Exact C*-algebras and $C_0(X)$ -structure

David McConnell Trinity College Dublin

Canadian Annual Symposium on Operator Algebras and Their Applications

June 2014

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C*-algebra. If there exists a *-homomorphism $\mu_A: C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A,X,μ_A) is a $C_0(X)$ -algebra .

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C*-algebra. If there exists a *-homomorphism $\mu_A: C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A,X,μ_A) is a $C_0(X)$ -algebra .

For $f \in C_0(X)$, we will write $f \cdot$ for $\mu_A(f)$.

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C*-algebra. If there exists a *-homomorphism $\mu_A: C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A,X,μ_A) is a $C_0(X)$ -algebra .

For $f \in C_0(X)$, we will write $f \cdot$ for $\mu_A(f)$. For $x \in X$, define

▶ $C_{0,x}(X) = \{f \in C_0(X) : f(x) = 0\}$, and note that $C_{0,x}(X) \cdot A$ is a closed two-sided ideal of A,

Definition (Kasparov)

Let X be a locally compact Hausdorff space and A a C*-algebra. If there exists a *-homomorphism $\mu_A: C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A,X,μ_A) is a $C_0(X)$ -algebra .

For $f \in C_0(X)$, we will write $f \cdot$ for $\mu_A(f)$.

For $x \in X$, define

- ▶ $C_{0,x}(X) = \{f \in C_0(X) : f(x) = 0\}$, and note that $C_{0,x}(X) \cdot A$ is a closed two-sided ideal of A,
- ▶ $A_x = \frac{A}{C_{0,x}(X) \cdot A}$ the quotient C*-algebra, and
- ▶ $\pi_{x}: A \rightarrow A_{x}$ the quotient homomorphism.

We regard A as an algebra of sections of $\coprod_{x \in X} A_x$, identifying each $a \in A$ with $\hat{a}: X \to \coprod_{x \in X} A_x$, where

$$\hat{a}(x) = \pi_x(a)$$

for all $x \in X$.

We regard A as an algebra of sections of $\coprod_{x \in X} A_x$, identifying each $a \in A$ with $\hat{a}: X \to \coprod_{x \in X} A_x$, where

$$\hat{a}(x) = \pi_x(a)$$

for all $x \in X$.

For all $a \in A$, we have

- $\|a\| = \sup_{x \in X} \|\pi_x(a)\|,$
- ▶ the function $X \to \mathbb{R}_+$, $x \mapsto \|\pi_x(a)\|$ is upper-semicontinuous, and vanishes at infinity on X.

Thus, we think of a $C_0(X)$ -algebra as the algebra of sections (vanishing at infinity) of a C*-bundle over X.

We regard A as an algebra of sections of $\coprod_{x \in X} A_x$, identifying each $a \in A$ with $\hat{a}: X \to \coprod_{x \in X} A_x$, where

$$\hat{a}(x) = \pi_x(a)$$

for all $x \in X$.

For all $a \in A$, we have

- $\|a\| = \sup_{x \in X} \|\pi_x(a)\|,$
- ▶ the function $X \to \mathbb{R}_+$, $x \mapsto \|\pi_x(a)\|$ is upper-semicontinuous, and vanishes at infinity on X.

Thus, we think of a $C_0(X)$ -algebra as the algebra of sections (vanishing at infinity) of a C*-bundle over X.

If for all $a \in A$, the norm functions $x \mapsto \|\pi_x(a)\|$ are continuous on X, then we say that (A, X, μ_A) is a *continuous* $C_0(X)$ -algebra.

Interest in $C_0(X)$ -algebras and C*-bundles: to decompose the study of a given C*-algebra A into that of

- \blacktriangleright the fibre algebras A_x ,
- ▶ the behaviour of A as an algebra of sections of $\coprod_{x \in X} A_x$.

