Noncommutative Geometry and Conformal Geometry (joint work with Hang Wang)

Raphaël Ponge

Seoul National University & U.C. Berkeley

June 27, 2014

1/21

Main References

- RP+HW: Noncommutative geometry, conformal geometry, and the local equivariant index theorem. arXiv:1210.2032. Superceded by the 3 papers below.
- RP+HW: Index map, σ-connections, and Connes-Chern character in the setting of twisted spectral triples. arXiv:1310.6131. To appear in J. K-Theory.
- RP+HW: Noncommutative geometry and conformal geometry. I. Local index formula and conformal invariants. To be posted on arXiv soon.
- RP+HW: Noncommutative geometry and conformal geometry. II. Connes-Chern character and the local equivariant index theorem. To be posted on arXiv soon.
- RP+HW: Noncommutative geometry and conformal geometry. III. Poincaré duality and Vafa-Witten inequality. arXiv:1310.6138.

Conformal Geometry

Conformal Geometry

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Overview of Noncommutative Geometry

Classical	NCG
Manifold <i>M</i>	Spectral Triple $(\mathcal{A}, \mathcal{H}, D)$
Vector Bundle E over M	Projective Module ${\mathcal E}$ over ${\mathcal A}$ ${\mathcal E}=e{\mathcal A}^q, \ e\in M_q({\mathcal A}), \ e^2=e$
de Rham Homology/Cohomology	Cyclic Cohomology/Homology
Atiyah-Singer Index Formula ${ m ind} { ot\!$	$Connes ext{-}ChernCharacterCh(D)\ ind D_{ abla}^arepsilon = \langleCh(D),Ch(\mathcal{E}) angle$
Characteristic Classes	Cyclic Cohomology for Hopf Algebras
	(日)(四)(종)(종)(종) 등 (종)
	▲ 나 ▶ ▲ 태 ▶ ▲ 문 ▶ ▲ 문 ▶ ▲ 문 ★) 약 (

Spectral Triples

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

• A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.

2 An involutive algebra \mathcal{A} represented in \mathcal{H} .

- $\textcircled{O} A selfadjoint unbounded operator D on \mathcal{H} such that}$
 - **1** D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - ($D \pm i$)⁻¹ is compact.
 - **3** [D, a] is bounded for all $a \in A$.

Spectral Triples

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ consists of

 $\ \, \bullet \ \, \mathsf{A} \ \, \mathbb{Z}_2 \text{-}\mathsf{graded} \ \, \mathsf{Hilbert} \ \, \mathsf{space} \ \, \mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-.$

2 An involutive algebra \mathcal{A} represented in \mathcal{H} .

- $\textcircled{O} A selfadjoint unbounded operator D on \mathcal{H} such that}$
 - **1** D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - ($D \pm i$)⁻¹ is compact.
 - **3** [D, a] is bounded for all $a \in A$.

Example (Dirac Spectral Triple)

$$(C^\infty(M), L^2_g(M, \$), \not\!\!D_g),$$

where (M^n, g) is a compact Riemanian spin manifold (n even), $\$ = \$^+ \oplus \$^-$ is the spinor bundle, and $p_{\hat{g}}$ is the Dirac operator.

Definition (Connes-Moscovici)

A twisted spectral triple $(\mathcal{A}, \mathcal{H}, D)_{\sigma}$ consists of

- A \mathbb{Z}_2 -graded Hilbert space $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- An involutive algebra A represented in H together with an automorphism σ : A → A such that σ(a)* = σ⁻¹(a*) for all a ∈ A.
- **③** A selfadjoint unbounded operator D on \mathcal{H} such that

$$oldsymbol{0}$$
 D maps \mathcal{H}^\pm to $\mathcal{H}^\mp.$

- ($D \pm i$)⁻¹ is compact.
- $I D, a]_{\sigma} := Da \sigma(a)D$ is bounded for all $a \in A$.

Examples

Example (Conformal Deformation of Spectral Triples)

Given an ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$, let $k \in \mathcal{A}$, k > 0. Then

$$(\mathcal{A}, \mathcal{H}, kDk)_{\sigma}, \qquad \sigma(a) = k^2 a k^{-2}, \ a \in \mathcal{A},$$

is a twisted spectral triple.

