Exact C*-algebras and $C_0(X)$ -structure

David McConnell Trinity College Dublin

Canadian Annual Symposium on Operator Algebras and Their Applications June 2014

K ロ ▶ K 레 ≯ K X B X X B → X D → X O Q Q Q

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C^* -algebra. If there exists a ∗-homomorphism $\mu_A : C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A, X, μ_A) is a $C_0(X)$ -algebra.

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C^* -algebra. If there exists a ∗-homomorphism $\mu_A : C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A, X, μ_A) is a $C_0(X)$ -algebra.

KORKAR KERKER EL VOLO

For $f \in C_0(X)$, we will write f · for $\mu_A(f)$.

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C^* -algebra. If there exists a ∗-homomorphism $\mu_A : C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A, X, μ_A) is a $C_0(X)$ -algebra.

- For $f \in C_0(X)$, we will write f · for $\mu_A(f)$. For $x \in X$, define
	- ► $C_{0,x}(X) = \{f \in C_0(X) : f(x) = 0\}$, and note that $C_{0,x}(X) \cdot A$ is a closed two-sided ideal of A,

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C^* -algebra. If there exists a ∗-homomorphism $\mu_A : C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A, X, μ_A) is a $C_0(X)$ -algebra.

- For $f \in C_0(X)$, we will write f or $\mu_A(f)$. For $x \in X$, define
	- ► $C_{0,x}(X) = \{f \in C_0(X) : f(x) = 0\}$, and note that $C_{0,x}(X) \cdot A$ is a closed two-sided ideal of A,

A O A G A 4 O A C A G A G A 4 O A C A

$$
\blacktriangleright A_x = \frac{A}{C_{0,x}(X) \cdot A}
$$
 the quotient C*-algebra, and

 $\blacktriangleright \pi_x : A \rightarrow A_x$ the quotient homomorphism.

$C_0(X)$ -algebras and C^{*}-bundles

We regard A as an algebra of sections of $\coprod_{x\in X} A_x$, identifying each $\boldsymbol{a}\in A$ with $\hat{\boldsymbol{a}}:X\to\coprod_{\boldsymbol{x}\in X}A_{\boldsymbol{x}},$ where

$$
\hat{a}(x)=\pi_x(a)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

for all $x \in X$.

We regard A as an algebra of sections of $\coprod_{x\in X} A_x$, identifying each $\boldsymbol{a}\in A$ with $\hat{\boldsymbol{a}}:X\to\coprod_{\boldsymbol{x}\in X}A_{\boldsymbol{x}},$ where

$$
\hat{a}(x)=\pi_x(a)
$$

for all $x \in X$. For all $a \in A$, we have

- \blacktriangleright $||a|| = \sup_{x \in X} ||\pi_x(a)||$,
- ightharpoon $X \to \mathbb{R}_+$, $x \mapsto ||\pi_x(a)||$ is upper-semicontinuous, and vanishes at infinity on X .

Thus, we think of a $C_0(X)$ -algebra as the algebra of sections (vanishing at infinity) of a C^* -bundle over X.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

We regard A as an algebra of sections of $\coprod_{x\in X} A_x$, identifying each $\boldsymbol{a}\in A$ with $\hat{\boldsymbol{a}}:X\to\coprod_{\boldsymbol{x}\in X}A_{\boldsymbol{x}},$ where

$$
\hat{a}(x)=\pi_x(a)
$$

for all $x \in X$. For all $a \in A$, we have

 \blacktriangleright $\|a\| = \sup_{x \in Y} \|\pi_x(a)\|$,

ightharpoon $X \to \mathbb{R}_+$, $x \mapsto ||\pi_x(a)||$ is upper-semicontinuous, and vanishes at infinity on X .

Thus, we think of a $C_0(X)$ -algebra as the algebra of sections (vanishing at infinity) of a C^* -bundle over X.

If for all $a \in A$, the norm functions $x \mapsto ||\pi_x(a)||$ are continuous on X, then we say that (A, X, μ_A) is a continuous $C_0(X)$ -algebra.

KORKAR KERKER EL VOLO

Interest in $C_0(X)$ -algebras and C^{*}-bundles: to decompose the study of a given C*-algebra A into that of

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- ightharpoontriangleright the fibre algebras A_{x} ,
- ► the behaviour of A as an algebra of sections of $\prod_{x\in X}A_x$.

