Noncommutative Geometry and Conformal **Geometry** (joint work with Hang Wang)

Raphaël Ponge

Seoul National University & U.C. Berkeley

June 27, 2014

1 / 21

イロト イ部 トメ きょ メ きょう き

Main References

- RP+HW: Noncommutative geometry, conformal geometry, and the local equivariant index theorem. arXiv:1210.2032. Superceded by the 3 papers below.
- $RP+HW$: Index map, σ -connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131. To appear in J. K -Theory.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv soon.
- RP+HW: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. To be posted on arXiv soon.
- RP+HW: Noncommutative geometry and conformal geometry. III. Poincaré duality and Vafa-Witten inequality. arXiv:1310.6138.

Conformal Geometry

Conformal Geometry

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... 目 つくへ

Overview of Noncommutative Geometry

4 / 21

Spectral Triples

Definition

A spectral triple (A, H, D) consists of

1 A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.

2 An involutive algebra A represented in H .

 \bullet A selfadjoint unbounded operator D on H such that

$$
0 \tD \text{ maps } H^{\pm} \text{ to } H^{\mp}.
$$

•
$$
(D \pm i)^{-1}
$$
 is compact.

 \bigcirc $[D, a]$ is bounded for all $a \in \mathcal{A}$.

Spectral Triples

Definition

A spectral triple (A, H, D) consists of

■ A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.

2 An involutive algebra A represented in H .

 \bullet A selfadjoint unbounded operator D on H such that

$$
0 \quad D \text{ maps } \mathcal{H}^{\pm} \text{ to } \mathcal{H}^{\mp}.
$$

$$
2 (D \pm i)^{-1}
$$
 is compact.

9 [D, a] is bounded for all $a \in A$.

Example (Dirac Spectral Triple)

$$
(C^\infty(M),L^2_g(M,\mathcal{S}),\mathcal{P}_g),
$$

where (M^n, g) is a compact Riemanian spin manifold $(n \text{ even}),$ $\mathcal{S}=\mathcal{S}^+\oplus \mathcal{S}^-$ is the spinor bundle, and $\mathcal{D}_{\hat{\mathcal{E}}}$ is the Dirac operator.

イロト イ部 トメ きょ メ きょう き

Definition (Connes-Moscovici)

A twisted spectral triple (A, H, D) _{σ} consists of

- **■** A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- **2** An involutive algebra A represented in H together with an automorphism $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ such that $\sigma(a)^* = \sigma^{-1}(a^*)$ for all $a \in \mathcal{A}$.
- \bullet A selfadjoint unbounded operator D on H such that

$$
\bullet \;\; D \;\textsf{maps} \; \mathcal{H}^{\pm} \;\textsf{to} \; \mathcal{H}^{\mp}.
$$

- ⊇ $(D \pm i)^{-1}$ is compact.
- **3** $[D, a]_{\sigma} := Da \sigma(a)D$ is bounded for all $a \in \mathcal{A}$.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Examples

Example (Conformal Deformation of Spectral Triples)

Given an ordinary spectral triple (A, \mathcal{H}, D) , let $k \in \mathcal{A}$, $k > 0$. Then

$$
(\mathcal{A}, \mathcal{H}, kDk)_{\sigma}, \qquad \sigma(a) = k^2ak^{-2}, \ a \in \mathcal{A},
$$

is a twisted spectral triple.

Examples

Example (Conformal Deformation of Spectral Triples)

Given an ordinary spectral triple (A, H, D) , let $k \in A$, $k > 0$. Then

$$
(\mathcal{A}, \mathcal{H}, kDk)_{\sigma}, \qquad \sigma(a) = k^2ak^{-2}, \ a \in \mathcal{A},
$$

is a twisted spectral triple.