Examples

Example (Conformal Deformation of Spectral Triples)

Given an ordinary spectral triple $(\mathcal{A}, \mathcal{H}, D)$, let $k \in \mathcal{A}$, k > 0. Then

$$(\mathcal{A}, \mathcal{H}, kDk)_{\sigma}, \qquad \sigma(a) = k^2 a k^{-2}, \ a \in \mathcal{A},$$

is a twisted spectral triple.

Example (Conformal Change of Metric)

Let $(C^{\infty}(M), L^2_g(M, \$), \not D_g)$ be a Dirac spectral triple. Consider the conformal change of metric,

$$\hat{g}=k^{-2}g,\qquad k\in C^\infty(M),\ k>0.$$

 $(C^{\infty}(M), L^2_g(M, \$), \sqrt{k} \not D_g \sqrt{k}).$

Further Examples

- Conformal Dirac spectral triple (Connes-Moscovici).
- Twisted spectral triples over NC tori associated to conformal weights (Connes-Tretkoff).
- Poincaré duals of some ordinary spectral triples (RP+HW, Part 3).
- Twisted spectral triples associated to quantum statistical systems (e.g., Connes-Bost systems, supersymmetric Riemann gas) (Greenfield-Marcolli-Teh '13).

イロト 不得 トイヨト イヨト 二日

Definition (Bimodule of σ -Differential Forms)

$$\Omega^1_{D,\sigma}(\mathcal{A}) = \mathsf{Span}\{ ad_\sigma b; \ a, b \in \mathcal{A} \} \subset \mathcal{L}(\mathcal{H}),$$

where $d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Definition (Bimodule of σ -Differential Forms)

$$\Omega^1_{D,\sigma}(\mathcal{A})={\sf Span}\{{\it ad}_\sigma{\it b};\;\,{\it a},{\it b}\in\mathcal{A}\}\subset\mathcal{L}(\mathcal{H}),$$

where $d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Definition (σ -Connection)

Let \mathcal{E} be a finitely generated projective module over \mathcal{A} .

Definition (Bimodule of σ -Differential Forms)

$$\Omega^1_{D,\sigma}(\mathcal{A})=\mathsf{Span}\{\mathit{ad}_\sigma b; \; \mathit{a}, b\in \mathcal{A}\}\subset \mathcal{L}(\mathcal{H}),$$

where $d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Definition (σ -Connection)

Let \mathcal{E} be a finitely generated projective module over \mathcal{A} .

A σ-translate is a finitely generated projective module E^σ together with a linear isomorphism σ^E : E → E^σ such that

$$\sigma^{\mathcal{E}}(\xi a) = \sigma^{\mathcal{E}}(\xi)\sigma(a) \qquad \forall \xi \in \mathcal{E} \,\, \forall a \in \mathcal{A}.$$

Definition (Bimodule of σ -Differential Forms)

$$\Omega^1_{D,\sigma}(\mathcal{A})=\mathsf{Span}\{\mathit{ad}_\sigma b; \; \mathit{a}, b\in \mathcal{A}\}\subset \mathcal{L}(\mathcal{H}),$$

where $d_{\sigma}b := [D, b]_{\sigma} = Db - \sigma(b)D$.

Definition (σ -Connection)

Let $\mathcal E$ be a finitely generated projective module over $\mathcal A$.

A σ-translate is a finitely generated projective module E^σ together with a linear isomorphism σ^E : E → E^σ such that

$$\sigma^{\mathcal{E}}(\xi \mathsf{a}) = \sigma^{\mathcal{E}}(\xi)\sigma(\mathsf{a}) \qquad orall \xi \in \mathcal{E} \,\, orall \mathsf{a} \in \mathcal{A}.$$