Interest in $C_0(X)$ -algebras and C*-bundles: to decompose the study of a given C*-algebra A into that of

- \blacktriangleright the fibre algebras A_x ,
- ▶ the behaviour of A as an algebra of sections of $\coprod_{x \in X} A_x$.

e.g. every irreducible representation of a $C_0(X)$ -algebra A is lifted from a fibre A_x for some $x \in X$.

Interest in $C_0(X)$ -algebras and C*-bundles: to decompose the study of a given C*-algebra A into that of

- \blacktriangleright the fibre algebras A_x ,
- ▶ the behaviour of A as an algebra of sections of $\coprod_{x \in X} A_x$.

e.g. every irreducible representation of a $C_0(X)$ -algebra A is lifted from a fibre A_X for some $X \in X$.

Question: For two C*-algebras A and B, let $A\otimes B$ denote their minimal tensor product. Given a $C_0(X)$ -algebra structure on A and a $C_0(Y)$ -algebra structure on B, what can be said about $A\otimes B$ as a $C_0(X\times Y)$ -algebra?

Interest in $C_0(X)$ -algebras and C*-bundles: to decompose the study of a given C*-algebra A into that of

- \blacktriangleright the fibre algebras A_x ,
- ▶ the behaviour of A as an algebra of sections of $\coprod_{x \in X} A_x$.

e.g. every irreducible representation of a $C_0(X)$ -algebra A is lifted from a fibre A_x for some $x \in X$.

Question: For two C*-algebras A and B, let $A \otimes B$ denote their minimal tensor product. Given a $C_0(X)$ -algebra structure on A and a $C_0(Y)$ -algebra structure on B, what can be said about $A \otimes B$ as a $C_0(X \times Y)$ -algebra?

Related question: ideal structure of $A \otimes B$?

Ideals of $A \otimes B$

If $I \triangleleft A$ and $J \triangleleft B$, let $q_I : A \rightarrow A/I$ and $q_J : B \rightarrow B/J$ be the quotient maps. Then $q_I \odot q_J : A \odot B \rightarrow (A/I) \odot (B/J)$ has

$$\ker(q_I\odot q_J)=I\odot B+A\odot J,$$

which, by injectivity, has closure

$$I\otimes B+A\otimes J\triangleleft A\otimes B.$$

Ideals of $A \otimes B$

If $I \triangleleft A$ and $J \triangleleft B$, let $q_I : A \rightarrow A/I$ and $q_J : B \rightarrow B/J$ be the quotient maps. Then $q_I \odot q_J : A \odot B \rightarrow (A/I) \odot (B/J)$ has

$$\ker(q_I\odot q_J)=I\odot B+A\odot J,$$

which, by injectivity, has closure

$$I \otimes B + A \otimes J \triangleleft A \otimes B$$
.

Extending $q_I \odot q_J$ to $q_I \otimes q_J : A \otimes B \to (A/I) \otimes (B/J)$ gives a closed two-sided ideal

$$\ker(q_I \otimes q_J) \triangleleft A \otimes B$$
.

Ideals of $A \otimes B$

If $I \triangleleft A$ and $J \triangleleft B$, let $q_I : A \rightarrow A/I$ and $q_J : B \rightarrow B/J$ be the quotient maps. Then $q_I \odot q_J : A \odot B \rightarrow (A/I) \odot (B/J)$ has

$$\ker(q_I\odot q_J)=I\odot B+A\odot J,$$

which, by injectivity, has closure

$$I \otimes B + A \otimes J \triangleleft A \otimes B$$
.

Extending $q_I \odot q_J$ to $q_I \otimes q_J : A \otimes B \to (A/I) \otimes (B/J)$ gives a closed two-sided ideal

$$\ker(q_I \otimes q_J) \triangleleft A \otimes B$$
.

Clearly

$$\ker(q_I \otimes q_J) \supseteq I \otimes B + A \otimes J.$$

but this inclusion may be strict.

Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_x : A \to A_x$ and $\sigma_y : B \to B_y$ the quotient *-homomorphisms, where $x \in X, y \in Y$.

