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Motivation: Quantum Foundations

Quantum mechanics has unfamiliar features
Superposition, entanglement, collapse under measurement,
tensor-product structure of Hilbert space,
non-locality, contextuality, negative (quasi-)probability . . .

Which of these concepts are “truly quantum” and which are
“merely classical”?
Can this cconceptual distinction help predict the unique
capabilities of the quantum world?



Motivation:
From Quantum Foundations to Quantum Information

The Best Information is Quantum Information
Clear operational advantages of quantum information: CHSH
games, Shor’s algorithm

Which features of quantum theory are necessary and sufficient
resources for these operational advantages?



Motivation: Quantum Information

Which quantum features power quantum computation?
Non-locality is the fundamental quantum resource for
communication under the LOCC restriction
Quantum resources (capabilities) that are necessary for power
of quantum computation are less clear

MBQC vs standard circuit model vs adiabatic QC vs DQC1
model...

Both fundamental and practical:

Which quantum processes/algorithms admit an efficient
classical simulation?
What experimental capabilities are needed for exponential
quantum speed-up?



Background: Discrete Wigner function

Main Tool: the Wootters/Gross DWF

A quasi-probability representation introduced by Bill Wootters
(1987) and developed by David Gross (2005)
A discrete analog of the Wigner function (DWF)

This DWF has nice group-covariant properties relevant to
quantum computation
This DWF is well-defined only for odd-prime dimensional
quantum systems:

qudits (for d 6= 2) or qupits ( for p 6= 2)
. . . maybe “quopits”?
as only even prime, 2 is the oddest prime of them all!
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Outline of Results: Quantum Foundations

We identify the full set of non-negative quantum states +
transformations + measurements under this DWF

these define an operational subtheory of quantum theory

This a large, convex subtheory of quantum theory with

superposition, entanglement (without non-locality), collapse
under measurement, tensor-product structure of Hilbert space
quantum teleportation, the no-cloning principle and other
so-called “quantum” phenomena

The non-negative DWF for this subtheory corresponds to:
a classical probabilistic model for quopit systems
a local hidden variable model for entangled quopits
a maximal classical subtheory for quopit systems:

negativity of discrete Wigner function occurs if and only if the
quantum state violates a contextuality inequality
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Outline of Results:
from Quantum Foundations to Quantum Information

This is all interesting but how is it useful?

We show that the Wootters/Gross DWF provides:

an efficient simulation scheme for a class of quantum circuits –
extending Gottesman-Knill to (mixed) non-stabilizer states
a direct link between contextuality and the power of quantum
computation:

a quantum state enables universal quantum computation only
if it violates a contextuality inequality

the quantum “Mana": the amount of negativity/contextuality
is a quantitive resource for universal quantum computation
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Quasi-Probability Representations

The most well-known QPR is the Wigner function

µWigner
ρ (q, p) =

1
(2π)2

∫
R2

dξdη Tr
[
ρe iξ(Q−q)+iη(P−p)

]
Real-valued function on classical phase space (eg, R2 for 1
particle in 1d).
An equivalent formulation of quantum mechanics:

Pr(q ∈ ∆) =

∫
∆
dq
∫

dpµWigner
ρ (q, p)

Not unique! Other choices of QPR: P-representation,
Q-representation, etc . . .



Quasi-Probability Representations

µWigner
ρ (q, p) takes on negative values for some quantum

states.
Negativity and non-classicality: negativity of given state
depends on choice of QPR!
Can even choose a QPR for which all states are non-negative!



Freedom in choosing QPR

The Wigner function is a non-unique choice of QPR!

(i) Phase space can be any set Λ, e.g., Λ = R2 for Wigner
function.
(ii) Linear map taking quantum states to real-valued functions
is non-unique.
(iii) Linear map taking measurements to conditional
probabilities can be non-unique.