 $\begin{array}{l} \textcircled{O} \quad \mathsf{A} \ \sigma\text{-connection} \ \text{is a given by a } \sigma\text{-translate } \mathcal{E}^{\sigma} \ \text{and a linear} \\ \text{map } \nabla^{\mathcal{E}}: \mathcal{E} \rightarrow \mathcal{E}^{\sigma} \otimes \Omega^{1}_{D,\sigma}(\mathcal{A}) \ \text{such that} \end{array} \end{array}$

$$abla^{\mathcal{E}}(\xi \mathsf{a}) = \sigma^{\mathcal{E}}(\xi) \otimes \mathsf{d}_{\sigma}\mathsf{a} + \left(
abla^{\mathcal{E}}\xi\right)\mathsf{a} \qquad \forall \mathsf{a} \in \mathcal{A} \ \forall \xi \in \mathcal{E}.$$

Proposition (RP+HW)

The data of a σ-connection ∇^ε defines a closed unbounded operator,

$$D_{
abla}^{arepsilon} = egin{pmatrix} 0 & D_{
abla}^{-}arepsilon \ D_{
abla}^{+}arepsilon & 0 \end{pmatrix}, \quad D_{
abla}^{\pm} : \mathcal{E}\otimes \mathcal{H}^{\pm} o \mathcal{E}^{\sigma}\otimes \mathcal{H}^{\mp}.$$

2 The operators $D_{\nabla \mathcal{E}}^{\pm}$ are Fredholm.

Proposition (RP+HW)

The data of a σ-connection ∇^ε defines a closed unbounded operator,

$$D_{
abla}^{}arphi} = egin{pmatrix} 0 & D_{
abla}^{-}arepsilon \ D_{
abla}^{+}arepsilon} & D_{
abla}^{\pm} : \mathcal{E}\otimes\mathcal{H}^{\pm} o\mathcal{E}^{\sigma}\otimes\mathcal{H}^{\mp}.$$

2 The operators $D_{\nabla \mathcal{E}}^{\pm}$ are Fredholm.

Definition (Index of $D_{\nabla^{\mathcal{E}}}$)

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^- \right),$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 10/21

Proposition (RP+HW)

The data of a σ-connection ∇^ε defines a closed unbounded operator,

$$D_{
abla}^{arepsilon} = egin{pmatrix} 0 & D_{
abla}^{-}arepsilon \ D_{
abla}^{+}arepsilon \ 0 \ \end{pmatrix}, \quad D_{
abla}^{\pm} : \mathcal{E}\otimes \mathcal{H}^{\pm} o \mathcal{E}^{\sigma}\otimes \mathcal{H}^{\mp}.$$

2) The operators
$$D^{\pm}_{
abla^{\mathcal{E}}}$$
 are Fredholm.

Definition (Index of $D_{\nabla^{\mathcal{E}}}$)

$$\operatorname{ind} D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^- \right),$$

where ind $D_{\nabla^{\mathcal{E}}}^{\pm} = \dim \ker D_{\nabla^{\mathcal{E}}}^{\pm} - \dim \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}$.

Proposition (RP+HW)

The data of a σ-connection ∇^ε defines a closed unbounded operator,

$$D_{
abla}^{arepsilon} = egin{pmatrix} 0 & D_{
abla}^{-}arepsilon \ D_{
abla}^{+}arepsilon \ 0 \ \end{pmatrix}, \quad D_{
abla}^{\pm} : \mathcal{E}\otimes \mathcal{H}^{\pm} o \mathcal{E}^{\sigma}\otimes \mathcal{H}^{\mp}.$$

2) The operators
$$D^{\pm}_{
abla^{\mathcal{E}}}$$
 are Fredholm.

Definition (Index of $D_{\nabla^{\mathcal{E}}}$)

nd
$$D_{\nabla^{\mathcal{E}}} = \frac{1}{2} \left(\operatorname{ind} D_{\nabla^{\mathcal{E}}}^+ - \operatorname{ind} D_{\nabla^{\mathcal{E}}}^- \right),$$

where ind $D_{\nabla^{\mathcal{E}}}^{\pm} = \dim \ker D_{\nabla^{\mathcal{E}}}^{\pm} - \dim \operatorname{coker} D_{\nabla^{\mathcal{E}}}^{\pm}$.

Remark

In all the main examples ind $D_{\nabla^{\mathcal{E}}}$ is actually an integer.