Interest in $C_0(X)$ -algebras and C^{*}-bundles: to decompose the study of a given C*-algebra A into that of

- ightharpoontring the fibre algebras A_x ,
- ► the behaviour of A as an algebra of sections of $\prod_{x\in X}A_x$.

e.g. every irreducible representation of a $C_0(X)$ -algebra A is lifted from a fibre A_x for some $x \in X$.

Interest in $C_0(X)$ -algebras and C^{*}-bundles: to decompose the study of a given C*-algebra A into that of

- ightharpoonup the fibre algebras A_{x} ,
- ► the behaviour of A as an algebra of sections of $\prod_{x\in X}A_x$.

e.g. every irreducible representation of a $C_0(X)$ -algebra A is lifted from a fibre A_x for some $x \in X$.

Question: For two C^{*}-algebras A and B, let $A \otimes B$ denote their minimal tensor product. Given a $C_0(X)$ -algebra structure on A and a $C_0(Y)$ -algebra structure on B, what can be said about $A \otimes B$ as a $C_0(X \times Y)$ -algebra?

KORKAR KERKER EL VOLO

Interest in $C_0(X)$ -algebras and C^{*}-bundles: to decompose the study of a given C*-algebra A into that of

- ightharpoonup the fibre algebras A_{x} ,
- ► the behaviour of A as an algebra of sections of $\prod_{x\in X}A_x$.

e.g. every irreducible representation of a $C_0(X)$ -algebra A is lifted from a fibre A_x for some $x \in X$.

Question: For two C^{*}-algebras A and B, let $A \otimes B$ denote their minimal tensor product. Given a $C_0(X)$ -algebra structure on A and a $C_0(Y)$ -algebra structure on B, what can be said about $A \otimes B$ as a $C_0(X \times Y)$ -algebra? Related question: ideal structure of $A \otimes B$?

KORKAR KERKER EL VOLO

Ideals of $A \otimes B$

If $I \triangleleft A$ and $J \triangleleft B$, let $q_I : A \to A/I$ and $q_J : B \to B/J$ be the quotient maps. Then $q_1 \odot q_1 : A \odot B \rightarrow (A/I) \odot (B/J)$ has

 $\ker(q_i \odot q_j) = I \odot B + A \odot J$,

which, by injectivity, has closure

 $I \otimes B + A \otimes J \triangleleft A \otimes B$.

Ideals of $A \otimes B$

If $I \triangleleft A$ and $J \triangleleft B$, let $q_I : A \to A/I$ and $q_J : B \to B/J$ be the quotient maps. Then $q_l \odot q_l : A \odot B \rightarrow (A/I) \odot (B/J)$ has

 $\ker(q_i \odot q_j) = I \odot B + A \odot J$,

which, by injectivity, has closure

$$
I\otimes B+A\otimes J\triangleleft A\otimes B.
$$

Extending $q_l \odot q_J$ to $q_l \otimes q_J : A \otimes B \rightarrow (A/I) \otimes (B/J)$ gives a closed two-sided ideal

 $\ker(q_1 \otimes q_1) \triangleleft A \otimes B$.

Ideals of $A \otimes B$

If $I \triangleleft A$ and $J \triangleleft B$, let $q_I : A \to A/I$ and $q_J : B \to B/J$ be the quotient maps. Then $q_l \odot q_l : A \odot B \rightarrow (A/I) \odot (B/J)$ has

 $\ker(q_i \odot q_j) = I \odot B + A \odot J$,

which, by injectivity, has closure

$$
I\otimes B+A\otimes J\triangleleft A\otimes B.
$$

Extending $q_l \odot q_J$ to $q_l \otimes q_J : A \otimes B \rightarrow (A/I) \otimes (B/J)$ gives a closed two-sided ideal

$$
\ker(q_1\otimes q_1)\triangleleft A\otimes B.
$$

Clearly

$$
\ker(q_I \otimes q_J) \supseteq I \otimes B + A \otimes J.
$$

KORK ERKER ADE YOUR

but this inclusion may be strict.

In Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_x : A \to A_x$ and $\sigma_y : B \to B_y$ the quotient $*$ -homomorphisms, where $x \in X, y \in Y$.

