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Overview of Noncommutative Geometry

Classical NCG

Manifold M Spectral Triple (A,H,D)

Vector Bundle E over M Projective Module E over A
E = eAq, e ∈ Mq(A), e2 = e

de Rham Homology/Cohomology Cyclic Cohomology/Homology

Atiyah-Singer Index Formula Connes-Chern Character Ch(D)

ind /D∇E =
∫

Â(RM) ∧ Ch(FE ) ind D∇E = 〈Ch(D),Ch(E)〉

Characteristic Classes Cyclic Cohomology for Hopf Algebras
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Spectral Triples

Definition

A spectral triple (A,H,D) consists of

1 A Z2-graded Hilbert space H = H+ ⊕H−.

2 An involutive algebra A represented in H.
3 A selfadjoint unbounded operator D on H such that

1 D maps H± to H∓.
2 (D ± i)−1 is compact.
3 [D, a] is bounded for all a ∈ A.

Example (Dirac Spectral Triple)

(C∞(M), L2
g (M, /S), /Dg ),

where (Mn, g) is a compact Riemanian spin manifold (n even),
/S = /S+ ⊕ /S− is the spinor bundle, and /D ĝ is the Dirac operator.
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Twisted Spectral Triples

Definition (Connes-Moscovici)

A twisted spectral triple (A,H,D)σ consists of

1 A Z2-graded Hilbert space H = H+ ⊕H−.

2 An involutive algebra A represented in H together with an
automorphism σ : A → A such that σ(a)∗ = σ−1(a∗) for all
a ∈ A.

3 A selfadjoint unbounded operator D on H such that
1 D maps H± to H∓.
2 (D ± i)−1 is compact.
3 [D, a]σ := Da− σ(a)D is bounded for all a ∈ A.
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Examples

Example (Conformal Deformation of Spectral Triples)

Given an ordinary spectral triple (A,H,D), let k ∈ A, k > 0. Then

(A,H, kDk)σ, σ(a) = k2ak−2, a ∈ A,

is a twisted spectral triple.

Example (Conformal Change of Metric)

Let (C∞(M), L2
g (M, /S), /Dg ) be a Dirac spectral triple. Consider

the conformal change of metric,

ĝ = k−2g , k ∈ C∞(M), k > 0.

Then (C∞(M), L2
ĝ (M, /S), /D ĝ ) is unitarily equivalent to

(C∞(M), L2
g (M, /S),

√
k /Dg

√
k).
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Further Examples

Further Examples

Conformal Dirac spectral triple (Connes-Moscovici).

Twisted spectral triples over NC tori associated to conformal
weights (Connes-Tretkoff).

Poincaré duals of some ordinary spectral triples (RP+HW,
Part 3).

Twisted spectral triples associated to quantum statistical
systems (e.g., Connes-Bost systems, supersymmetric Riemann
gas) (Greenfield-Marcolli-Teh ‘13).
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σ-Connections

Definition (Bimodule of σ-Differential Forms)

Ω1
D,σ(A) = Span{adσb; a, b ∈ A} ⊂ L(H),

where dσb := [D, b]σ = Db − σ(b)D.

Definition (σ-Connection)

Let E be a finitely generated projective module over A.

1 A σ-translate is a finitely generated projective module Eσ
together with a linear isomorphism σE : E → Eσ such that

σE(ξa) = σE(ξ)σ(a) ∀ξ ∈ E ∀a ∈ A.

2 A σ-connection is a given by a σ-translate Eσ and a linear
map ∇E : E → Eσ ⊗ Ω1

D,σ(A) such that

∇E(ξa) = σE(ξ)⊗ dσa +
(
∇Eξ

)
a ∀a ∈ A ∀ξ ∈ E .
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Operator D∇E

Proposition (RP+HW)

1 The data of a σ-connection ∇E defines a closed unbounded
operator,

D∇E =

(
0 D−∇E

D+
∇E 0

)
, D±∇E : E ⊗H± → Eσ ⊗H∓.

2 The operators D±∇E are Fredholm.

Definition (Index of D∇E )

ind D∇E =
1

2

(
ind D+

∇E − ind D−∇E
)
,

where ind D±∇E = dim ker D±∇E − dim coker D±∇E .

Remark

In all the main examples ind D∇E is actually an integer.
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Index Map and Connes-Chern Character

Proposition (Connes-Moscovici, RP+HW)

There is a unique additive map indD,σ : K0(A)→ 1
2Z such that

indD [E ] = ind D∇E ∀(E ,∇E).

Theorem (Connes-Moscovici, RP+HW)

Assume that Tr |D|−p <∞ for some p ≥ 1. Then there is a
(periodic) cyclic cohomology class Ch(D)σ ∈ HP0(A) , called
Connes-Chern character, such that

ind D∇E = 〈Ch(D)σ,Ch(E)〉 ∀(E ,∇E),

where Ch(E) is the Chern character in periodic cyclic homology.
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Conformal Dirac Spectral Triple

Setup

1 Mn is a compact spin oriented manifold (n even).

2 C is a conformal structure on M.

3 G is a group of conformal diffeomorphisms preserving C.
Thus, given any metric g ∈ C and φ ∈ G ,

φ∗g = k−2φ g with kφ ∈ C∞(M), kφ > 0.

4 C∞(M) o G is the (discrete) crossed-product algebra, i.e.,

C∞(M) o G =
{∑

fφuφ; fφ ∈ C∞c (M)
}
,

u∗φ = u−1φ = uφ−1 , uφf = (f ◦ φ−1)uφ.
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Conformal Dirac Spectral Triple

Lemma (Connes-Moscovici)

For φ ∈ G define Uφ : L2
g (M, /S)→ L2

g (M, /S) by

Uφξ = k
− n

2
φ φ∗ξ ∀ξ ∈ L2

g (M, /S).