Example (Conformal Change of Metric)

Let $(\, \mathcal{C}^{\infty}(M), L_{\mathcal{g}}^{2}(M, \mathcal{G}), \mathcal{P}_{\mathcal{g}} \,)$ be a Dirac spectral triple. Consider the conformal change of metric,

$$
\hat{g}=k^{-2}g, \qquad k\in C^{\infty}(M),\ k>0.
$$

Then $(\, \mathcal{C}^{\infty}(M), L_{\hat{\mathcal{g}}}^{2}(M, \mathcal{S}), \not\!\!\!D_{\hat{\mathcal{g}}})$ is unitarily equivalent to

 $(C^{\infty}(M), L_g^2(M, \mathcal{S}),$ √ k $\varphi_{_{{\scriptscriptstyle\mathcal B}}}$ √ k).

7 / 21

Further Examples

- Conformal Dirac spectral triple (Connes-Moscovici).
- Twisted spectral triples over NC tori associated to conformal weights (Connes-Tretkoff).
- \bullet Poincaré duals of some ordinary spectral triples (RP+HW, Part 3).
- Twisted spectral triples associated to quantum statistical systems (e.g., Connes-Bost systems, supersymmetric Riemann gas) (Greenfield-Marcolli-Teh '13).

σ -Connections

Definition (Bimodule of σ -Differential Forms)

$$
\Omega^1_{D,\sigma}(\mathcal{A})=\text{Span}\{ad_{\sigma}b;\,\, a,b\in\mathcal{A}\}\subset\mathcal{L}(\mathcal{H}),
$$

9 / 21

 $2Q$

メロメ メタメ メミメ メミメン 毛

where $d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$.

σ-Connections

Definition (Bimodule of σ -Differential Forms)

$$
\Omega^1_{D,\sigma}(\mathcal{A})=\textsf{Span}\{ad_{\sigma} b; \, \text{ a,b}\in \mathcal{A}\}\subset \mathcal{L}(\mathcal{H}),
$$

where $d_{\sigma} b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Definition (σ -Connection)

Let $\mathcal E$ be a finitely generated projective module over $\mathcal A$.

σ -Connections

Definition (Bimodule of σ -Differential Forms)

$$
\Omega^1_{D,\sigma}(\mathcal{A})=\textsf{Span}\{ad_{\sigma} b; \, \text{ a,b}\in \mathcal{A}\}\subset \mathcal{L}(\mathcal{H}),
$$

where $d_{\sigma} b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Definition (σ -Connection)

Let $\mathcal E$ be a finitely generated projective module over $\mathcal A$.

1 A σ -translate is a finitely generated projective module \mathcal{E}^{σ} together with a linear isomorphism $\sigma^{\mathcal{E}}:\mathcal{E}\rightarrow\mathcal{E}^{\sigma}$ such that

$$
\sigma^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi)\sigma(a) \qquad \forall \xi \in \mathcal{E} \ \forall a \in \mathcal{A}.
$$

σ -Connections

Definition (Bimodule of σ -Differential Forms)

$$
\Omega^1_{D,\sigma}(\mathcal{A})=\textsf{Span}\{ad_{\sigma} b; \, \text{ a,b}\in \mathcal{A}\}\subset \mathcal{L}(\mathcal{H}),
$$

where $d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Definition (σ -Connection)

Let ${\cal E}$ be a finitely generated projective module over ${\cal A}.$

1 A σ -translate is a finitely generated projective module \mathcal{E}^{σ} together with a linear isomorphism $\sigma^{\mathcal{E}}:\mathcal{E}\rightarrow\mathcal{E}^{\sigma}$ such that

$$
\sigma^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi)\sigma(a) \qquad \forall \xi \in \mathcal{E} \ \forall a \in \mathcal{A}.
$$

2 A σ -connection is a given by a σ -translate \mathcal{E}^{σ} and a linear map $\nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma} \otimes \Omega^{1}_{D,\sigma}(\mathcal{A})$ such that

$$
\nabla^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi) \otimes d_{\sigma} a + (\nabla^{\mathcal{E}} \xi) a \qquad \forall a \in \mathcal{A} \ \forall \xi \in \mathcal{E}.
$$

Proposition (RP+HW)