Index Map and Connes-Chern Character

Proposition (Connes-Moscovici, RP+HW)

There is a unique additive map $\operatorname{ind}_{D,\sigma} : K_0(\mathcal{A}) \to \frac{1}{2}\mathbb{Z}$ such that

 $\operatorname{ind}_{D}[\mathcal{E}] = \operatorname{ind} D_{\nabla^{\mathcal{E}}} \qquad \forall (\mathcal{E}, \nabla^{\mathcal{E}}).$

Index Map and Connes-Chern Character

Proposition (Connes-Moscovici, RP+HW)

There is a unique additive map $\operatorname{ind}_{D,\sigma} : K_0(\mathcal{A}) \to \frac{1}{2}\mathbb{Z}$ such that

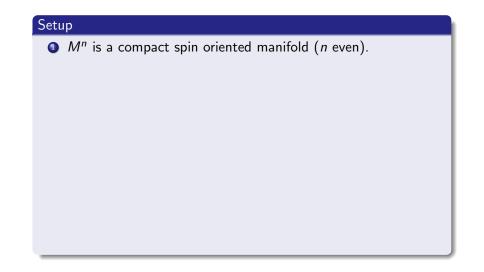
 $\operatorname{ind}_{D}[\mathcal{E}] = \operatorname{ind} D_{\nabla^{\mathcal{E}}} \qquad \forall (\mathcal{E}, \nabla^{\mathcal{E}}).$

Theorem (Connes-Moscovici, RP+HW)

Assume that $\operatorname{Tr} |D|^{-p} < \infty$ for some $p \geq 1$. Then there is a (periodic) cyclic cohomology class $\operatorname{Ch}(D)_{\sigma} \in \operatorname{HP}^{0}(\mathcal{A})$, called Connes-Chern character, such that

ind
$$D_{\nabla^{\mathcal{E}}} = \langle \mathsf{Ch}(D)_{\sigma}, \mathsf{Ch}(\mathcal{E}) \rangle \quad \forall (\mathcal{E}, \nabla^{\mathcal{E}}),$$

where $Ch(\mathcal{E})$ is the Chern character in periodic cyclic homology.



Setup • M^n is a compact spin oriented manifold (*n* even). **2** C is a conformal structure on M.

Setup

- M^n is a compact spin oriented manifold (*n* even).
- **2** C is a conformal structure on M.
- S G is a group of conformal diffeomorphisms preserving C. Thus, given any metric g ∈ C and $\phi \in G$,

$$\phi_*g=k_\phi^{-2}g$$
 with $k_\phi\in C^\infty(M),\ k_\phi>0.$

Setup

- M^n is a compact spin oriented manifold (*n* even).
- **2** C is a conformal structure on M.
- G is a group of conformal diffeomorphisms preserving C. Thus, given any metric g ∈ C and φ ∈ G,

$$\phi_*g=k_\phi^{-2}g$$
 with $k_\phi\in C^\infty(M),\;k_\phi>0.$

• $C^{\infty}(M) \rtimes G$ is the (discrete) crossed-product algebra, i.e.,

$$C^{\infty}(M) \rtimes G = \left\{ \sum f_{\phi} u_{\phi}; f_{\phi} \in C^{\infty}_{c}(M) \right\},$$
$$u_{\phi}^{*} = u_{\phi}^{-1} = u_{\phi^{-1}}, \qquad u_{\phi}f = (f \circ \phi^{-1})u_{\phi}.$$

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi = k_{\phi}^{-\frac{n}{2}}\phi_{*}\xi \quad \forall \xi \in L^{2}_{g}(M, \$)$$

・ロト ・四ト ・ヨト ・ヨト

13/21

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_{\phi} : L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi = k_{\phi}^{-rac{n}{2}}\phi_{*}\xi \quad orall \xi \in L^{2}_{g}(M, \$).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \mathcal{D}_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{D}_{g} \sqrt{k_{\phi}}.$$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Lemma (Connes-Moscovici)

For
$$\phi \in G$$
 define $U_\phi: L^2_g(M, \$) \to L^2_g(M, \$)$ by

$$U_{\phi}\xi=k_{\phi}^{-rac{n}{2}}\phi_{*}\xi \quad orall \xi\in L^{2}_{g}(M, \$).$$