Then Uφ is a unitary operator, and

Uφ /DgU∗φ =
√

kφ /Dg

√
kφ.

Proposition (Connes-Moscovici)

The datum of any metric g ∈ C defines a twisted spectral triple(
C∞(M) o G , L2

g (M, /S), /Dg

)
σg

given by

1 The Dirac operator /Dg associated to g.

2 The representation fuφ → fUφ of C∞(M) o G in L2
g (M, /S).

3 The automorphism σg (fuφ) := k−1φ fuφ.
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Conformal Connes-Chern Character

Theorem (RP+HW)

1 The Connes-Chern character Ch(/Dg )σg ∈ HP0(C∞(M) o G )
is an invariant of the conformal structure C.

2 For any cyclic homology class η ∈ HP0(C∞(M) o G ), the
pairing,

〈Ch(/Dg )σg , η〉,

is a conformal invariant.
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Computation of Ch(/Dg)σg

Strategy

1 Thanks to the conformal invariance we can choose any metric
g ∈ C to compute Ch(/Dg )σg .

2 If the conformal structure C is nonflat, then it contains a G
invariant metric C.

3 If g ∈ C is G -invariant, then σg = 1, and so the conformal

Dirac spectral triple
(

C∞(M) o G , L2
g (M, /S), /Dg

)
σg

is an

ordinary spectral triple.

4 In this case, the Connes-Chern character is computed as a
consequence of a new heat kernel proof of the local
equivariant index theorem of Atiyah-Segal, Donelly-Patodi,
Gilkey.
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Notation

Setup

C is a nonflat conformal structure on M.

g is a G -invariant metric in C.

Notation

Let φ ∈ G . Then

Mφ is the fixed-point set of φ; this is a disconnected sums of
submanifolds,
Mφ =

⊔
Mφ

a , dim Mφ
a = a (a even).

N φ = (TMφ)⊥ is the normal bundle (vector bundle over Mφ).

Over Mφ, with respect to TM|Mφ = TMφ ⊕N φ, there are
decompositions,

φ′ =

(
1 0
0 φ′|Nφ

)
, ∇TM = ∇TMφ ⊕∇Nφ

.
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Local Index Formula in Conformal Geometry

Theorem (RP + HW)

For any G -invariant metric g ∈ C, the Connes-Chern character
Ch(/Dg )σg is represented by the periodic cyclic cocycle ϕ = (ϕ2m)
given by

ϕ2m(f 0uφ0 , · · · , f
2muφ2m) =

(−i)
n
2

(2m)!

∑
0≤a≤n

(2π)−
a
2

∫
Mφ

a

Â(RTMφ
a )∧νφ

(
RN

φ
)
∧f 0df̂ 1∧· · ·∧df̂ 2m,

where φ := φ0 ◦ · · · ◦ φ2m, and f̂ j := f j ◦ φ−10 ◦ · · · ◦ φ
−1
j−1, and

Â
(

RTMφ
)

:= det
1
2

[
RTMφ

/2

sinh
(
RTMφ/2

)] ,
νφ

(
RN

φ
)

:= det−
1
2

[
1− φ′|Nφe−R

Nφ
]
.
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Local Index Formula in Conformal Geometry

Remark

The n-th degree component of ϕ is given by

ϕn(f 0uφ0 , · · · , f
nuφn) =

{ ∫
M f 0df̂ 1 ∧ · · · ∧ df̂ n if φ0 ◦ · · · ◦ φn = 1,

0 if φ0 ◦ · · · ◦ φn 6= 1.

This represents Connes’ transverse fundamental class of M/G .
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Cyclic Homology of C∞(M)o G

Notation

Let φ ∈ G . Then

〈φ〉 is the conjugation class of φ.

Gφ = {ψ ∈ G ; ψ ◦ φ = φ ◦ ψ} is the stabilizer of φ.

H•(Mφ
a ) is the Gφ-invariant cohomology of Mφ

a

Theorem (Brylinski-Nistor, Crainic)

Along the conjugation classes of G,

HP•(C∞(M) o G ) '
⊕
〈φ〉∈〈G〉

⊕
0≤a≤n

H•(Mφ
a )G

φ
.
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Construction of Geometric Cycles

Proposition (Brylinski-Getzler, Crainic, RP+HW)

1 To any Gφ-invariant closed diff. form ω on Mφ
a is naturally

associated an even cyclic cycle ηω on C∞(M) o G .

2 If ω = f 0df 1 ∧ · · · ∧ df m, then

ηω =
∑
σ∈Sm

ε(σ)f̃ 0 ⊗ f̃ σ(1) ⊗ · · · ⊗ f̃ σ(m−1) ⊗ f σ(m)uφ,

where f̃ j is a suitable smooth extension of f j to M.
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Conformal Invariants

Theorem (RP+HW)

Let ω be as in the previous slide. For any metric g ∈ C define

Ig (ω) = 〈Ch(/Dg )σg , ηω〉.

Then

1 Ig (ω) is an invariant of the conformal structure C depending

only on the class of ω in H•(Mφ
a )Gφ .

2 For any G -invariant metric g ∈ C, we have

Ig (ω) =

∫
Mφ

a

Â(RTMφ
) ∧ νφ

(
RN

φ
)
∧ ω.

Remark

The above invariants are not of the same type as those considered
by S. Alexakis in his solution of the Deser-Swimmer conjecture.
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