General Class of Quasi-probability Representations

Definition: A quasi-probability representation of QM:

Any pair of linear (affine) maps

µρ : ρ→ µρ

ξk : Ek → ξk

with µρ : Λ→ R and ξk : ΛxK→ R,
that reprodiuce the Born rule via the law of total probability

Pr(k) = Tr(Ekρ) =

∫
Λ
dλξk(λ)µρ(λ)



Frames and Quasi-probability representations

The non-uniqueness of QPR is equivalent to choosing a frame and
a dual frame for the Hilbert space of linear operators

A frame of operators {F (λ)} is just a spanning set∗, viz. an
overcomplete basis, indexed by λ ∈ Λ.
A Hermitian frame {F (λ)} and Hermitian dual frame {F ∗(λ)}
define a QPR:

µρ(λ) = Tr(F (λ)ρ)

ξk(λ) = Tr(F ∗(λ)ρ)

Note: For any operator A, a dual frame satisfies

A =

∫
dλF ∗(λ)Tr(F (λ)A)

Ref: C. Ferrie and J. Emerson (J. Phys. A, 2008)



Necessity of Negativity in any QPR

No-Go Theorem for a Fully Non-Negative Quasi-Probability
Representation:

All quantum states and measurements can not be represented
by non-negative functions in any QPR.

In other words: quantum theory is not a probability theory
Proof: a frame of non-negative operators can not have a dual
frame consisting of non-negative operators.

Refs:
C. Ferrie and J. Emerson (J. Phys. A, 2008);
C. Ferrie, R. Morris and J. Emerson, (Phys. Rev. A, 2010)
See also:
R. Spekkens (PRL, 2008).



Need to Motivate Choice of Quasi-Probability
Representation

Different sets of states and/or measurements are non-negative in
different QPRs

Key Idea
Align choice of frame and dual frame to reflect operational
restrictions!

The Clifford/stabilizer subtheory: central to quantum error
correction and fault-tolerance
The stabilizer subtheory admits an efficient classical simulation
scheme (Gottesman-Knill theorem): no quantum speed-up.
In the Wootters/Gross DWF, the full Clifford subtheory is
non-negative (for quopits)



Slice of the Quantum State Space and Stabilizer Polytope

Λ = Z3 × Z3
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Figure: Slice defined by fixing six entries of the Wigner function and
varying the remaining through their possible values to create the plot.



Clifford/Stabilizer Subtheory

Let p be a prime number and define the boost and shift
operators:

X |j〉 = | j + 1 mod p〉

Z |j〉 = ωj |j〉 , ω = exp
(
2πi
p

)
The Heisenberg-Weyl operators for odd prime dimension

T(a,b) = ω−
ab
2 Z aX b (a, b) ∈ Zp × Zp, p 6= 2

where Zp are the integers modulo p.
For composite Hilbert space of n quopits:

T
(~a,~b)
≡ T(a1,b1) ⊗ T(a2,b2) · · · ⊗ T(an,bn).



Clifford/Stabilizer Subtheory

The Clifford operators are the unitaries that, up to a phase,
take the Heisenberg-Weyl operators to themselves, ie.

U ∈ Cd ⇐⇒ ∀u ∃φ,u′ : UTuU† = exp (iφ)Tu′ .

The set of such operators form the Clifford group Cd which is
a subgroup of U(d).
The pure stabilizer states for dimension d are

{|Si 〉} = {U |0〉 : U ∈ Cd} ,

The full set of stabilizer states is the convex hull of this set:

STAB (Hd ) =

{
σ ∈ L (Hd ) : σ =

∑
i

pi |Si 〉〈Si |

}
,

where pi is some probability distribution.



The Wootters/Gross DWF for Odd Dimension

Choose a frame of phase space point operators

A0 =
1
d

∑
u

Tu , Au = TuA0T †u .

