Diagonals of Certain Operators in von Neumann Algebras

Paul Skoufranis Joint work with Matt Kennedy

University of California - Los Angeles

June 26, 2014

Diagonal of a Matrix

Let \mathcal{D}_n be the diagonal subalgebra of $\mathcal{M}_n(\mathbb{C})$ and let $E_{\mathcal{D}_n}:\mathcal{M}_n(\mathbb{C})\to \mathcal{D}_n$ be defined by

$$
E_{\mathcal{D}_n}([a_{i,j}])=(a_{1,1},a_{2,2},\ldots,a_{n,n}).
$$

Given $T \in \mathcal{M}_n(\mathbb{C})$ with fixed properties, what values can $E_{\mathcal{D}_n}(\mathcal{T})$ take?

Diagonal of a Matrix

Let \mathcal{D}_n be the diagonal subalgebra of $\mathcal{M}_n(\mathbb{C})$ and let $E_{\mathcal{D}_n}:\mathcal{M}_n(\mathbb{C})\to \mathcal{D}_n$ be defined by

$$
E_{\mathcal{D}_n}([a_{i,j}])=(a_{1,1},a_{2,2},\ldots,a_{n,n}).
$$

Given $T \in \mathcal{M}_n(\mathbb{C})$ with fixed properties, what values can $E_{\mathcal{D}_n}(\mathcal{T})$ take?

Analogue in von Neumann Algebras

Let $\mathfrak M$ be a von Neumann algebra, let $\mathcal A$ be a MASA in $\mathfrak M$, and let

$$
E_{\mathcal{A}}:\mathfrak{M}\rightarrow \mathcal{A}
$$

be a conditional expectation of M onto A. Given $T \in \mathfrak{M}$ with fixed properties, what operators may $E_A(T)$ be?

The Schur-Horn Theorem

Theorem (Schur; 1923)

If $T \in \mathcal{M}_n(\mathbb{C})$ is a self-adjoint matrix with eigenvalues and diagonal entries

 $\lambda_1 > \lambda_2 > \cdots > \lambda_n$ a₁ $>$ a₂ $> \cdots >$ a_n

respectively, then

\n- **0**
$$
\sum_{k=1}^{m} a_k \leq \sum_{k=1}^{m} \lambda_k
$$
 for all $m \in \{1, \ldots, n\}$, and
\n- **0** $\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} \lambda_k$.
\n

Theorem (Horn; 1954)

If

$$
\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \qquad a_1 \geq a_2 \geq \cdots \geq a_n
$$

are elements of $\mathbb R$ such that the above two conditions hold, then there exists a self-adjoint matrix $\mathcal{T} \in \mathcal{M}_n(\mathbb{C})$ with eigenvalues $(\lambda_k)_{k=1}^n$ and diagonal entries $(a_k)_{k=1}^n$.

In the beautiful paper The Pythagorean Theorem: I. The finite case by Kadison, the following subcase of the Schur-Horn Theorem was proved.

Theorem (Carpenter's Theorem; 2002)

Let $A \in \mathcal{M}_n(\mathbb{C})$ be a diagonal, positive contraction such that

$$
Tr(A)=m\in\mathbb{Z}.
$$

Then there exists a projection $P \in M_n(\mathbb{C})$ with $Tr(P) = m$ such that

$$
E_{\mathcal{D}}(P)=A.
$$

Kadison also proved a Carpenter's Theorem for $(\mathcal{B}(\mathcal{H}), \mathcal{D})$ in The Pythagorean Theorem: II. The infinite discrete case.

Definition

A matrix $[a_{i,j}]\in\mathcal{M}_n(\mathbb{C})$ is said to be unistochastic if there exists a unitary $[u_{i,j}] \in \mathcal{M}_n(\mathbb{C})$ such that $a_{i,j} = |u_{i,j}|^2$.