1 The data of a σ -connection $\nabla^{\mathcal{E}}$ defines a closed unbounded operator,

$$
D_{\nabla^{\mathcal{E}}} = \begin{pmatrix} 0 & D_{\nabla^{\mathcal{E}}}^{-} \\ D_{\nabla^{\mathcal{E}}}^{+} & 0 \end{pmatrix}, \quad D_{\nabla^{\mathcal{E}}}^{\pm} : \mathcal{E} \otimes \mathcal{H}^{\pm} \to \mathcal{E}^{\sigma} \otimes \mathcal{H}^{\mp}.
$$

 $\textbf{2}$ The operators $D_{\nabla^{\mathcal{E}}}^{\pm}$ are Fredholm.

Proposition (RP+HW)

1 The data of a σ -connection $\nabla^{\mathcal{E}}$ defines a closed unbounded operator,

$$
D_{\nabla^{\mathcal{E}}} = \begin{pmatrix} 0 & D_{\nabla^{\mathcal{E}}}^- \\ D_{\nabla^{\mathcal{E}}}^+ & 0 \end{pmatrix}, \quad D_{\nabla^{\mathcal{E}}}^\pm : \mathcal{E} \otimes \mathcal{H}^\pm \to \mathcal{E}^\sigma \otimes \mathcal{H}^\mp.
$$

 $\textbf{2}$ The operators $D_{\nabla^{\mathcal{E}}}^{\pm}$ are Fredholm.

Definition (Index of $D_{\nabla} \varepsilon$)

$$
\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^- \right),
$$

イロト イ部 トメ きょ メ きょう き 10 / 21

Proposition (RP+HW)

1 The data of a σ -connection $\nabla^{\mathcal{E}}$ defines a closed unbounded operator,

$$
D_{\nabla^{\mathcal{E}}} = \begin{pmatrix} 0 & D_{\nabla^{\mathcal{E}}}^- \\ D_{\nabla^{\mathcal{E}}}^+ & 0 \end{pmatrix}, \quad D_{\nabla^{\mathcal{E}}}^\pm : \mathcal{E} \otimes \mathcal{H}^\pm \to \mathcal{E}^\sigma \otimes \mathcal{H}^\mp.
$$

The operators
$$
D_{\nabla^{\mathcal{E}}}^{\pm}
$$
 are Fredholm.

Definition (Index of $D_{\nabla} \varepsilon$)

$$
\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^- \right),
$$

where
$$
\operatorname{ind} D_{\nabla^{\mathcal{E}}}^{\pm} = \operatorname{dim} \operatorname{ker} D_{\nabla^{\mathcal{E}}}^{\pm} - \operatorname{dim} \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}.
$$

Proposition (RP+HW)

1 The data of a σ -connection $\nabla^{\mathcal{E}}$ defines a closed unbounded operator,

$$
D_{\nabla^{\mathcal{E}}} = \begin{pmatrix} 0 & D_{\nabla^{\mathcal{E}}}^- \\ D_{\nabla^{\mathcal{E}}}^+ & 0 \end{pmatrix}, \quad D_{\nabla^{\mathcal{E}}}^\pm : \mathcal{E} \otimes \mathcal{H}^\pm \to \mathcal{E}^\sigma \otimes \mathcal{H}^\mp.
$$

The operators
$$
D_{\nabla^{\mathcal{E}}}^{\pm}
$$
 are Fredholm.

Definition (Index of $D_{\nabla} \varepsilon$)

$$
\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^- \right),
$$

$$
\text{ where } \text{ind } D_{\nabla^{\mathcal{E}}}^\pm = \text{dim }\text{ker } D_{\nabla^{\mathcal{E}}}^\pm - \text{dim }\text{coker } D_{\nabla^{\mathcal{E}}}^\pm.
$$

Remark

In all the main examples [in](#page-19-0)d $D_{\nabla^{\mathcal{E}}}$ $D_{\nabla^{\mathcal{E}}}$ $D_{\nabla^{\mathcal{E}}}$ is actually [an](#page-17-0) int[eg](#page-18-0)[e](#page-19-0)[r.](#page-0-0)