Exercise Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_x : A \to A_x$ and $\sigma_y : B \to B_y$ the quotient $*$ -homomorphisms, where $x \in X, y \in Y$.

KORK ERKER ADE YOUR

 \triangleright We get \ast -homomorphisms $\pi_x \otimes \sigma_y : A \otimes B \rightarrow A_x \otimes B_y$,

- Exercise Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_x : A \to A_x$ and $\sigma_y : B \to B_y$ the quotient $*$ -homomorphisms, where $x \in X, y \in Y$.
- \triangleright We get $*$ -homomorphisms $\pi_x \otimes \sigma_y : A \otimes B \rightarrow A_x \otimes B_y$,
- ▶ Hence we may regard $A \otimes B$ as an algebra of sections of $\coprod \{A_\mathsf{x} \otimes B_\mathsf{y} : (\mathsf{x},\mathsf{y}) \in \mathsf{X} \times \mathsf{Y} \}$, where $\mathsf{c} \in A \otimes B$ is identified with

$$
\hat{c}: X \times Y \rightarrow \coprod \{A_x \otimes B_y : (x, y) \in X \times Y\}
$$

$$
\hat{c}((x, y)) = (\pi_x \otimes \sigma_y)(c).
$$

- In Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_{x}: A \to A_{x}$ and $\sigma_{y}: B \to B_{y}$ the quotient $*$ -homomorphisms, where $x \in X, y \in Y$.
- \triangleright We get $*$ -homomorphisms $\pi_x \otimes \sigma_y : A \otimes B \rightarrow A_x \otimes B_y$,
- ▶ Hence we may regard $A \otimes B$ as an algebra of sections of $\coprod \{A_\mathsf{x} \otimes B_\mathsf{y} : (\mathsf{x},\mathsf{y}) \in \mathsf{X} \times \mathsf{Y} \}$, where $\mathsf{c} \in A \otimes B$ is identified with

$$
\hat{c}: X \times Y \rightarrow \prod\{A_x \otimes B_y : (x, y) \in X \times Y\}
$$

$$
\hat{c}((x, y)) = (\pi_x \otimes \sigma_y)(c).
$$

KORK ERKER ADE YOUR

► This construction gives a C^{*}-bundle decomposition of $A \otimes B$ (Kirchberg & Wassermann).

Since $C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$ and $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism

 $\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \rightarrow ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B).$

KORK ERRY ABY DE YOUR

Since $C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$ and $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism $\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \rightarrow ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B).$ The triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra.

KORK STRATER STRAKER

Since
$$
C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)
$$
 and
\n $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism
\n $\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \rightarrow ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$.
\nThe triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra.
\nFor $(x, y) \in X \times Y$, it can be shown that

 $C_{0,(x,y)}(X \times Y) \cdot (A \otimes B) = (C_{0,x}(X) \cdot A) \otimes B + A \otimes (C_{0,y}(Y) \cdot B)$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Since
$$
C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)
$$
 and
\n $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism
\n $\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \rightarrow ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$.
\nThe triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra.
\nFor $(x, y) \in X \times Y$, it can be shown that

$$
C_{0, (x,y)}(X \times Y) \cdot (A \otimes B) = (C_{0,x}(X) \cdot A) \otimes B + A \otimes (C_{0,y}(Y) \cdot B)
$$

Hence the fibre algebras of $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ are given by

$$
(A \otimes B)_{(x,y)} = \frac{A \otimes B}{\ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y)}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Since
$$
C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)
$$
 and
\n $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism
\n $\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \rightarrow ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$.
\nThe triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra.
\nFor $(x, y) \in X \times Y$, it can be shown that

$$
C_{0, (x,y)}(X \times Y) \cdot (A \otimes B) = (C_{0,x}(X) \cdot A) \otimes B + A \otimes (C_{0,y}(Y) \cdot B)
$$

Hence the fibre algebras of $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ are given by

$$
(A \otimes B)_{(x,y)} = \frac{A \otimes B}{\ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y)}
$$

$$
\neq A_x \otimes B_y,
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

in general.