The frame operators in dimension pn are n-fold tensor
products of single system frame operators.
There are d2 such operators for d -dimensional Hilbert space,
corresponding to the d2 phase space points u ∈ Λ.
Let d = pn and p odd: the frame operators are Clifford
covariant: for U ∈ Cd ,

UAuU† = Au′

There is a rich (symplectic) structure at play (suppressed here).
Key point: Cliffords are permutations on the phase space



Discrete Wigner Representation for Odd Dimension

The DWF of a state is a QPR over Λ = Zn
p × Zn

p, i.e., a set of
d × d points, where

Wρ(u) =
1
d
Tr(Auρ),

The DWF for a quantum measurement operator Ek is then the
conditional (quasi-)probability function over Λ,

WEk (u) = Tr(AuEk).

Of course, the Born rule is reproduced by the law of total
probability

Pr(k) =
∑
u

Wρ(u)WEk (u) = Tr(ρEk)



Example of Discrete Wigner Representation for Qutrits

1/3 1/3 1/3

0

0

0

0

0

0

Figure: Wigner representation of
qutrit |0〉 state
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Resources for Quantum Computation?

Some Candidates
Entanglement? . . . Provably necessary in circuit model, but
(largely) absent in DQC1.
Purity/Coherence/Superposition? . . . Unclear.
Discord? . . . Ok, probably not discord.
Negative Wigner function and contextuality? . . . Yes!

Quantum Resources
Resources arise naturally under operational restrictions, e.g.,
fundamental or practical restrictions on the quantum formalism.

Quantum Resources from operational restrictions
Limitations of fault-tolerant stabilizer computation give a set of
resource-constraints for quantum computation!
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Resources for Fault Tolerance

Eastin-Knill, 2009
A transversal (and hence fault-tolerant) encoded gate set can not
be universal.

Fault Tolerance with Stabilizer Operations
Stabilizer operations are a typical choice of for fault tolerant
gates - they form a subgroup of the unitary group.
Stabilizer operations are not universal - this set is efficiently
simulatable by the Gottesman-Knill theorem.
This defines a natural restriction on the set of quantum
operations.
Thus an additional resource is needed for universal quantum
computation - consumption of resource states.
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Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

Operational restriction: only stabilizer operations (states,
gates and projective measurement) can be realized
Additional resource: preparation of non-stabilizer "magic"
state ρR

Magic State Distillation
Convert several noisy magic states ρR to produce a few very
pure magic states ρ̃R

Consume pure magic states ρ̃R to perform non-stabilizer
unitary gates (using only fault tolerant stabilizer operations)

An Open Question
Which non-stabilizer states promote stabilizer computation to
universal quantum computation? Can answer this using DWF!
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Discrete Wigner Representation for Odd Dimension

1 Discrete Hudson’s theorem (Gross, 2006): a pure state |S〉 has
positive representation if and only if it is a stabilizer state.
Hence for any state in STAB we know Tr(AuS) ≥ 0 ∀u.

2 Clifford unitaries act as permutations of phase space. This
means that if U is a Clifford then,

WUρU†(v) = Wρ(v ′),

for each point v .
3 Hence Clifford operations preserve non-negativity.
4 Note: only a small subset of the possible permutations of

phase space correspond to Clifford operations.



Stabilizer Operations Preserve Positive Representation

Observation
Negative Wigner representation is a resource that can not be
created by stabilizer operations.

Proof
Let ρ ∈ L(Cdn) be an n qudit quantum state with positive Wigner
representation. Observe the following:

1 UρU† is positively represented for any Clifford (stabilizer)
unitary U.

2 ρ⊗ S is positively represented for any stabilizer state S .
3 state-update, MρM†/Tr

(
MρM†

)
, is positively represented for

any stabilizer projector M.



A question

Positive Representation ≡ Stabilizer State?
Do all non-stabilizer states have negative Wigner representation?



Stabilizer Polytope

Stabilizer Polytope
Convex polytope with
stabilizer states as vertices
Can be defined from set
of “facets”

Wigner Facets

The Wigner simplex has d2

facets = small subset of
stabilizer polytope facets

bound magic states
stabilizer states

quantum states

This is a cartoon.