Index Map and Connes-Chern Character

Proposition (Connes-Moscovici, RP+HW)

There is a unique additive map $\text{ind}_{D,\sigma}: K_0(\mathcal{A}) \to \frac{1}{2}\mathbb{Z}$ such that

 $\mathsf{ind}_D[\mathcal{E}]=\mathsf{ind}\, D_{\nabla^{\mathcal{E}}}\qquad \forall (\mathcal{E},\nabla^{\mathcal{E}}).$

11 / 21

K ロ X K 御 X K 重 X K 重 X → 重

Index Map and Connes-Chern Character

Proposition (Connes-Moscovici, RP+HW)

There is a unique additive map $\text{ind}_{D,\sigma}: K_0(\mathcal{A}) \to \frac{1}{2}\mathbb{Z}$ such that

$$
\operatorname{ind}_D[\mathcal{E}] = \operatorname{ind} D_{\nabla^{\mathcal{E}}} \qquad \forall (\mathcal{E}, \nabla^{\mathcal{E}}).
$$

Theorem (Connes-Moscovici, RP+HW)

Assume that $\text{Tr}\, |D|^{-p}<\infty$ for some $p\geq 1.$ Then there is a (periodic) cyclic cohomology class $\mathsf{Ch}(D)_{\sigma}\in\mathsf{HP}^{0}(\mathcal{A})$, called Connes-Chern character, such that

$$
\text{ind } D_{\nabla^{\mathcal{E}}} = \langle \mathsf{Ch}(D)_{\sigma}, \mathsf{Ch}(\mathcal{E}) \rangle \qquad \forall (\mathcal{E}, \nabla^{\mathcal{E}}),
$$

where $Ch(\mathcal{E})$ is the Chern character in periodic cyclic homology.

Setup

- $\bullet\;$ M^{n} is a compact spin oriented manifold (n even).
- \bullet C is a conformal structure on M.

Setup

- $\bullet\;$ M^{n} is a compact spin oriented manifold (n even).
- \bullet C is a conformal structure on M.
- \bullet G is a group of conformal diffeomorphisms preserving C. Thus, given any metric $g \in \mathcal{C}$ and $\phi \in \mathcal{G}$,

$$
\phi_*g=k_\phi^{-2}g\,\,\text{with}\,\,k_\phi\in C^\infty(M),\,\,k_\phi>0.
$$

Setup

- $\bullet\;$ M^{n} is a compact spin oriented manifold (n even).
- \bullet C is a conformal structure on M.
- \bullet G is a group of conformal diffeomorphisms preserving C. Thus, given any metric $g \in \mathcal{C}$ and $\phi \in \mathcal{G}$,

$$
\phi_*g=k_\phi^{-2}g\,\,\text{with}\,\,k_\phi\in C^\infty(M),\,\,k_\phi>0.
$$

 $\bullet \ \ \mathcal{C}^{\infty}(M) \rtimes G$ is the (discrete) crossed-product algebra, i.e.,

$$
C^{\infty}(M) \rtimes G = \left\{ \sum f_{\phi} u_{\phi}; \ f_{\phi} \in C_c^{\infty}(M) \right\},
$$

$$
u_{\phi}^* = u_{\phi}^{-1} = u_{\phi^{-1}}, \qquad u_{\phi} f = (f \circ \phi^{-1}) u_{\phi}.
$$

Lemma (Connes-Moscovici)

For $\phi \in \mathsf{G}$ define $\mathsf{U}_\phi:\mathsf{L}^2_\mathsf{g} (M, \mathsf{S}) \to \mathsf{L}^2_\mathsf{g} (M, \mathsf{S})$ by

$$
U_{\phi}\xi = k_{\phi}^{-\frac{n}{2}}\phi_*\xi \quad \forall \xi \in L_g^2(M,\mathcal{S}).
$$

13 / 21

イロメ イ団メ イ君メ イ君メー

Lemma (Connes-Moscovici)