Continuity of the fibrewise tensor product

Clearly we have

$$
(A \otimes B)_{(x,y)} \equiv A_x \otimes B_y
$$

\n
$$
\Leftrightarrow \ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).
$$
 (F_{X,Y})

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Continuity of the fibrewise tensor product

Clearly we have

$$
(A \otimes B)_{(x,y)} \equiv A_x \otimes B_y
$$

\n
$$
\Leftrightarrow \ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).
$$
 (F_{X,Y})

KORKAR KERKER EL VOLO

Theorem (Kirchberg & Wassermann) Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra and (B, Y, μ_B) a continuous $C_0(Y)$ -algebra. Then the norm functions

 $(x, y) \mapsto ||(\pi_x \otimes \sigma_y)(c)||$

are continuous on $X \times Y$ for all $c \in A \otimes B$ if and only if $(F_{X,Y})$ holds.

Continuity of the fibrewise tensor product

Clearly we have

$$
(A \otimes B)_{(x,y)} \equiv A_x \otimes B_y
$$

\n
$$
\Leftrightarrow \ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).
$$
 (F_{X,Y})

KORKAR KERKER EL VOLO

Theorem (Kirchberg & Wassermann) Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra and (B, Y, μ_B) a continuous $C_0(Y)$ -algebra. Then the norm functions

 $(x, y) \mapsto ||(\pi_x \otimes \sigma_y)(c)||$

are continuous on $X \times Y$ for all $c \in A \otimes B$ if and only if $(F_{X,Y})$ holds. Note that if $(F_{X,Y})$ holds, then this also implies that the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

By contrast, we have shown that there exist (A, X, μ_A) and (B, Y, μ_B) , both continuous, such that

- In the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ► the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

By contrast, we have shown that there exist (A, X, μ_A) and (B, Y, μ_B) , both continuous, such that

- In the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ► the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ► Let $A = \prod_{n\geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $\overline{A_n} = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.

By contrast, we have shown that there exist (A, X, μ_A) and (B, Y, μ_B) , both continuous, such that

- In the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ► the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ► Let $A = \prod_{n\geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $\overline{A_n} = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- $B = B(H)$ and $Y = \{y\}$ a one-point space, so that B is trivially a continuous $C(Y)$ -algebra.

By contrast, we have shown that there exist (A, X, μ_A) and (B, Y, μ_B) , both continuous, such that

- In the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ► the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ► Let $A = \prod_{n\geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $\overline{A_n} = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- $B = B(H)$ and $Y = \{y\}$ a one-point space, so that B is trivially a continuous $C(Y)$ -algebra.

KORKAR KERKER EL VOLO

 \triangleright Then $(A \otimes B, \beta \mathbb{N}, \mu_A \otimes 1)$ is a continuous $C(\beta \mathbb{N})$ -algebra,

By contrast, we have shown that there exist (A, X, μ_A) and (B, Y, μ_B) , both continuous, such that

- In the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ► the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ► Let $A = \prod_{n\geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $\overline{A_n} = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- $B = B(H)$ and $Y = \{y\}$ a one-point space, so that B is trivially a continuous $C(Y)$ -algebra.
- ► Then $(A \otimes B, \beta \mathbb{N}, \mu_A \otimes 1)$ is a continuous $C(\beta \mathbb{N})$ -algebra, but there is $p \in \beta \mathbb{N} \setminus \mathbb{N}$ such that
	- ► $(A \otimes B)_p \neq A_p \otimes B$ (i.e. property $(F_{X,Y})$ fails) and
	- \blacktriangleright $p \mapsto ||(\pi_p \otimes id)(c)||$ is discontinuous at p for some $c \in A \otimes B$, hence the fibrewise tensor product is a discontinuous C*-bundle.

KORKAR KERKER EL VOLO

By contrast, we have shown that there exist (A, X, μ_A) and (B, Y, μ_B) , both continuous, such that

- In the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ► the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ► Let $A = \prod_{n\geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $\overline{A_n} = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- $B = B(H)$ and $Y = \{y\}$ a one-point space, so that B is trivially a continuous $C(Y)$ -algebra.
- ► Then $(A \otimes B, \beta \mathbb{N}, \mu_A \otimes 1)$ is a continuous $C(\beta \mathbb{N})$ -algebra, but there is $p \in \beta \mathbb{N} \setminus \mathbb{N}$ such that
	- ► $(A \otimes B)_p \neq A_p \otimes B$ (i.e. property $(F_{X,Y})$ fails) and
	- \blacktriangleright $p \mapsto ||(\pi_p \otimes id)(c)||$ is discontinuous at p for some $c \in A \otimes B$, hence the fibrewise tensor product is a discontinuous C*-bundle.
- In fact this occurs whenever B is an inexact C^* -algebra.