- ▶ Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_X : A \to A_X$ and $\sigma_Y : B \to B_Y$ the quotient *-homomorphisms, where $X \in X, Y \in Y$.
- ▶ We get *-homomorphisms $\pi_x \otimes \sigma_y : A \otimes B \to A_x \otimes B_y$,

- ▶ Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_X : A \to A_X$ and $\sigma_Y : B \to B_Y$ the quotient *-homomorphisms, where $X \in X, Y \in Y$.
- ▶ We get *-homomorphisms $\pi_x \otimes \sigma_y : A \otimes B \to A_x \otimes B_y$,
- ▶ Hence we may regard $A \otimes B$ as an algebra of sections of $\coprod \{A_x \otimes B_y : (x,y) \in X \times Y\}$, where $c \in A \otimes B$ is identified with

$$\begin{array}{lcl} \hat{c}: X \times Y & \to & \coprod \{A_x \otimes B_y : (x,y) \in X \times Y\} \\ \hat{c}((x,y)) & = & (\pi_x \otimes \sigma_y)(c). \end{array}$$

- Let (A, X, μ_A) be a $C_0(X)$ -algebra and (B, Y, μ_B) a $C_0(Y)$ -algebra, and denote by $\pi_x : A \to A_x$ and $\sigma_y : B \to B_y$ the quotient *-homomorphisms, where $x \in X, y \in Y$.
- ▶ We get *-homomorphisms $\pi_x \otimes \sigma_y : A \otimes B \to A_x \otimes B_y$,
- ▶ Hence we may regard $A \otimes B$ as an algebra of sections of $\coprod \{A_x \otimes B_y : (x,y) \in X \times Y\}$, where $c \in A \otimes B$ is identified with

$$\hat{c}: X \times Y \rightarrow \coprod \{A_x \otimes B_y : (x, y) \in X \times Y\}
\hat{c}((x, y)) = (\pi_x \otimes \sigma_y)(c).$$

▶ This construction gives a C*-bundle decomposition of $A \otimes B$ (Kirchberg & Wassermann).

Since $C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$ and $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism

 $\mu_A\otimes\mu_B: C_0(X\times Y)=C_0(X)\otimes C_0(Y)\to ZM(A)\otimes ZM(B)\subseteq ZM(A\otimes B).$

Since $C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$ and $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism

$$\mu_A\otimes\mu_B: C_0(X\times Y)=C_0(X)\otimes C_0(Y)\to ZM(A)\otimes ZM(B)\subseteq ZM(A\otimes B).$$

The triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra.

Since $C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$ and $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism

$$\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \to ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B).$$

The triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra. For $(x, y) \in X \times Y$, it can be shown that

$$C_{0,(x,y)}(X\times Y)\cdot (A\otimes B)=(C_{0,x}(X)\cdot A)\otimes B+A\otimes (C_{0,y}(Y)\cdot B)$$

Since $C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$ and $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism

$$\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \to ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B).$$

The triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra. For $(x, y) \in X \times Y$, it can be shown that

$$C_{0,(x,y)}(X\times Y)\cdot (A\otimes B)=(C_{0,x}(X)\cdot A)\otimes B+A\otimes (C_{0,y}(Y)\cdot B)$$

Hence the fibre algebras of $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ are given by

$$(A \otimes B)_{(x,y)} = \frac{A \otimes B}{\ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y)}$$

Since $C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$ and $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism

$$\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \to ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B).$$

The triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra. For $(x, y) \in X \times Y$, it can be shown that

$$C_{0,(x,y)}(X\times Y)\cdot (A\otimes B)=(C_{0,x}(X)\cdot A)\otimes B+A\otimes (C_{0,y}(Y)\cdot B)$$

Hence the fibre algebras of $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ are given by

$$(A \otimes B)_{(x,y)} = \frac{A \otimes B}{\ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y)}$$

$$\neq A_x \otimes B_y,$$

in general.