Note $\text{diag}\left([u_{i,j}]^* \text{diag}(a_1,\ldots,a_n)[u_{i,j}]\right) = [|u_{i,j}|^2] \cdot (a_1,\ldots,a_n).$

Definition

A matrix $[a_{i,j}]\in\mathcal{M}_n(\mathbb{C})$ is said to be unistochastic if there exists a unitary $[u_{i,j}] \in \mathcal{M}_n(\mathbb{C})$ such that $a_{i,j} = |u_{i,j}|^2$.

- Note $\text{diag}\left([u_{i,j}]^* \text{diag}(a_1,\ldots,a_n)[u_{i,j}]\right) = [|u_{i,j}|^2] \cdot (a_1,\ldots,a_n).$
- In 1979 Au-Yeung and Pong gave a geometric description of the possible diagonals of a 3×3 normal matrix.

Definition

A matrix $[a_{i,j}]\in\mathcal{M}_n(\mathbb{C})$ is said to be unistochastic if there exists a unitary $[u_{i,j}] \in \mathcal{M}_n(\mathbb{C})$ such that $a_{i,j} = |u_{i,j}|^2$.

- Note $\text{diag}\left([u_{i,j}]^* \text{diag}(a_1,\ldots,a_n)[u_{i,j}]\right) = [|u_{i,j}|^2] \cdot (a_1,\ldots,a_n).$
- In 1979 Au-Yeung and Pong gave a geometric description of the possible diagonals of a 3×3 normal matrix.
- In 2007 Arverson examined diagonals of normal operators with finite spectrum in $\mathcal{B}(\mathcal{H})$.

Definition

A matrix $[a_{i,j}]\in\mathcal{M}_n(\mathbb{C})$ is said to be unistochastic if there exists a unitary $[u_{i,j}] \in \mathcal{M}_n(\mathbb{C})$ such that $a_{i,j} = |u_{i,j}|^2$.

- Note $\text{diag}\left([u_{i,j}]^* \text{diag}(a_1,\ldots,a_n)[u_{i,j}]\right) = [|u_{i,j}|^2] \cdot (a_1,\ldots,a_n).$
- In 1979 Au-Yeung and Pong gave a geometric description of the possible diagonals of a 3×3 normal matrix.
- In 2007 Arverson examined diagonals of normal operators with finite spectrum in $\mathcal{B}(\mathcal{H})$.

What goes wrong? Let $\mathcal{T}=\operatorname{diag}(0,1,i)$ and $\mathcal{A}=\operatorname{diag}\big(\frac{1}{2},1\big)$ $\frac{1}{2}$, $\frac{1}{2}$ $\frac{i}{2}, \frac{1+i}{2}$ $\frac{+i}{2}$.

Definition

A matrix $[a_{i,j}]\in\mathcal{M}_n(\mathbb{C})$ is said to be unistochastic if there exists a unitary $[u_{i,j}] \in \mathcal{M}_n(\mathbb{C})$ such that $a_{i,j} = |u_{i,j}|^2$.

- Note $\text{diag}\left([u_{i,j}]^* \text{diag}(a_1,\ldots,a_n)[u_{i,j}]\right) = [|u_{i,j}|^2] \cdot (a_1,\ldots,a_n).$
- In 1979 Au-Yeung and Pong gave a geometric description of the possible diagonals of a 3×3 normal matrix.
- In 2007 Arverson examined diagonals of normal operators with finite spectrum in $\mathcal{B}(\mathcal{H})$.

What goes wrong? Let $\mathcal{T}=\operatorname{diag}(0,1,i)$ and $\mathcal{A}=\operatorname{diag}\big(\frac{1}{2},1\big)$ $\frac{1}{2}$, $\frac{1}{2}$ $\frac{i}{2}, \frac{1+i}{2}$ $\frac{+i}{2}$). The matrix

$$
\left[\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{array}\right]
$$

is not unistochastic.

$$
\left[\begin{array}{cccc|c} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i \end{array}\right] \rightsquigarrow \left[\begin{array}{cccc|c} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \rightsquigarrow \left[\begin{array}{cccc|c} \frac{1}{2} & * & 0 & 0 & 0 & 0 \\ * & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{i}{2} & * & 0 & 0 \\ 0 & 0 & \frac{i}{2} & * & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1+i}{2} & * \\ 0 & 0 & 0 & 0 & * & \frac{1+i}{2} \end{array}\right]
$$