Then U_{ϕ} is a unitary operator, and

$$U_{\phi} \mathcal{D}_{g} U_{\phi}^{*} = \sqrt{k_{\phi}} \mathcal{D}_{g} \sqrt{k_{\phi}}.$$

Proposition (Connes-Moscovici)

The datum of any metric $g \in C$ defines a twisted spectral triple $(C^{\infty}(M) \rtimes G, L_g^2(M, \$), \mathcal{D}_g)_{\sigma_g}$ given by

- The Dirac operator \mathcal{D}_g associated to g.
- **2** The representation $fu_{\phi} \to fU_{\phi}$ of $C^{\infty}(M) \rtimes G$ in $L^{2}_{g}(M, \$)$.
- **3** The automorphism $\sigma_g(fu_\phi) := k_\phi^{-1} fu_\phi$.

3 / 21

Theorem (RP+HW)

• The Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g} \in HP^0(C^{\infty}(M) \rtimes G)$ is an invariant of the conformal structure C.

Theorem (RP+HW)

- The Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g} \in HP^0(C^{\infty}(M) \rtimes G)$ is an invariant of the conformal structure C.
- Por any cyclic homology class η ∈ HP₀(C[∞](M) ⋊ G), the pairing,

 $\langle \mathsf{Ch}(\mathcal{D}_g)_{\sigma_g}, \eta \rangle,$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

14/21

is a conformal invariant.

Computation of $Ch(p_g)_{\sigma_g}$

Computation of $Ch(\mathcal{D}_g)_{\sigma_g}$

Strategy

 Thanks to the conformal invariance we can choose any metric g ∈ C to compute Ch(𝒫_g)_{σg}.

- Thanks to the conformal invariance we can choose any metric g ∈ C to compute Ch(𝒫_g)_{σg}.
- If the conformal structure C is nonflat, then it contains a G invariant metric C.

- Thanks to the conformal invariance we can choose any metric g ∈ C to compute Ch(𝒫_g)_{σg}.
- If the conformal structure C is nonflat, then it contains a G invariant metric C.
- If g ∈ C is G-invariant, then σ_g = 1, and so the conformal Dirac spectral triple (C[∞](M) ⋊ G, L²_g(M, \$), 𝒫_g)_{σ_g} is an ordinary spectral triple.

- Thanks to the conformal invariance we can choose any metric g ∈ C to compute Ch(𝒫_g)_{σg}.
- If the conformal structure C is nonflat, then it contains a G invariant metric C.
- If g ∈ C is G-invariant, then σ_g = 1, and so the conformal Dirac spectral triple (C[∞](M) ⋊ G, L²_g(M,\$), 𝒫_g)_{σ_g} is an ordinary spectral triple.
- In this case, the Connes-Chern character is computed as a consequence of a new heat kernel proof of the local equivariant index theorem of Atiyah-Segal, Donelly-Patodi, Gilkey.

Notation

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

• M^{ϕ} is the fixed-point set of ϕ ;

Notation

Setup

- C is a nonflat conformal structure on M.
- g is a G-invariant metric in C.

Notation

Let $\phi \in G$. Then

M^φ is the fixed-point set of φ; this is a disconnected sums of submanifolds,

$$M^{\phi} = \bigsqcup M^{\phi}_a$$
, dim $M^{\phi}_a = a$ (a even).

- $\mathcal{N}^{\phi} = (TM^{\phi})^{\perp}$ is the normal bundle (vector bundle over M^{ϕ}).
- Over M^{ϕ} , with respect to $TM_{|M^{\phi}} = TM^{\phi} \oplus \mathcal{N}^{\phi}$, there are decompositions,

$$\phi' = \left(\begin{array}{cc} 1 & 0 \\ 0 & \phi'_{|\mathcal{N}^{\phi}} \end{array}\right), \qquad \nabla^{TM} = \nabla^{TM^{\phi}} \oplus \nabla^{\mathcal{N}^{\phi}}.$$

16 / 21

Local Index Formula in Conformal Geometry

・ロト・日本・日本・日本・日本・日本

17/21

Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G-invariant metric $g \in C$,

