}}, \qquad a \in A_\theta^\infty.
$$

using Connes' pseudodifferential calculus for nc tori. A good pseudo diff calculus for general nc spaces is still illusive.

Final Formula for the Scalar Curvature of \mathbb{T}^2_θ

Theorem. (Connes-Moscovici; Fathizadeh-Kh.) Up to an overall factor of $\frac{-\pi}{\Im(\tau)},\,R$ is equal to

$$
R_1(\nabla)\left(\delta_1^2(\frac{h}{2}) + 2\,\tau_1\,\delta_1\delta_2(\frac{h}{2}) + |\tau|^2\,\delta_2^2(\frac{h}{2})\right) + R_2(\nabla,\nabla)\left(\delta_1(\frac{h}{2})^2 + |\tau|^2\,\delta_2(\frac{h}{2})^2 + \Re(\tau)\,\{\delta_1(\frac{h}{2}),\delta_2(\frac{h}{2})\}\right) + i\,W(\nabla,\nabla)\left(\Im(\tau)\,[\delta_1(\frac{h}{2}),\delta_2(\frac{h}{2})]\right).
$$

 $R_2(s,t) =$

 $W(s,t) =$ $(-s - t + t \cosh s + s \cosh t + \sinh s + \sinh t - \sinh(s + t))$ $st\sinh(s/2)\sinh(t/2)\sinh((s+t)/2)$

Noncommutative 4-Torus \mathbb{T}^4_θ θ

 \blacktriangleright Complex Structure on \mathbb{T}^4_θ

$$
\partial = \partial_1 \oplus \partial_2, \qquad \bar{\partial} = \bar{\partial}_1 \oplus \bar{\partial}_2,
$$

$$
\partial_1 = \frac{1}{2} (\delta_1 - i\delta_3), \qquad \partial_2 = \frac{1}{2} (\delta_2 - i\delta_4),
$$

$$
\bar{\partial}_1 = \frac{1}{2} (\delta_1 + i\delta_3), \qquad \bar{\partial}_2 = \frac{1}{2} (\delta_2 + i\delta_4).
$$

Conformal perturbation of the metric

Let $h=h^*\in C^\infty(\mathbb{T}^4_\theta)$ and replace the trace φ_0 by $\varphi: C(\mathbb{T}_{\theta}^{4}) \to \mathbb{C},$ $\varphi(a) := \varphi_0(a e^{-2h}), \qquad a \in C(\mathbb{T}_{\theta}^4).$

 φ is a KMS state with the modular group

$$
\sigma_t(a) = e^{2ith} \, a \, e^{-2ith}, \qquad a \in C(\mathbb{T}^4_\theta),
$$

and the modular automorphism

$$
\Delta(a) := \sigma_i(a) = e^{-2h} \, a \, e^{2h}, \qquad a \in C(\mathbb{T}_{\theta}^4).
$$

$$
\varphi(a \, b) = \varphi(b \, \Delta(a)), \qquad a, b \in C(\mathbb{T}_{\theta}^4).
$$

Perturbed Laplacian on \mathbb{T}^4_θ

$$
d = \partial \oplus \bar{\partial} : \mathcal{H}_{\varphi} \to \mathcal{H}_{\varphi}^{(1,0)} \oplus \mathcal{H}_{\varphi}^{(0,1)},
$$

$$
\Delta_{\varphi} := d^* d.
$$

Remark. If $h = 0$ then $\varphi = \varphi_0$ and

$$
\triangle_{\varphi_0} = \delta_1^2 + \delta_2^2 + \delta_3^2 + \delta_4^2 = \partial^* \partial
$$

(the underlying manifold is Kähler).

Scalar Curvature for \mathbb{T}^4_θ

It is the unique element $R\in C^\infty(\mathbb{T}^4_\theta)$ such that

$$
\operatorname{Res}_{s=1} \zeta_a(s) = \varphi_0(a R), \qquad a \in C^\infty(\mathbb{T}^4_\theta),
$$

where

$$
\zeta_a(s) := \text{Trace}(a \triangle_\varphi^{-s}), \qquad \Re(s) \gg 0.
$$

Final Formula for the Scalar Curvature of \mathbb{T}^4_θ

Theorem. (Fathizadeh-Kh.) We have

$$
R = e^{-h} k(\nabla) \left(\sum_{i=1}^{4} \delta_i^2(h) \right) + e^{-h} H(\nabla, \nabla) \left(\sum_{i=1}^{4} \delta_i(h)^2 \right),
$$

where

$$
\nabla(a) = [-h, a], \qquad a \in C(\mathbb{T}_{\theta}^{4}),
$$

$$
k(s) = \frac{1 - e^{-s}}{2s},
$$

$$
H(s, t) = -\frac{e^{-s-t} ((-e^{s} - 3) s (e^{t} - 1) + (e^{s} - 1) (3e^{t} + 1) t)}{4 s t (s + t)}.
$$

$$
H(s,t) = \left(-\frac{1}{4} + \frac{t}{24} + O(t^3)\right) + s\left(\frac{5}{24} - \frac{t}{16} + \frac{t^2}{80} + O(t^3)\right) + s^2\left(-\frac{1}{12} + \frac{7t}{240} - \frac{t^2}{144} + O(t^3)\right) + O(s^3).
$$