Slice of the Quantum State Space and Stabilizer Polytope
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Magic States and Negative Quasi-Probability

Distillable Magic States for Odd Dimensional Qudits

There is a large class of non-stabilizer quantum states (bound
magic states) that are not useful for magic state distillation.
Hence negative quasi-probability is necessary condition for a
state to be distillable
Is the boundary for negativity also a boundary for
contextuality?



State-dependent contextuality

Use the graph-based contextuality formalism in Cabello, Severini
and Winter (2010):

Consider a set of binary yes-no tests, which we quantum
mechanically represent by a set of rank-one projectors, Π, with
eigenvalues λ(Π) ∈ {1, 0}.
Compatible tests are those whose representative projectors
commute, and a context is a set of mutually compatible tests.
Commuting rank-1 projectors cannot both take on the value
+1 i.e., the respective propositions are mutually exclusive and
cannot both be answered in the affirmative.
These (mutual orthogonality) relations can be represented by a
graph Γ where connected vertices correspond to compatible
and exclusive tests.



State-dependent contextuality

Define an operator ΣΓ =
∑

Π∈Γ Π

Cabello, Severini and Winter (2010) show that

The maximum classical (non-contextual) assignment is

〈ΣΓ〉NCHV
max = α(Γ)

where α(Γ) is the independence number of the graph.
An independent set of a graph is a set of vertices, no two of
which are adjacent. The independence number α(Γ) ∈ N is the
size of the largest such set.
The maximum quantum value

〈ΣΓ〉QM
max = ϑ(Γ)

where ϑ(Γ) ∈ R is the Lovasz theta number which is the
solution of a certain semidefinite program.



Graph of Stabilizer Projectors

We construct a set of stabilizer projectors for a system of two
p-dimensional qudits such that:

〈Σtot〉QM
max = p3 + 1.

Let
Σtot = Σsep + Σent = p3Ip2 −

(
A(0,0) ⊗ Ip

)
Then for any state σ ∈ Hp we have

Tr [Σtot (ρ⊗ σ)] > p3 ⇐⇒ Tr
[
A(0,0)ρ

]
< 0.

Let |ν〉 = |1〉−|p−1〉√
2

we get

Tr
[
A(0,0)|ν〉〈ν|

]
= −1,



Graph of Stabilizer Projectors

What about the maximal NCHV assignment of 0 and 1 to vertices
of the graph?

Via exhaustive numerical search for p = 3 and p = 5 we show
that

α(Γtot) = p3 ⇒ 〈Σtot〉NCHV
max = p3

We conjecture this holds in general for all odd prime p.



Graph of Stabilizer Projectors

Hence for p = 3 and p = 5 and we conjecture for all odd p:

〈Σtot〉NCHV
max = p3 < 〈Σtot〉QM

max = p3 + 1.

From the above it follows that:
(i) a state is non-contextual if and only if it is positively
represented in the discrete Wigner function,
(ii) maximally negative states exhibit the maximum possible
amount of contextuality



Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

Operational restriction: perfect stabilizer operations (states,
gates and projective measurement)
Additional resource: preparation of non-stabilizer state ρR

Magic State Distillation
Consume many resource states ρR to produce a few very pure
resource states σ ≈ |ψ〉〈ψ|
Inject σ ≈ |ψ〉〈ψ| to perform non-stabilizer unitary gates (using
only fault tolerant stabilizer operations)



Importance of Efficiency

Example
Fowler et al.a analyze the requirements to use Shor’s algorithm to
factor a 2000 bit number using physical qubits with realistic error
ratesb. Using a 2D surface code they find:

Approximately one billion physical qubits are required.
About 94% of these are used for magic state distillation.

aFowler, Mariantoni, Martinis and Cleland (2012)
bPhysical qubit error rate 0.1%, ancilla preparation error rate 0.5%



Main Result

Main Result: Magic Monotones
We identify and study two magic monotones:

The (regularized) relative entropy of magic. This is most
interesting in the asymptotic regime.
The mana, a computable monotone based on the discrete
Wigner function defined for odd dimensional systems.