For $\phi \in \mathsf{G}$ define $\mathsf{U}_\phi:\mathsf{L}^2_\mathsf{g} (M, \mathsf{S}) \to \mathsf{L}^2_\mathsf{g} (M, \mathsf{S})$ by

$$
U_{\phi}\xi = k_{\phi}^{-\frac{n}{2}}\phi_*\xi \quad \forall \xi \in L_g^2(M,\mathcal{S}).
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} \, \mathcal{P}_{g} \, U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{P}_{g} \sqrt{k_{\phi}}.
$$

13 / 21

イロト イ部 トメ きょ メ きょう き

Lemma (Connes-Moscovici)

For
$$
\phi \in G
$$
 define $U_{\phi}: L_g^2(M, \mathcal{S}) \to L_g^2(M, \mathcal{S})$ by

$$
U_{\phi}\xi = k_{\phi}^{-\frac{n}{2}}\phi_*\xi \quad \forall \xi \in L_g^2(M,\mathcal{S}).
$$

Then U_{ϕ} is a unitary operator, and

$$
U_{\phi} \, \mathcal{P}_{g} \, U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{P}_{g} \sqrt{k_{\phi}}.
$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in \mathcal{C}$ defines a twisted spectral triple $\left(C^{\infty}(M)\rtimes G, L_g^2(M,\mathcal{S}),\phi_g\right)$ $\sigma_{\rm g}$ given by

- ${\bf D}$ The Dirac operator ${\bf \mathcal{P}}_{{\bf g}}$ associated to ${\bf g}$.
- \bullet The representation $\mathrm{f} u_\phi \to \mathrm{f} U_\phi$ of $C^\infty(M)\rtimes G$ in $L^2_g(M,\mathfrak{H}).$
- ${\bf 3}$ The automorphism $\sigma_{\bf g}(f u_\phi):=k_\phi^{-1}$ ϵ_ϕ^{-1} fu $_\phi$.

13 / 21

 ${\bf D}$ The Connes-Chern character $\mathsf{Ch}({\mathcal P}_g)_{\sigma_g}\in \mathsf{HP}^0(\mathcal{C}^\infty(M)\rtimes G)$ is an invariant of the conformal structure C.

- ${\bf D}$ The Connes-Chern character $\mathsf{Ch}({\mathcal P}_g)_{\sigma_g}\in \mathsf{HP}^0(\mathcal{C}^\infty(M)\rtimes G)$ is an invariant of the conformal structure C.
- **2** For any cyclic homology class $\eta \in HP_0(C^{\infty}(M) \rtimes G)$, the pairing,

 $\langle \mathsf{Ch}({\not\negthinspace\mathcal{p}}_g)_{\sigma_g},\eta\rangle,$

14 / 21

イロメ イ何メ イヨメ イヨメー ヨ

is a conformal invariant.

Computation of Ch $(\!\mathscr{P}_{g})_{\sigma_{g}}$

Computation of Ch $(\!\mathscr{P}_{g})_{\sigma_{g}}$

Strategy

1 Thanks to the conformal invariance we can choose any metric $g\in \mathcal{C}$ to compute $\mathsf{Ch}({\not{\!{\!D}}}_g)_{\sigma_g}.$

- **1** Thanks to the conformal invariance we can choose any metric $g\in \mathcal{C}$ to compute $\mathsf{Ch}({\not{\!{\!D}}}_g)_{\sigma_g}.$
- **2** If the conformal structure C is nonflat, then it contains a G invariant metric C.

- **1** Thanks to the conformal invariance we can choose any metric $g\in \mathcal{C}$ to compute $\mathsf{Ch}({\not{\!{\!D}}}_g)_{\sigma_g}.$
- **2** If the conformal structure C is nonflat, then it contains a G invariant metric C.
- **3** If $g \in \mathcal{C}$ is G-invariant, then $\sigma_g = 1$, and so the conformal Dirac spectral triple $\left(\textit{C}^{\infty}(M)\rtimes\textit{G},\textit{L}_g^2(M,\textit{\textless}),\textit{\textcircled{p}}_g\right)$ $\sigma_{\mathcal{g}}$ is an ordinary spectral triple.