Let $\mathfrak M$ be a von Neumann algebra, let $\mathcal A$ be a MASA of $\mathfrak M$, let $E_{\mathcal{A}}: \mathfrak{M} \to \mathcal{A}$ be a conditional expectation, and let $\{A_k\}_{k=1}^n \subseteq \mathcal{A}$ be positive operators such that $\sum_{k=1}^n A_k = I_{\mathfrak{M}}$. Then:

- **1** If $\mathfrak{M} = \mathcal{B}(\mathcal{H})$ and A is either a continuous MASA or the diagonal MASA with E_A normal in the case $A = D$, then for every $\epsilon > 0$ there exists a collection of pairwise orthogonal projections $\{P_k\}_{k=1}^n\subseteq\mathcal{A}$ such that $\sum_{k=1}^n P_k = I_{{\mathcal H}}, \ \sigma_{\text e}(P_k) = \sigma(P_k)$, and $\|E_{{\mathcal A}}(P_k) - A_k\| < \epsilon$ for all $k \in \{1, \ldots, n\}$.
- **2** If \mathfrak{M} is a type II₁ factor with tracial state τ and E_A is normal, then for every $\epsilon > 0$ there exists a collection of pairwise orthogonal projections $\{P_k\}_{k=1}^n\subseteq\mathcal{A}$ such that $\tau(P_k)=\tau(A_k)$ and $||E_A(P_k) - A_k|| < \epsilon$ for all $k \in \{1, \ldots, n\}.$

Similar results in type II_{∞} and type III factors.

Let A be a MASA in $\mathcal{B}(\mathcal{H})$, let $E_A : \mathcal{B}(\mathcal{H}) \to \mathcal{A}$ be a conditional expectation, and let $N \in \mathcal{B}(\mathcal{H})$ be normal.

 \bullet If A is a continuous MASA, then

$$
\overline{\{E_{\mathcal{A}}(U^*NU) \mid U \in \mathcal{U}(\mathcal{H})\}} = \{A \in \mathcal{A} \mid \sigma(A) \subseteq \mathrm{conv}(\sigma_e(N))\}.
$$

2 If $\mathcal{A} = \mathcal{D}$, E_A is normal, and $\sigma(N) \subseteq \text{conv}(\sigma_e(N))$, then

 $\overline{\{E_A(U^*NU) \mid U \in \mathcal{U}(\mathcal{H})\}} = \{A \in \mathcal{D} \mid \sigma(A) \subseteq \text{conv}(\sigma_e(N))\}.$

Let (\mathfrak{M}, τ) be a type H_1 factor, let A be a MASA of \mathfrak{M} , let $E_A : \mathfrak{M} \to A$ be the normal conditional expectation of $\mathfrak M$ onto A. Let $N \in \mathfrak M$ be a normal operator such that $\sigma(N) = \{z_k\}_{k=1}^n \subseteq \mathbb{C}$. Then

$A \in \{E_A(U^*NU) \mid U \in \mathcal{U}(\mathfrak{M})\}$

if and only if there exists $\{A_k\}_{k=1}^n\subseteq \mathcal{A}$ such that

$$
0\leq A_k\leq I_{\mathfrak{M}},\qquad \tau(A_k)=\tau(\chi_{\{z_k\}}(N)),
$$

$$
\sum_{k=1}^n A_k = I_{\mathfrak{M}},
$$

and

$$
\sum_{k=1}^n z_k A_k = A.
$$

Solution to a question posed by Mirsky in 1964:

Theorem (Thompson; 1977 — Sing)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $a_1, \ldots, a_n \in \mathbb{C}$ be such that

 $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \geq 0$ and $|a_1| \geq |a_2| \geq \cdots |a_n| \geq 0$.