In Let A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$
ker(q_1 \otimes q_1) = I \otimes B + A \otimes J, \qquad (F)
$$

Exect A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$
ker(q_1 \otimes q_1) = I \otimes B + A \otimes J, \qquad (F)
$$

KORKA SERKER ORA

- \triangleright Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
	- ► $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$,

Exect A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$
ker(q_1 \otimes q_1) = I \otimes B + A \otimes J, \qquad (F)
$$

KORKA SERKER ORA

- \triangleright Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
	- ► $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$, and
	- \triangleright if A and B are continuous then so is $A \otimes B$.

In Let A and B be C^{*}-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$
ker(q_1 \otimes q_1) = I \otimes B + A \otimes J, \qquad (F)
$$

KORKA SERKER ORA

- ► Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
	- ► $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$, and
	- \triangleright if A and B are continuous then so is $A \otimes B$.
- A is exact iff $A \otimes B$ satisfies (F) for all B.

In Let A and B be C^{*}-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$
ker(q_1 \otimes q_1) = I \otimes B + A \otimes J, \qquad (F)
$$

KORKA SERKER ORA

- \triangleright Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_X, \nu)$, which in turn implies
	- ► $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$, and
	- \triangleright if A and B are continuous then so is $A \otimes B$.
- A is exact iff $A \otimes B$ satisfies (F) for all B.
- If (A, X, μ_A) is continuous and A exact, then $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous whenever (B, Y, μ_B) continuous.

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and Wassermann: A exact \Leftrightarrow fibrewise tensor product continuous for all B.

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and Wassermann: A exact \Leftrightarrow fibrewise tensor product continuous for all B.

$$
\ker(\pi_x)\otimes B+A\otimes \ker(\sigma_y)=\ker(\pi_x\otimes \sigma_y). \hspace{1cm} (F_{X,Y})
$$

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and Wassermann: A exact \Leftrightarrow fibrewise tensor product continuous for all B.

$$
\ker(\pi_x)\otimes B+A\otimes \ker(\sigma_y)=\ker(\pi_x\otimes \sigma_y). \hspace{1cm} (F_{X,Y})
$$

By contrast, given continuous (A, X, μ_A) and (B, Y, μ_B) , we have

- **►** fibrewise tensor product of A and B continuous \Leftrightarrow $(F_{X,Y})$ holds,
- \blacktriangleright ($F_{X,Y}$) holds \Rightarrow ($A \otimes B, X \times Y, \mu_A \otimes \mu_B$) continuous, but
- ► $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ continuous \neq $(F_{X,Y})$ holds.

Let A be a C^* -algebra, and \hat{Z} the maximal (primitive) ideal space of $ZM(A)$, so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of $ZM(A)$, so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of $ZM(A)$, so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

- ▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ► For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$
G_p = \{f \in C(\hat{Z}) : f(p) = 0\} \cdot A.
$$

KORKAR KERKER EL VOLO

Let A be a C^* -algebra, and \hat{Z} the maximal (primitive) ideal space of $ZM(A)$, so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

- \triangleright Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ► For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$
G_p = \{f \in C(\hat{Z}) : f(p) = 0\} \cdot A.
$$

KORKAR KERKER EL VOLO

Define the space of Glimm ideals of A via

$$
\mathrm{Glimm}(A)=\{G_p:p\in\hat{Z},G_p\neq A\},\
$$

with subspace topology inherited from \tilde{Z} .

Let A be a C^* -algebra, and \hat{Z} the maximal (primitive) ideal space of $ZM(A)$, so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

- \triangleright Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ► For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$
G_p = \{f \in C(\hat{Z}) : f(p) = 0\} \cdot A.
$$

Define the space of Glimm ideals of A via

$$
\mathrm{Glimm}(A)=\{G_p:p\in\hat{Z},G_p\neq A\},\
$$

with subspace topology inherited from \tilde{Z} .

If Glimm(A) is locally compact then A is a C_0 (Glimm(A))-algebra.