- **1** Thanks to the conformal invariance we can choose any metric $g\in \mathcal{C}$ to compute $\mathsf{Ch}({\not{\!{\!D}}}_g)_{\sigma_g}.$
- **2** If the conformal structure C is nonflat, then it contains a G invariant metric C.
- **3** If $g \in \mathcal{C}$ is G-invariant, then $\sigma_g = 1$, and so the conformal Dirac spectral triple $\left(\textit{C}^{\infty}(M)\rtimes\textit{G},\textit{L}_g^2(M,\textit{\textless}),\textit{\textcircled{p}}_g\right)$ $\sigma_{\mathcal{g}}$ is an ordinary spectral triple.
- **4** In this case, the Connes-Chern character is computed as a consequence of a new heat kernel proof of the local equivariant index theorem of Atiyah-Segal, Donelly-Patodi, Gilkey.

Notation

Setup

 \bullet C is a nonflat conformal structure on M.

 \bullet g is a G-invariant metric in \mathcal{C} .

Notation

Setup

- \bullet C is a nonflat conformal structure on M.
- \bullet g is a G-invariant metric in \mathcal{C} .

Notation

Let $\phi \in G$. Then

 M^{ϕ} is the fixed-point set of ϕ ;

Notation

Setup

 \bullet C is a nonflat conformal structure on M.

 \bullet g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

 M^ϕ is the fixed-point set of ϕ ; this is a disconnected sums of submanifolds,

$$
M^{\phi} = \bigsqcup M^{\phi}_a, \quad \dim M^{\phi}_a = a \ (a \text{ even}).
$$

- $\mathcal{N}^\phi = (\, \mathcal{T} \mathcal{M}^\phi)^\perp$ is the normal bundle (vector bundle over $\mathcal{M}^\phi) .$
- Over M^ϕ , with respect to $\mathcal{TM}_{|M^\phi} = \mathcal{TM}^\phi \oplus \mathcal{N}^\phi,$ there are decompositions,

$$
\phi' = \left(\begin{array}{cc} 1 & 0 \\ 0 & \phi'_{|\mathcal{N}^{\phi}} \end{array}\right), \qquad \nabla^{\mathcal{TM}} = \nabla^{\mathcal{TM}^{\phi}} \oplus \nabla^{\mathcal{N}^{\phi}}.
$$

Local Index Formula in Conformal Geometry

K ロ X X 個 X X 差 X X 差 X … 差 QQ

17 / 21

Local Index Formula in Conformal Geometry

Theorem $(RP + HW)$

For any G-invariant metric $g \in \mathcal{C}$,

For any G-invariant metric $g \in \mathcal{C}$, the Connes-Chern character $\mathsf{Ch}({\mathcal P}_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi=(\varphi_{2m})$ given by

$$
\varphi_{2m}(f^{0}u_{\phi_{0}},\cdots,f^{2m}u_{\phi_{2m}})=
$$
\n
$$
\frac{(-i)^{\frac{n}{2}}}{(2m)!}\sum_{0\leq a\leq n}(2\pi)^{-\frac{a}{2}}\int_{M_{a}^{\phi}}\hat{A}(R^{TM_{a}^{\phi}})\wedge\nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right)\wedge f^{0}d\hat{f}^{1}\wedge\cdots\wedge d\hat{f}^{2m},
$$