There exists a complex n by n matrix with singular values are $\alpha_1, \ldots, \alpha_n$ and diagonal entries a_1, \ldots, a_n if and only if

 $\textbf{D} \ \sum_{j=1}^k |a_j| \leq \sum_{j=1}^k \alpha_j \ \textit{for all} \ k \in \{1, \dots, n\},$ and 2 $-|a_n| + \sum_{j=1}^{n-1} |a_j| \le -\alpha_n + \sum_{j=1}^{n-1} \alpha_j$.

Definition (Fack; 1982)

Let (\mathfrak{M}, τ) be a type II₁ factor, let $T \in \mathfrak{M}$, and let $t \in [0, 1]$. The $t^{\rm th}$ -singular number of τ is

 $\mu_t(T) := \inf \{ ||TP|| \mid P \in \text{Proj}(\mathfrak{M}), \tau(I_m - P) \leq t \}.$

Definition (Fack; 1982)

Let (\mathfrak{M}, τ) be a type II₁ factor, let $T \in \mathfrak{M}$, and let $t \in [0, 1]$. The $t^{\rm th}$ -singular number of τ is

$$
\mu_t(T) := \inf \{ \|TP\| \mid P \in \mathrm{Proj}(\mathfrak{M}), \tau(I_{\mathfrak{M}} - P) \leq t \}.
$$

Furthermore

 $\overline{\{UTV \mid U, V \in \mathcal{U}(\mathfrak{M})\}} = \{R \in \mathfrak{M} \mid \mu_t(R) = \mu_t(T) \text{ for all } t \in [0,1]\}.$

Definition

Let (\mathfrak{M}, τ) be a type II₁ factor. For two operators $A, S \in \mathfrak{M}$ we say that S submajorizes A, denoted $A \prec_w S$, if

$$
\int_0^t \mu_s(A)\,ds \leq \int_0^t \mu_s(S)\,ds
$$

for all $t \in [0,1]$.

Note, if A and S are positive, then

$$
\tau(A)=\tau(S) \text{ and } A\prec_w S \Longleftrightarrow A\prec S.
$$

Let (\mathfrak{M}, τ) be a type II₁ factor, let $\mathcal A$ be a MASA of \mathfrak{M} , and $E_{\mathcal A}: \mathfrak{M} \to \mathcal A$ be the normal conditional expectation.

Theorem (Kennedy, Skoufranis; 2014)

If $T \in \mathfrak{M}$, then $E_A(T) \prec_w T$.

Question

For $A \in \mathcal{A}$ and $T \in \mathfrak{M}$ with $A \prec_w T$, does there exists an

 $S \in \{UTV \mid U, V \in \mathcal{U}(\mathfrak{M})\}$

such that $E_A(S) = A$?

Let (\mathfrak{M}, τ) be a type II₁ factor, let $\mathcal A$ be a MASA of \mathfrak{M} , and $E_{\mathcal A}: \mathfrak{M} \to \mathcal A$ be the normal conditional expectation.

Theorem (Kennedy, Skoufranis; 2014)

If $T \in \mathfrak{M}$ and $A \in \mathcal{A}$ be such that $A \prec_w T$, then for every $\epsilon > 0$ there exists unitary operators $U, V \in \mathfrak{M}$ such that

 $\|E_A(UTV) - A\| < \epsilon.$

Let (\mathfrak{M}, τ) be a type H_1 factor, let A be a MASA of \mathfrak{M} , and $E_A : \mathfrak{M} \to A$ be the normal conditional expectation. The following are equivalent:

 \bigcirc If $T \in \mathfrak{M}$ and $A \in \mathcal{A}$ are self-adjoint and $A \prec T$, then there exists an $S \in \mathfrak{M}$ such that T and S are approximately unitarily equivalent and

$$
E_{\mathcal{A}}(S)=A.
$$

2 If $T \in \mathfrak{M}$ and $A \in \mathcal{A}$ are such that $A \prec_w T$, then there exists an $S \in \mathfrak{M}$ such that T and S have the same singular values and

$$
E_{\mathcal{A}}(S)=A.
$$

Thanks for Listening!