For any G-invariant metric $g \in C$, the Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\varphi_{2m}(f^0 u_{\phi_0}, \cdots, f^{2m} u_{\phi_{2m}}) = \frac{(-i)^{\frac{n}{2}}}{(2m)!} \sum_{0 \le a \le n} (2\pi)^{-\frac{a}{2}} \int_{M_a^{\phi}} \hat{A}(R^{TM_a^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^0 d\hat{f}^1 \wedge \cdots \wedge d\hat{f}^{2m},$$

For any G-invariant metric $g \in C$, the Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\varphi_{2m}(f^0 u_{\phi_0}, \cdots, f^{2m} u_{\phi_{2m}}) = \frac{(-i)^{\frac{n}{2}}}{(2m)!} \sum_{0 \le a \le n} (2\pi)^{-\frac{a}{2}} \int_{M_a^{\phi}} \hat{A}(R^{TM_a^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge f^0 d\hat{f}^1 \wedge \cdots \wedge d\hat{f}^{2m},$$

where $\phi := \phi_0 \circ \cdots \circ \phi_{2m}$,

For any G-invariant metric $g \in C$, the Connes-Chern character $Ch(\mathcal{D}_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\begin{split} \varphi_{2m}(f^0 u_{\phi_0}, \cdots, f^{2m} u_{\phi_{2m}}) &= \\ \frac{(-i)^{\frac{n}{2}}}{(2m)!} \sum_{0 \le a \le n} (2\pi)^{-\frac{a}{2}} \int_{M_a^\phi} \hat{A}(R^{TM_a^\phi}) \wedge \nu_\phi \left(R^{\mathcal{N}^\phi}\right) \wedge f^0 d\hat{f}^1 \wedge \cdots \wedge d\hat{f}^{2m}, \\ \text{where } \phi &:= \phi_0 \circ \cdots \circ \phi_{2m}, \text{ and } \hat{f}^j := f^j \circ \phi_0^{-1} \circ \cdots \circ \phi_{j-1}^{-1}, \end{split}$$

For any G-invariant metric $g \in C$, the Connes-Chern character $Ch(\not D_g)_{\sigma_g}$ is represented by the periodic cyclic cocycle $\varphi = (\varphi_{2m})$ given by

$$\begin{split} \varphi_{2m}(f^{0}u_{\phi_{0}},\cdots,f^{2m}u_{\phi_{2m}}) &= \\ \frac{(-i)^{\frac{n}{2}}}{(2m)!}\sum_{0\leq a\leq n}(2\pi)^{-\frac{a}{2}}\int_{M_{a}^{\phi}}\hat{A}(R^{TM_{a}^{\phi}})\wedge\nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right)\wedge f^{0}d\hat{f}^{1}\wedge\cdots\wedge d\hat{f}^{2m},\\ where \ \phi &:= \phi_{0}\circ\cdots\circ\phi_{2m}, \ \text{and} \ \hat{f}^{j} &:= f^{j}\circ\phi_{0}^{-1}\circ\cdots\circ\phi_{j-1}^{-1}, \ \text{and} \\ \hat{A}\left(R^{TM^{\phi}}\right) &:= \det^{\frac{1}{2}}\left[\frac{R^{TM^{\phi}}/2}{\sinh\left(R^{TM^{\phi}}/2\right)}\right],\\ \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) &:= \det^{-\frac{1}{2}}\left[1-\phi_{|N^{\phi}}^{\prime}e^{-R^{\mathcal{N}^{\phi}}}\right]. \end{split}$$

17 / 21

Remark

The $\mathit{n}\text{-th}$ degree component of φ is given by

$$\varphi_n(f^0 u_{\phi_0}, \cdots, f^n u_{\phi_n}) = \begin{cases} \int_M f^0 d\hat{f}^1 \wedge \cdots \wedge d\hat{f}^n & \text{if } \phi_0 \circ \cdots \circ \phi_n = 1, \\ 0 & \text{if } \phi_0 \circ \cdots \circ \phi_n \neq 1. \end{cases}$$

This represents Connes' transverse fundamental class of M/G.