KORKAR KERKER EL VOLO

Let A be a C^* -algebra, and \hat{Z} the maximal (primitive) ideal space of $ZM(A)$, so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

- \triangleright Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ► For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$
G_p = \{f \in C(\hat{Z}) : f(p) = 0\} \cdot A.
$$

Define the space of Glimm ideals of A via

$$
\mathrm{Glimm}(A)=\{G_p:p\in\hat{Z},G_p\neq A\},\
$$

with subspace topology inherited from \hat{Z} .

- If Glimm(A) is locally compact then A is a C_0 (Glimm(A))-algebra.
- For a locally compact Hausdorff space X , a C^* -algebra A is a $C_0(X)$ -algebra iff there exists a continuous map $\text{Glimm}(A) \to X$.

KORKAR KERKER EL VOLO

Let A be a C^* -algebra, and \hat{Z} the maximal (primitive) ideal space of $ZM(A)$, so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

- \triangleright Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ► For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$
G_p = \{f \in C(\hat{Z}) : f(p) = 0\} \cdot A.
$$

Define the space of Glimm ideals of A via

$$
\mathrm{Glimm}(A)=\{G_p:p\in\hat{Z},G_p\neq A\},\
$$

with subspace topology inherited from \hat{Z} .

- If Glimm(A) is locally compact then A is a C_0 (Glimm(A))-algebra.
- For a locally compact Hausdorff space X , a C^* -algebra A is a $C_0(X)$ -algebra iff there exists a continuous map $\text{Glimm}(A) \to X$.

Remark: $Glimm(A)$ may be constructed from the topological space $Prim(A)$ of primitive ideals of A (with the hull kernel topology) alone; no need for multiplier algebras.

Theorem (M.) Let A and B be C^{*}-algebras. Then the map

$$
\begin{array}{rcl} \mathrm{Glimm}(A)\times \mathrm{Glimm}(B) & \to & \mathrm{Glimm}(A\otimes B) \\ (G_p,G_q) & \mapsto & G_p\otimes B+A\otimes G_q \end{array}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

is an open bijection

Theorem (M.) Let A and B be C^{*}-algebras. Then the map

$$
\begin{array}{rcl} \mathrm{Glimm}(A)\times \mathrm{Glimm}(B) & \to & \mathrm{Glimm}(A\otimes B) \\ (G_p,G_q) & \mapsto & G_p\otimes B+A\otimes G_q \end{array}
$$

KORKA SERKER ORA

is an open bijection , which is a homeomorphism if (i) A is σ -unital and $\text{Glimm}(A)$ locally compact (in particular if A unital), or

Theorem (M.) Let A and B be C^{*}-algebras. Then the map

$$
\begin{array}{rcl} \mathrm{Glimm}(A)\times \mathrm{Glimm}(B) & \to & \mathrm{Glimm}(A\otimes B) \\ (G_p,G_q) & \mapsto & G_p\otimes B+A\otimes G_q \end{array}
$$

KORKA SERKER ORA

is an open bijection , which is a homeomorphism if

- (i) A is σ -unital and $\text{Glimm}(A)$ locally compact (in particular if A unital), or
- (ii) A is a continuous C_0 (Glimm(A))-algebra.

Theorem (M.) Let A and B be C^{*}-algebras. Then the map

$$
\begin{array}{rcl} \mathrm{Glimm}(A)\times \mathrm{Glimm}(B) & \to & \mathrm{Glimm}(A\otimes B) \\ (G_p,G_q) & \mapsto & G_p\otimes B+A\otimes G_q \end{array}
$$

is an open bijection , which is a homeomorphism if

- (i) A is σ -unital and Glimm(A) locally compact (in particular if A unital), or
- (ii) A is a continuous C_0 (Glimm(A))-algebra.

Remarks:

1. In the case that $A \otimes B$ satisfies property (F), the 'open bijection' part was shown by Kaniuth.

Theorem (M.) Let A and B be C^{*}-algebras. Then the map

$$
\begin{array}{rcl} \mathrm{Glimm}(A)\times \mathrm{Glimm}(B) & \to & \mathrm{Glimm}(A\otimes B) \\ (G_p,G_q) & \mapsto & G_p\otimes B+A\otimes G_q \end{array}
$$

is an open bijection , which is a homeomorphism if

- (i) A is σ -unital and Glimm(A) locally compact (in particular if A unital), or
- (ii) A is a continuous C_0 (Glimm(A))-algebra.