Continuity of the fibrewise tensor product

Clearly we have

$$(A \otimes B)_{(x,y)} \equiv A_x \otimes B_y$$

$$\Leftrightarrow \ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).$$
 (F_{X,Y})

Continuity of the fibrewise tensor product

Clearly we have

$$(A \otimes B)_{(x,y)} \equiv A_x \otimes B_y$$

$$\Leftrightarrow \ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).$$
 (F_{X,Y})

Theorem (Kirchberg & Wassermann)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra and (B, Y, μ_B) a continuous $C_0(Y)$ -algebra. Then the norm functions

$$(x,y)\mapsto \|(\pi_x\otimes\sigma_y)(c)\|$$

are continuous on $X \times Y$ for all $c \in A \otimes B$ if and only if $(F_{X,Y})$ holds.

Continuity of the fibrewise tensor product

Clearly we have

$$(A \otimes B)_{(x,y)} \equiv A_x \otimes B_y$$

$$\Leftrightarrow \ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).$$
 (F_{X,Y})

Theorem (Kirchberg & Wassermann)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra and (B, Y, μ_B) a continuous $C_0(Y)$ -algebra. Then the norm functions

$$(x,y)\mapsto \|(\pi_x\otimes\sigma_y)(c)\|$$

are continuous on $X \times Y$ for all $c \in A \otimes B$ if and only if $(F_{X,Y})$ holds. Note that if $(F_{X,Y})$ holds, then this also implies that the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

- ▶ the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ▶ the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

- ▶ the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ▶ the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ▶ Let $A = \prod_{n\geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta\mathbb{N})$ -algebra, with fibres $A_n = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.

- ▶ the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ▶ the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ▶ Let $A = \prod_{n \geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $A_n = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- ▶ B = B(H) and $Y = \{y\}$ a one-point space, so that B is trivially a continuous C(Y)-algebra.

- ▶ the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ▶ the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- Let $A = \prod_{n \geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $A_n = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- ▶ B = B(H) and $Y = \{y\}$ a one-point space, so that B is trivially a continuous C(Y)-algebra.
- ▶ Then $(A \otimes B, \beta \mathbb{N}, \mu_A \otimes 1)$ is a continuous $C(\beta \mathbb{N})$ -algebra,

- ▶ the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ▶ the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ▶ Let $A = \prod_{n \geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $A_n = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- ▶ B = B(H) and $Y = \{y\}$ a one-point space, so that B is trivially a continuous C(Y)-algebra.
- ▶ Then $(A \otimes B, \beta \mathbb{N}, \mu_A \otimes 1)$ is a continuous $C(\beta \mathbb{N})$ -algebra, but there is $\rho \in \beta \mathbb{N} \setminus \mathbb{N}$ such that
 - ▶ $(A \otimes B)_p \neq A_p \otimes B$ (i.e. property $(F_{X,Y})$ fails) and
 - ▶ $p \mapsto \|(\pi_p \otimes \mathrm{id})(c)\|$ is discontinuous at p for some $c \in A \otimes B$, hence the fibrewise tensor product is a discontinuous C*-bundle.

- ▶ the fibrewise tensor product of (A, X, μ_A) and (B, Y, μ_B) is discontinuous, but
- ▶ the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- Let $A = \prod_{n \geq 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $A_n = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- ▶ B = B(H) and $Y = \{y\}$ a one-point space, so that B is trivially a continuous C(Y)-algebra.
- ▶ Then $(A \otimes B, \beta \mathbb{N}, \mu_A \otimes 1)$ is a continuous $C(\beta \mathbb{N})$ -algebra, but there is $p \in \beta \mathbb{N} \setminus \mathbb{N}$ such that
 - ▶ $(A \otimes B)_p \neq A_p \otimes B$ (i.e. property $(F_{X,Y})$ fails) and
 - ▶ $p \mapsto \|(\pi_p \otimes \mathrm{id})(c)\|$ is discontinuous at p for some $c \in A \otimes B$, hence the fibrewise tensor product is a discontinuous C*-bundle.
- ▶ In fact this occurs whenever B is an inexact C*-algebra.