For any G-invariant metric $g \in \mathcal{C}$, the Connes-Chern character $\mathsf{Ch}({\mathcal P}_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi=(\varphi_{2m})$ given by

$$
\varphi_{2m}(f^{0}u_{\phi_{0}},\cdots,f^{2m}u_{\phi_{2m}})=
$$
\n
$$
\frac{(-i)^{\frac{n}{2}}}{(2m)!}\sum_{0\leq a\leq n}(2\pi)^{-\frac{a}{2}}\int_{M_{a}^{\phi}}\hat{A}(R^{TM_{a}^{\phi}})\wedge\nu_{\phi}\left(R^{N^{\phi}}\right)\wedge f^{0}d\hat{f}^{1}\wedge\cdots\wedge d\hat{f}^{2m},
$$

where $\phi := \phi_0 \circ \cdots \circ \phi_{2m}$,

For any G-invariant metric $g \in \mathcal{C}$, the Connes-Chern character $\mathsf{Ch}({\mathcal P}_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi=(\varphi_{2m})$ given by

$$
\varphi_{2m}(f^{0}u_{\phi_{0}},\cdots,f^{2m}u_{\phi_{2m}})=
$$
\n
$$
\frac{(-i)^{\frac{n}{2}}}{(2m)!}\sum_{0\leq a\leq n}(2\pi)^{-\frac{a}{2}}\int_{M_{a}^{\phi}}\hat{A}(R^{TM_{a}^{\phi}})\wedge\nu_{\phi}\left(R^{N^{\phi}}\right)\wedge f^{0}d\hat{f}^{1}\wedge\cdots\wedge d\hat{f}^{2m},
$$

where $\phi:=\phi_0\circ\cdots\circ\phi_{2m}$, and $\hat{f}^j:=f^j\circ\phi_0^{-1}\circ\cdots\circ\phi_{j-1}^{-1}$ −1
j−1'

For any G-invariant metric $g \in \mathcal{C}$, the Connes-Chern character $\mathsf{Ch}({\mathcal P}_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi=(\varphi_{2m})$ given by

$$
\varphi_{2m}(f^{0}u_{\phi_{0}},\dots,f^{2m}u_{\phi_{2m}}) =
$$
\n
$$
\frac{(-i)^{\frac{n}{2}}}{(2m)!}\sum_{0\leq a\leq n}(2\pi)^{-\frac{a}{2}}\int_{M_{a}^{\phi}}\hat{A}(R^{TM_{a}^{\phi}})\wedge\nu_{\phi}\left(R^{N^{\phi}}\right)\wedge f^{0}d\hat{f}^{1}\wedge\cdots\wedge d\hat{f}^{2m},
$$
\nwhere $\phi := \phi_{0} \circ \cdots \circ \phi_{2m}$, and $\hat{f}^{j} := f^{j} \circ \phi_{0}^{-1} \circ \cdots \circ \phi_{j-1}^{-1}$, and\n
$$
\hat{A}\left(R^{TM^{\phi}}\right) := det^{\frac{1}{2}}\left[\frac{R^{TM^{\phi}}/2}{\sinh\left(R^{TM^{\phi}}/2\right)}\right],
$$
\n
$$
\nu_{\phi}\left(R^{N^{\phi}}\right) := det^{-\frac{1}{2}}\left[1 - \phi'_{|N^{\phi}}e^{-R^{N^{\phi}}}\right].
$$

17 / 21

Remark

The *n*-th degree component of φ is given by

$$
\varphi_n(f^0 u_{\phi_0}, \cdots, f^n u_{\phi_n}) = \left\{ \begin{array}{ll} \int_M f^0 d\hat{f}^1 \wedge \cdots \wedge d\hat{f}^n & \text{if } \phi_0 \circ \cdots \circ \phi_n = 1, \\ 0 & \text{if } \phi_0 \circ \cdots \circ \phi_n \neq 1. \end{array} \right.
$$

This represents Connes' transverse fundamental class of M/G .

Cyclic Homology of $C^{\infty}(M)\rtimes G$

Notation

Let $\phi \in G$. Then

- \bullet $\langle \phi \rangle$ is the conjugation class of ϕ .
- $G_{\phi} = {\psi \in G; \psi \circ \phi = \phi \circ \psi}$ is the stabilizer of ϕ .