Remarks:

- 1. In the case that $A \otimes B$ satisfies property (F), the 'open bijection' part was shown by Kaniuth.
- 2. In general, the topology on $Glimm(A \otimes B)$ depends only on the product space $Prim(A) \times Prim(B)$.

Exactness and Glimm ideals

Theorem (M.) For a C[∗] -algebra A, the following are equivalent: (i) A is exact,

イロト イ御 トイミト イミト ニミー りんぴ

Exactness and Glimm ideals

Theorem (M.)

For a C[∗] -algebra A, the following are equivalent:

- (i) A is exact,
- (ii) For every (separable, unital) C^* -algebra B and $q \in \mathrm{Glimm}(B)$, the sequence

$$
0 \longrightarrow A \otimes G_q \xrightarrow{\operatorname{id} \otimes \iota} A \otimes B \xrightarrow{\operatorname{id} \otimes \sigma_q} A \otimes (B/G_q) \longrightarrow 0
$$

KORK ERKER ADE YOUR

is exact, where $\sigma_a : B \to B/G_a$ is the quotient map, (i.e. $A \otimes G_{\alpha} = \text{ker}(\text{id} \otimes \sigma_{\alpha})$).

Exactness and Glimm ideals

Theorem (M.)

For a C[∗] -algebra A, the following are equivalent:

- (i) A is exact,
- (ii) For every (separable, unital) C^* -algebra B and $q \in \mathrm{Glimm}(B)$, the sequence

$$
0 \longrightarrow A \otimes G_q \xrightarrow{\mathrm{id} \otimes \iota} A \otimes B \xrightarrow{\mathrm{id} \otimes \sigma_q} A \otimes (B/G_q) \longrightarrow 0
$$

is exact, where $\sigma_a : B \to B/G_a$ is the quotient map, (i.e. $A \otimes G_{\sigma} = \text{ker}(\text{id} \otimes \sigma_{\sigma})$).

(iii) For every C^* -algebra B and $(p, q) \in \text{Glimm}(A) \times \text{Glimm}(B)$, we have

$$
A\otimes G_q+G_p\otimes B=\ker(\pi_p\otimes \sigma_q),
$$

KORKAR KERKER EL VOLO

with $\pi_p : A \to A/G_p, \sigma_q : B \to B/G_q$ the quotient maps.

C_0 (Glimm(A))-representations

If $Prim(A)$ is Hausdorff in the hull-kernel topology, then

- \triangleright Prim(A) = Glimm(A) as sets of ideals and topologically, and
- A is canonically a continuous $C_0(\mathrm{Prim}(A))$ -algebra, with simple fibres given by the primitive quotients of A.

C_0 (Glimm(A))-representations

If $Prim(A)$ is Hausdorff in the hull-kernel topology, then

- \blacktriangleright Prim(A) = Glimm(A) as sets of ideals and topologically, and
- A is canonically a continuous $C_0(\mathrm{Prim}(A))$ -algebra, with simple fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)

A separable C^* -algebra A is called quasi-standard if

- \blacktriangleright (A, Glimm(A), θ_A) is a continuous C_0 (Glimm(A))-algebra, and
- **►** there is a dense subset $D \subseteq \text{Glimm}(A)$ with G_p primitive for all $p \in D$.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

C_0 (Glimm(A))-representations

If $Prim(A)$ is Hausdorff in the hull-kernel topology, then

- \blacktriangleright Prim(A) = Glimm(A) as sets of ideals and topologically, and
- A is canonically a continuous $C_0(\mathrm{Prim}(A))$ -algebra, with simple fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)

A separable C^* -algebra A is called *quasi-standard* if

- \blacktriangleright (A, Glimm(A), θ_A) is a continuous C_0 (Glimm(A))-algebra, and
- **►** there is a dense subset $D \subseteq \text{Glimm}(A)$ with G_p primitive for all $p \in D$.