Property (F)

▶ Let A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$\ker(q_I\otimes q_J)=I\otimes B+A\otimes J, \tag{F}$$

then $A \otimes B$ is said to satisfy Tomiyama's property (F).

Property (F)

▶ Let A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$\ker(q_I \otimes q_J) = I \otimes B + A \otimes J, \tag{F}$$

then $A \otimes B$ is said to satisfy Tomiyama's property (F).

- ▶ Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
 - $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$,

Property (F)

▶ Let A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$\ker(q_I \otimes q_J) = I \otimes B + A \otimes J, \tag{F}$$

then $A \otimes B$ is said to satisfy Tomiyama's property (F).

- ▶ Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
 - $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$, and
 - ▶ if A and B are continuous then so is $A \otimes B$.

Property (F)

▶ Let A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$\ker(q_I \otimes q_J) = I \otimes B + A \otimes J, \tag{F}$$

then $A \otimes B$ is said to satisfy Tomiyama's property (F).

- ▶ Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
 - $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$, and
 - ▶ if A and B are continuous then so is $A \otimes B$.
- ▶ A is exact iff $A \otimes B$ satisfies (F) for all B.

Property (F)

▶ Let A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$\ker(q_I \otimes q_J) = I \otimes B + A \otimes J, \tag{F}$$

then $A \otimes B$ is said to satisfy Tomiyama's property (F).

- ▶ Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
 - $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$, and
 - if A and B are continuous then so is $A \otimes B$.
- A is exact iff A ⊗ B satisfies (F) for all B.
- ▶ If (A, X, μ_A) is continuous and A exact, then $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous whenever (B, Y, μ_B) continuous.

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and Wassermann: A exact \Leftrightarrow fibrewise tensor product continuous for all B.

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and Wassermann: A exact \Leftrightarrow fibrewise tensor product continuous for all B.

$$\ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).$$
 $(F_{X,Y})$

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and Wassermann: A exact \Leftrightarrow fibrewise tensor product continuous for all B.

$$\ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y).$$
 $(F_{X,Y})$

By contrast, given continuous (A, X, μ_A) and (B, Y, μ_B) , we have

- ▶ fibrewise tensor product of A and B continuous \Leftrightarrow $(F_{X,Y})$ holds,
- ▶ $(F_{X,Y})$ holds \Rightarrow $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ continuous, but
- ▶ $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ continuous $\not\Rightarrow (F_{X,Y})$ holds.

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A: C(\hat{Z}) \equiv ZM(A)$.

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A: C(\hat{Z}) \equiv ZM(A)$.

▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A: C(\hat{Z}) \equiv ZM(A)$.

- ▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ▶ For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$G_p = \{ f \in C(\hat{Z}) : f(p) = 0 \} \cdot A.$$

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A: C(\hat{Z}) \equiv ZM(A)$.

- ▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ▶ For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$G_p = \{ f \in C(\hat{Z}) : f(p) = 0 \} \cdot A.$$

Define the space of *Glimm ideals* of *A* via

$$Glimm(A) = \{G_p : p \in \hat{Z}, G_p \neq A\},\$$

with subspace topology inherited from \hat{Z} .

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A: C(\hat{Z}) \equiv ZM(A)$.

- ▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ▶ For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$G_p = \{ f \in C(\hat{Z}) : f(p) = 0 \} \cdot A.$$

Define the space of Glimm ideals of A via

$$Glimm(A) = \{G_p : p \in \hat{Z}, G_p \neq A\},\$$

with subspace topology inherited from \hat{Z} .

▶ If Glimm(A) is locally compact then A is a $C_0(Glimm(A))$ -algebra.

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A: C(\hat{Z}) \equiv ZM(A)$.

- ▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ▶ For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$G_p = \{ f \in C(\hat{Z}) : f(p) = 0 \} \cdot A.$$

Define the space of Glimm ideals of A via

$$Glimm(A) = \{G_p : p \in \hat{Z}, G_p \neq A\},\$$

with subspace topology inherited from \hat{Z} .

- ▶ If Glimm(A) is locally compact then A is a $C_0(Glimm(A))$ -algebra.
- ▶ For a locally compact Hausdorff space X, a C*-algebra A is a $C_0(X)$ -algebra iff there exists a continuous map $\operatorname{Glimm}(A) \to X$.

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A: C(\hat{Z}) \equiv ZM(A)$.

- ▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ▶ For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$G_p = \{ f \in C(\hat{Z}) : f(p) = 0 \} \cdot A.$$

Define the space of *Glimm ideals* of *A* via

$$Glimm(A) = \{G_p : p \in \hat{Z}, G_p \neq A\},\$$

with subspace topology inherited from \hat{Z} .

- ▶ If Glimm(A) is locally compact then A is a $C_0(Glimm(A))$ -algebra.
- ▶ For a locally compact Hausdorff space X, a C^* -algebra A is a $C_0(X)$ -algebra iff there exists a continuous map $\operatorname{Glimm}(A) \to X$.

Remark: Glimm(A) may be constructed from the topological space Prim(A) of primitive ideals of A (with the hull kernel topology) alone; no need for multiplier algebras.

Theorem (M.)

Let A and B be C*-algebras. Then the map

$$\operatorname{Glimm}(A) \times \operatorname{Glimm}(B) \rightarrow \operatorname{Glimm}(A \otimes B)$$

 $(G_p, G_q) \mapsto G_p \otimes B + A \otimes G_q$

is an open bijection

Theorem (M.)

Let A and B be C*-algebras. Then the map

$$\operatorname{Glimm}(A) \times \operatorname{Glimm}(B) \rightarrow \operatorname{Glimm}(A \otimes B)$$

 $(G_p, G_q) \mapsto G_p \otimes B + A \otimes G_q$

is an open bijection , which is a homeomorphism if

(i) A is σ -unital and Glimm(A) locally compact (in particular if A unital), or

Theorem (M.)

Let A and B be C*-algebras. Then the map

$$\operatorname{Glimm}(A) \times \operatorname{Glimm}(B) \rightarrow \operatorname{Glimm}(A \otimes B)$$

 $(G_p, G_q) \mapsto G_p \otimes B + A \otimes G_q$

is an open bijection , which is a homeomorphism if

- (i) A is σ -unital and Glimm(A) locally compact (in particular if A unital), or
- (ii) A is a continuous $C_0(Glimm(A))$ -algebra.

Theorem (M.)

Let A and B be C*-algebras. Then the map

$$\operatorname{Glimm}(A) \times \operatorname{Glimm}(B) \rightarrow \operatorname{Glimm}(A \otimes B)$$

 $(G_p, G_q) \mapsto G_p \otimes B + A \otimes G_q$

is an open bijection , which is a homeomorphism if

- (i) A is σ -unital and Glimm(A) locally compact (in particular if A unital), or
- (ii) A is a continuous $C_0(Glimm(A))$ -algebra.

Remarks:

1. In the case that $A \otimes B$ satisfies property (F), the 'open bijection' part was shown by Kaniuth.

Theorem (M.)

Let A and B be C*-algebras. Then the map

$$\operatorname{Glimm}(A) \times \operatorname{Glimm}(B) \rightarrow \operatorname{Glimm}(A \otimes B)$$

 $(G_p, G_q) \mapsto G_p \otimes B + A \otimes G_q$

is an open bijection , which is a homeomorphism if

- (i) A is σ -unital and Glimm(A) locally compact (in particular if A unital), or
- (ii) A is a continuous $C_0(Glimm(A))$ -algebra.