19 / 21

イロト イ部 トメ きょ メ きょう き

 $H^{\bullet}(M_{\mathsf{a}}^{\phi})$ is the G_{ϕ} -invariant cohomology of M_{a}^{ϕ}

Cyclic Homology of $C^{\infty}(M)\rtimes G$

Notation

Let $\phi \in G$. Then

- \bullet $\langle \phi \rangle$ is the conjugation class of ϕ .
- $G_{\phi} = {\psi \in G$; $\psi \circ \phi = \phi \circ \psi}$ is the stabilizer of ϕ .
- $H^{\bullet}(M_{\mathsf{a}}^{\phi})$ is the G_{ϕ} -invariant cohomology of M_{a}^{ϕ}

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$
\mathsf{HP}_{\bullet}(\mathcal{C}^{\infty}(M) \rtimes G) \simeq \bigoplus_{\langle \phi \rangle \in \langle G \rangle} \bigoplus_{0 \leq a \leq n} H^{\bullet}(M^{\phi}_{a})^{G^{\phi}}.
$$

Proposition (Brylinski-Getzler, Crainic, RP+HW)

 \bullet To any G $_{\phi}$ -invariant closed diff. form ω on M_{a}^{ϕ} is naturally associated an even cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$.

Proposition (Brylinski-Getzler, Crainic, RP+HW)

 \bullet To any G $_{\phi}$ -invariant closed diff. form ω on M_{a}^{ϕ} is naturally associated an even cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$.

• If
$$
\omega = f^0 df^1 \wedge \cdots \wedge df^m
$$
, then

$$
\eta_\omega=\sum_{\sigma\in\mathfrak{S}_m}\epsilon(\sigma)\tilde{f}^0\otimes\tilde{f}^{\sigma(1)}\otimes\cdots\otimes\tilde{f}^{\sigma(m-1)}\otimes f^{\sigma(m)}u_\phi,
$$

where \tilde{f}^j is a suitable smooth extension of f^j to M.

イロト イ団 トイ ミト イヨト 20 / 21

Conformal Invariants

Theorem (RP+HW)

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$
I_g(\omega)=\langle\mathsf{Ch}({\not{\!{\!D}}}_g)_{\sigma_g},\eta_\omega\rangle.
$$

Then

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$
I_{g}(\omega)=\langle\mathsf{Ch}(\phi_{g})_{\sigma_{g}},\eta_{\omega}\rangle.
$$

Then

 \bigcirc $I_g(\omega)$ is an invariant of the conformal structure C depending only on the class of ω in $H^\bullet(M_a^\phi)^{G_\phi}.$

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$
I_{g}(\omega)=\langle\mathsf{Ch}(\varphi_{g})_{\sigma_{g}},\eta_{\omega}\rangle.
$$

Then

 \bigcirc $I_g(\omega)$ is an invariant of the conformal structure C depending only on the class of ω in $H^\bullet(M_a^\phi)^{G_\phi}.$

2 For any G-invariant metric $g \in \mathcal{C}$, we have

$$
I_{\mathcal{g}}(\omega)=\int_{M_g^{\phi}}\hat{\mathcal{A}}(R^{\mathcal{TM}^{\phi}})\wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right)\wedge \omega.
$$

21 / 21

イロメ イ何メ イヨメ イヨメー ヨ

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$
I_{g}(\omega)=\langle\mathsf{Ch}(\varphi_{g})_{\sigma_{g}},\eta_{\omega}\rangle.
$$

Then

- \bigcirc $I_{g}(\omega)$ is an invariant of the conformal structure C depending only on the class of ω in $H^\bullet(M_a^\phi)^{G_\phi}.$
- **2** For any G-invariant metric $g \in \mathcal{C}$, we have

$$
I_{\mathcal{g}}(\omega)=\int_{M_g^\phi}\hat{\mathcal{A}}(R^{\mathcal{TM}^\phi})\wedge \nu_\phi\left(R^{\mathcal{N}^\phi}\right)\wedge \omega.
$$

Remark

The above invariants are not of the same type as those considered by S. Alexakis in his solution of the Deser-Swimmer conjecture.