As a corollary we find explicit, absolute bounds on the efficiency of
magic state distillation.



Mana - Overview

Bound States
Previous work: states with positive discrete Wigner function
are not distillable.
Positively represented states also not useful for quantum
computation.
Is the “amount” of negativity of the Wigner function
meaningful?

Mana
The sum negativity snρ is the sum of the negative entries of
the Wigner function of ρ
The mana is the additive variant of the sum negativity,
M(ρ) = log (2sn(ρ) + 1)



Mana - Definition

Magic Monotones
Mana
M(ρ) = log (2snρ+ 1)

Wigner negativity
The negativity of the DWF
gives a computable,
quantitative measure of
resource for universal quantum
computation.

Figure: Sum negativity = 1
3

Figure: Sum negativity = 2
9



Quantum Foundations

Quantum mechanics has unfamiliar features
Superposition, entanglement, collapse under measurement,
tensor product structure of Hilbert space, non-locality,
contextuality, negative (quasi-)probability . . .

Which of these concepts are truly quantum and which are classical?

Classical concepts: superposition, entanglement, collapse
under measurement, tensor product structure of Hilbert space,
. . .
Quantum concepts: Non-locality, contextuality, negative
(quasi-)probability.



Summary and Open Questions

Summary
Bound states for magic
state distillation
Negative Wigner function
is a resource for FT
stabilizer computation
Negative quasi-probability
and contextuality are
equivalent resources

Related Results:
Extension of
Gottesman-Knill
Entanglement in a LHV

Future Work
Should we compute with
qudits (quopits)?
Is contextuality sufficient
for distillability?
How to extend the QPR
approach to other
operational restrictions?

Main Refs:
Veitch et al, NJP (2012)
Veitch et al, arxiv:1307.7171
Howard et al, forthcoming.



Entanglement from Epistemic Restriction

Entanglement without non-locality:
The two qutrit Bell state

|B〉 =
|00〉+ |11〉+ |22〉√

3

is an entangled stabilizer state
Its density operator does *not* admit a convex decomposition
into factored qutrit states
But under stabilizer measurements it can not exhibit any form
of contextuality
Morever, its discrete Wigner function must admit the
decomposition

W|B〉〈B| = ΣlplW A
l ⊗W B

l



Entanglement from Epistemic Restriction

Note that W A
l and W B

l come from forbidden regions of the
single-qutrit Wigner probability simplex – that is, W A

l and W B
l

are not valid single qutrit quantum states

Entanglement arises naturally from the epistemic restriction,
i.e. from incompleteness of quantum states!



Extended Gottesman-Knill Theorem

Weak simulation protocol for all states inside and some mixed
states outside the stabilizer polytope!

Scope
Prepare ρ with positive representation
Act on input with Clifford UF (corresponding to linear size F )
Perform measurement {Ek} with positive representation

Simulation Protocol
Sample phase space point (u, v) according to distribution
Wρ(u, v)

Evolve phase space point according to (u, v)→ F−1(u, v)

Sample from measurement outcome according to W̃{Ek}(u, v)



Continuous Variable Simulation for Linear Optics

Odd Dimension Infinite Dimension
Stabilizer Operations Linear Optics
Stabilizer States Gaussian States

Discrete Wigner Function Wigner Function

Table: Comparison of Odd and Infinite Dimensional Formalisms

Results
There exist mixed states with positive Wigner representation
that are not convex combinations of gaussian states (Brocker
and Werner, 1995)
Computations using linear optical transformations and
measurements as well as preparations with positive Wigner
function can be efficiently classically simulated.

Ref: Veitch, Wiebe, Ferrie and Emerson, NJP 15, 013037 (2013)