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Notation

Let $\phi \in G$. Then

- $\langle \phi \rangle$ is the conjugation class of $\phi.$
- $G_{\phi} = \{\psi \in G; \ \psi \circ \phi = \phi \circ \psi\}$ is the stabilizer of ϕ .
- $H^{ullet}(M^{\phi}_{a})$ is the G_{ϕ} -invariant cohomology of M^{ϕ}_{a}

Cyclic Homology of $C^{\infty}(M) \rtimes G$

Notation

Let $\phi \in G$. Then

- $\langle \phi \rangle$ is the conjugation class of $\phi.$
- $G_{\phi} = \{\psi \in G; \ \psi \circ \phi = \phi \circ \psi\}$ is the stabilizer of ϕ .
- $H^{ullet}(M^{\phi}_{a})$ is the G_{ϕ} -invariant cohomology of M^{ϕ}_{a}

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

$$\mathsf{HP}_{ullet}(C^\infty(M)
times G)\simeq igoplus_{\langle\phi
angle\in\langle G
angle} igoplus_{0\leq a\leq n} H^ullet(M^\phi_a)^{G^\phi}$$

イロト 不得 トイヨト イヨト 二日

Proposition (Brylinski-Getzler, Crainic, RP+HW)

• To any G_{ϕ} -invariant closed diff. form ω on M_{a}^{ϕ} is naturally associated an even cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$.

Proposition (Brylinski-Getzler, Crainic, RP+HW)

• To any G_{ϕ} -invariant closed diff. form ω on M_{a}^{ϕ} is naturally associated an even cyclic cycle η_{ω} on $C^{\infty}(M) \rtimes G$.

2) If
$$\omega = f^0 df^1 \wedge \cdots \wedge df^m$$
, then

$$\eta_{\omega} = \sum_{\sigma \in \mathfrak{S}_m} \epsilon(\sigma) \tilde{f}^0 \otimes \tilde{f}^{\sigma(1)} \otimes \cdots \otimes \tilde{f}^{\sigma(m-1)} \otimes f^{\sigma(m)} u_{\phi},$$

where \tilde{f}^{j} is a suitable smooth extension of f^{j} to M.

20 / 21

イロト 不得 トイヨト イヨト

Conformal Invariants

Theorem (RP+HW)

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$I_g(\omega) = \langle \mathsf{Ch}(\mathcal{D}_g)_{\sigma_g}, \eta_\omega \rangle.$$

Then

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$I_{g}(\omega) = \langle \mathsf{Ch}(\mathcal{D}_{g})_{\sigma_{g}}, \eta_{\omega} \rangle.$$

Then

 I_g(ω) is an invariant of the conformal structure C depending only on the class of ω in H[●](M^φ_a)^{G_φ}.

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$I_{g}(\omega) = \langle \mathsf{Ch}(\mathcal{D}_{g})_{\sigma_{g}}, \eta_{\omega} \rangle.$$

Then

- I_g(ω) is an invariant of the conformal structure C depending only on the class of ω in H[●](M^φ_a)^{G_φ}.
- **2** For any G-invariant metric $g \in C$, we have

$$I_{g}(\omega) = \int_{M_{a}^{\phi}} \hat{A}(R^{TM^{\phi}}) \wedge \nu_{\phi}\left(R^{\mathcal{N}^{\phi}}\right) \wedge \omega.$$

<ロ> (四) (四) (注) (注) (注) (三)

Let ω be as in the previous slide. For any metric $g \in \mathcal{C}$ define

$$I_{g}(\omega) = \langle \mathsf{Ch}(\mathcal{D}_{g})_{\sigma_{g}}, \eta_{\omega} \rangle.$$

Then

- I_g(ω) is an invariant of the conformal structure C depending only on the class of ω in H[●](M^φ_a)^{G_φ}.
- **2** For any G-invariant metric $g \in C$, we have

$$I_{g}(\omega) = \int_{M_{a}^{\phi}} \hat{A}(R^{TM^{\phi}}) \wedge
u_{\phi}\left(R^{\mathcal{N}^{\phi}}
ight) \wedge \omega.$$

Remark

The above invariants are not of the same type as those considered by S. Alexakis in his solution of the Deser-Swimmer conjecture.