Examples of quasi-standard C*-algebras: all von Neumann algebras, local multiplier algebras, and many group C*-algebras.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

We have the following relations:

 $\{ C^*$ -algebras A with $\mathrm{Prim}(A)$ Hausdorff }

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 $= \{$ continuous $C_0(\text{Prim}(A))$ -algebras }

We have the following relations:

 $\{ C^*$ -algebras A with $\mathrm{Prim}(A)$ Hausdorff }

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- $= \{$ continuous $C_0(\text{Prim}(A))$ -algebras }
- \subsetneq { quasi-standard C*-algebras A}

We have the following relations:

 $\{ C^*$ -algebras A with $\mathrm{Prim}(A)$ Hausdorff }

- $= \{$ continuous $C_0(\text{Prim}(A))$ -algebras }
- \subset { quasi-standard C*-algebras A}
- \subsetneq { continuous C_0 (Glimm(A))-algebras }

We have the following relations:

 $\{ C^*$ -algebras A with $\mathrm{Prim}(A)$ Hausdorff }

- $= \{$ continuous $C_0(\text{Prim}(A))$ -algebras }
- \subset { quasi-standard C*-algebras A}
- \subsetneq { continuous C_0 (Glimm(A))-algebras }
- \subset { $C(\hat{Z})$ -algebras }
- $=$ { all C^* -algebras }.

We have the following relations:

 $\{ C^*$ -algebras A with $\mathrm{Prim}(A)$ Hausdorff }

- $= \{$ continuous $C_0(\text{Prim}(A))$ -algebras }
- \subset { quasi-standard C*-algebras A}
- \subsetneq { continuous C_0 (Glimm(A))-algebras }
- \subset { $C(\hat{Z})$ -algebras }
- $=$ { all C^* -algebras }.

Question: are these classes closed under tensor products?

KORKAR KERKER EL VOLO

Theorem (M.)

Let A be a C[∗] -algebra.

(i) If $(A, \text{Glimm}(A), \theta_A)$ is a continuous $C_0(\text{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^{*}-algebras B with $(B,\mathrm{Glimm}(B),\theta_B)$ continuous, the C_0 (Glimm($A \otimes B$))-algebra $(A \otimes B, \text{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,

Theorem (M.)

Let A be a C[∗] -algebra.

- (i) If $(A, \text{Glimm}(A), \theta_A)$ is a continuous $C_0(\text{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^{*}-algebras B with $(B,\mathrm{Glimm}(B),\theta_B)$ continuous, the C_0 (Glimm($A \otimes B$))-algebra $(A \otimes B, \text{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,
- (ii) If A is quasi-standard, then A is exact $\Leftrightarrow A\otimes B$ is quasi standard for all quasi-standard C[∗] -algebras B,

Theorem (M.)

Let A be a C[∗] -algebra.

- (i) If $(A, \text{Glimm}(A), \theta_A)$ is a continuous $C_0(\text{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^{*}-algebras B with $(B,\mathrm{Glimm}(B),\theta_B)$ continuous, the C_0 (Glimm($A \otimes B$))-algebra $(A \otimes B, \text{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,
- (ii) If A is quasi-standard, then A is exact $\Leftrightarrow A\otimes B$ is quasi standard for all quasi-standard C[∗] -algebras B,

KORK ERKER ADE YOUR

(iii) If $\mathrm{Prim}(A)$ is Hausdorff, then A is exact $\Leftrightarrow \mathrm{Prim}(A \otimes B)$ is Hausdorff for all C^* -algebras B with $\text{Prim}(B)$ Hausdorff.

Theorem (M.)

Let A be a C[∗] -algebra.

- (i) If $(A, \text{Glimm}(A), \theta_A)$ is a continuous $C_0(\text{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^{*}-algebras B with $(B,\mathrm{Glimm}(B),\theta_B)$ continuous, the C_0 (Glimm($A \otimes B$))-algebra $(A \otimes B, \text{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,
- (ii) If A is quasi-standard, then A is exact $\Leftrightarrow A\otimes B$ is quasi standard for all quasi-standard C[∗] -algebras B,
- (iii) If $\mathrm{Prim}(A)$ is Hausdorff, then A is exact $\Leftrightarrow \mathrm{Prim}(A \otimes B)$ is Hausdorff for all C^* -algebras B with $\text{Prim}(B)$ Hausdorff.

Theorem

Let A be a unital quasi-standard C*-algebra. Then A is nuclear $\Leftrightarrow A \otimes_{\text{max}} B$ is quasi-standard for all quasi-standard C*-algebras B.