Remarks:

- 1. In the case that $A \otimes B$ satisfies property (F), the 'open bijection' part was shown by Kaniuth.
- 2. In general, the topology on $\operatorname{Glimm}(A \otimes B)$ depends only on the product space $\operatorname{Prim}(A) \times \operatorname{Prim}(B)$.

Exactness and Glimm ideals

Theorem (M.)

For a C*-algebra A, the following are equivalent:

(i) A is exact,

Exactness and Glimm ideals

Theorem (M.)

For a C*-algebra A, the following are equivalent:

- (i) A is exact,
- (ii) For every (separable, unital) C^* -algebra B and $q \in \operatorname{Glimm}(B)$, the sequence

$$0 \longrightarrow A \otimes G_q \xrightarrow{\mathrm{id} \otimes \iota} A \otimes B \xrightarrow{\mathrm{id} \otimes \sigma_q} A \otimes (B/G_q) \longrightarrow 0$$

is exact, where $\sigma_q: B \to B/G_q$ is the quotient map, (i.e. $A \otimes G_q = \ker(\mathrm{id} \otimes \sigma_q)$).

Exactness and Glimm ideals

Theorem (M.)

For a C*-algebra A, the following are equivalent:

- (i) A is exact,
- (ii) For every (separable, unital) C^* -algebra B and $q \in \operatorname{Glimm}(B)$, the sequence

$$0 \longrightarrow A \otimes G_q \xrightarrow{\mathrm{id} \otimes \iota} A \otimes B \xrightarrow{\mathrm{id} \otimes \sigma_q} A \otimes (B/G_q) \longrightarrow 0$$

is exact, where $\sigma_q : B \to B/G_q$ is the quotient map, (i.e. $A \otimes G_q = \ker(\mathrm{id} \otimes \sigma_q)$).

(iii) For every C^* -algebra B and $(p,q) \in \operatorname{Glimm}(A) \times \operatorname{Glimm}(B)$, we have

$$A\otimes G_q+G_p\otimes B=\ker(\pi_p\otimes\sigma_q),$$

with $\pi_p: A \to A/G_p, \sigma_q: B \to B/G_q$ the quotient maps.

$C_0(\operatorname{Glimm}(A))$ -representations

If Prim(A) is Hausdorff in the hull-kernel topology, then

- $ightharpoonup \operatorname{Prim}(A) = \operatorname{Glimm}(A)$ as sets of ideals and topologically, and
- ▶ A is canonically a continuous $C_0(\operatorname{Prim}(A))$ -algebra, with simple fibres given by the primitive quotients of A.

$C_0(\operatorname{Glimm}(A))$ -representations

If Prim(A) is Hausdorff in the hull-kernel topology, then

- ▶ Prim(A) = Glimm(A) as sets of ideals and topologically, and
- ▶ A is canonically a continuous $C_0(\text{Prim}(A))$ -algebra, with simple fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)

A separable C*-algebra A is called quasi-standard if

- ▶ $(A, Glimm(A), \theta_A)$ is a continuous $C_0(Glimm(A))$ -algebra, and
- ▶ there is a dense subset $D \subseteq \operatorname{Glimm}(A)$ with G_p primitive for all $p \in D$.

$C_0(\operatorname{Glimm}(A))$ -representations

If Prim(A) is Hausdorff in the hull-kernel topology, then

- ▶ Prim(A) = Glimm(A) as sets of ideals and topologically, and
- ▶ A is canonically a continuous $C_0(\text{Prim}(A))$ -algebra, with simple fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)

A separable C*-algebra A is called quasi-standard if

- ▶ $(A, Glimm(A), \theta_A)$ is a continuous $C_0(Glimm(A))$ -algebra, and
- ▶ there is a dense subset $D \subseteq \operatorname{Glimm}(A)$ with G_p primitive for all $p \in D$.

Examples of quasi-standard C*-algebras: all von Neumann algebras, local multiplier algebras, and many group C*-algebras.

```
We have the following relations:  \{ C^*\text{-algebras } A \text{ with } \operatorname{Prim}(A) \text{ Hausdorff } \}   = \{ \text{ continuous } C_0(\operatorname{Prim}(A))\text{-algebras } \}
```

```
We have the following relations:
       { C^*-algebras A with Prim(A) Hausdorff }
 = { continuous C_0(\operatorname{Prim}(A))-algebras }
 \subseteq { quasi-standard C*-algebras A}
 \subseteq { continuous C_0(\operatorname{Glimm}(A))-algebras }
 \subseteq { C(\hat{Z})-algebras }
 = { all C*-algebras }.
```

```
We have the following relations:
      { C^*-algebras A with Prim(A) Hausdorff }
 = { continuous C_0(\operatorname{Prim}(A))-algebras }
 \subseteq { quasi-standard C*-algebras A}
      { continuous C_0(Glimm(A))-algebras }
 \subseteq { C(\hat{Z})-algebras }
 = { all C*-algebras }.
Question: are these classes closed under tensor products?
```

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ()

Theorem (M.)

Let A be a C*-algebra.

(i) If $(A, \operatorname{Glimm}(A), \theta_A)$ is a continuous $C_0(\operatorname{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^* -algebras B with $(B, \operatorname{Glimm}(B), \theta_B)$ continuous, the $C_0(\operatorname{Glimm}(A \otimes B))$ -algebra $(A \otimes B, \operatorname{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,

Theorem (M.)

Let A be a C*-algebra.

- (i) If $(A, \operatorname{Glimm}(A), \theta_A)$ is a continuous $C_0(\operatorname{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^* -algebras B with $(B, \operatorname{Glimm}(B), \theta_B)$ continuous, the $C_0(\operatorname{Glimm}(A \otimes B))$ -algebra $(A \otimes B, \operatorname{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,
- (ii) If A is quasi-standard, then A is exact $\Leftrightarrow A \otimes B$ is quasi-standard for all quasi-standard C^* -algebras B,

Theorem (M.)

Let A be a C*-algebra.

- (i) If $(A, \operatorname{Glimm}(A), \theta_A)$ is a continuous $C_0(\operatorname{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^* -algebras B with $(B, \operatorname{Glimm}(B), \theta_B)$ continuous, the $C_0(\operatorname{Glimm}(A \otimes B))$ -algebra $(A \otimes B, \operatorname{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,
- (ii) If A is quasi-standard, then A is exact $\Leftrightarrow A \otimes B$ is quasi-standard for all quasi-standard C^* -algebras B,
- (iii) If $\operatorname{Prim}(A)$ is Hausdorff, then A is exact $\Leftrightarrow \operatorname{Prim}(A \otimes B)$ is Hausdorff for all C^* -algebras B with $\operatorname{Prim}(B)$ Hausdorff.

Theorem (M.)

Let A be a C*-algebra.

- (i) If $(A, \operatorname{Glimm}(A), \theta_A)$ is a continuous $C_0(\operatorname{Glimm}(A))$ -algebra, then A is exact \Leftrightarrow for all C^* -algebras B with $(B, \operatorname{Glimm}(B), \theta_B)$ continuous, the $C_0(\operatorname{Glimm}(A \otimes B))$ -algebra $(A \otimes B, \operatorname{Glimm}(A \otimes B), \theta_A \otimes \theta_B)$ is continuous,
- (ii) If A is quasi-standard, then A is exact $\Leftrightarrow A \otimes B$ is quasi standard for all quasi-standard C^* -algebras B,
- (iii) If Prim(A) is Hausdorff, then A is exact $\Leftrightarrow Prim(A \otimes B)$ is Hausdorff for all C^* -algebras B with Prim(B) Hausdorff.

Theorem

Let A be a unital quasi-standard C^* -algebra. Then A is nuclear $\Leftrightarrow A \otimes_{\max} B$ is quasi-standard for all quasi-standard C^* -algebras B.