

Who's Crazier? 1/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Who is Crazier: Bayes or Fisher? A Missing (Data) Perspective on Fiducial Inference

Keli Liu and Xiao-Li Meng

Department of Statistics, Harvard University

November 15, 2013

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x} - \mu}{s / \sqrt{n}} = t$$

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes	

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes

• Assume μ is random.

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes

• Assume μ is random.

• Assume μ has *improper* distribution.

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes

- Assume μ is random.
- Assume μ has *improper* distribution.

•
$$[\mu|\bar{x},s] \sim \bar{x} - \frac{s}{\sqrt{n}}t_{n-1}$$

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes

- Assume μ is random.
- Assume μ has *improper* distribution.

•
$$[\mu|\bar{x},s] \sim \bar{x} - rac{s}{\sqrt{n}}t_{n-1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes

- Assume μ is random.
- Assume μ has *improper* distribution.

•
$$[\mu|\bar{x},s] \sim \bar{x} - rac{s}{\sqrt{n}}t_{n-1}$$

Fisher

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Fiducial Equation:

$$\mu = \bar{x} - \frac{s}{\sqrt{n}}t.$$

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes

- Assume μ is random.
- Assume μ has *improper* distribution.

•
$$[\mu|\bar{x},s] \sim \bar{x} - \frac{s}{\sqrt{n}}t_{n-1}$$

Fisher

• Fiducial Equation:

$$\mu = \bar{x} - \frac{s}{\sqrt{n}}t.$$

• Assume
$$[t|\bar{x},s] \sim t_{n-1}$$
.

◆□ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Who's Crazier? 2/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• Frequentist $1 - \alpha$ level interval: $\bar{x} \pm \frac{s}{\sqrt{n}} t_{n-1,1-\alpha/2}$.

Bayes

- Assume μ is random.
- Assume μ has *improper* distribution.

•
$$[\mu|\bar{x},s] \sim \bar{x} - \frac{s}{\sqrt{n}}t_{n-1}$$

Fisher

• Fiducial Equation:

$$\mu = \bar{x} - \frac{s}{\sqrt{n}}t.$$

• Assume
$$[t|\bar{x},s] \sim t_{n-1}$$
.

•
$$[\mu|\bar{x},s] \sim \bar{x} - \frac{s}{\sqrt{n}}t_{n-1}.$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ めんぐ

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = G(\theta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $\theta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = G(heta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $heta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

• G is the structure equation. **U** is (God's) uncertainty.

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

$$\mathbf{X} = \mathcal{G}(heta, \mathbf{U})$$
 where $\mathbf{X} \in \mathcal{X}$, $heta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

- G is the structure equation. **U** is (God's) uncertainty.
- Together, G and **U** determine the sampling distribution.

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = \mathcal{G}(heta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $heta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

- G is the structure equation. **U** is (God's) uncertainty.
- Together, G and U determine the sampling distribution.
- The sampling distribution does not determine G and U.

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = G(heta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $heta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

- G is the structure equation. **U** is (God's) uncertainty.
- Together, G and U determine the sampling distribution.
- The sampling distribution does not determine G and U.

Method

Type of Replication

Relevant?

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = G(heta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $heta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

• G is the structure equation. **U** is (God's) uncertainty.

• Together, G and U determine the sampling distribution.

• The sampling distribution does not determine G and U.

Method	Type of Replication		Relevant?
Frequentist	data given parameter	$\mathbf{X} heta$	×

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = G(\theta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $\theta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

• G is the structure equation. **U** is (God's) uncertainty.

• Together, G and **U** determine the sampling distribution.

• The sampling distribution does not determine G and U.

Method	Type of Replication		Relevant?
Frequentist	data given parameter	$\mathbf{X} heta$	×
Bayes	parameter given data	$ heta \mathbf{X}$	\checkmark

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = G(\theta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $\theta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

• G is the structure equation. **U** is (God's) uncertainty.

• Together, G and **U** determine the sampling distribution.

• The sampling distribution does not determine G and U.

Method	od Type of Replication		Relevant?	
Frequentist	data given parameter	$\mathbf{X} heta$	×	
Bayes	parameter given data	$ heta \mathbf{X}$	\checkmark	
Fiducial	uncertainty given data	UX	\checkmark	

Who's Crazier? 3/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Fiducial Equation (Taraldsen and Lindqvist 2013)

 $\mathbf{X} = G(heta, \mathbf{U})$ where $\mathbf{X} \in \mathcal{X}$, $heta \in \mathbf{\Theta}$, $\mathbf{U} \in \mathbb{U}$

• G is the structure equation. **U** is (God's) uncertainty.

• Together, G and **U** determine the sampling distribution.

• The sampling distribution does not determine G and U.

Method	Type of Replication		Relevant?
Frequentist	data given parameter	$\mathbf{X} heta$	×
Bayes	parameter given data	$\theta \mathbf{X}$	\checkmark
Fiducial	uncertainty given data	UX	\checkmark

• Why should finding $\mathbf{U}|\mathbf{x}$ be any easier than finding $\theta|\mathbf{x}$?

Who's Crazier? 4/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- 日本 - 1 日本 - 日本 - 日本

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Conclusions

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• t is our missing data with prior distribution: $t \sim t_{n-1}$.

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• *t* is our missing data with prior distribution: $t \sim t_{n-1}$.

Bayes

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• *t* is our missing data with prior distribution: $t \sim t_{n-1}$.

Bayes

• Objective prior for μ .

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

• *t* is our missing data with prior distribution: $t \sim t_{n-1}$.

Bayes

- Objective prior for μ .
- What does objective prior mean?

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

• *t* is our missing data with prior distribution: $t \sim t_{n-1}$.

Bayes

- Objective prior for μ .
- What does objective prior mean?
- Ad hoc arguments give $\pi(\mu) \propto 1.$

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• t is our missing data with prior distribution: $t \sim t_{n-1}$.

Bayes

- Objective prior for μ .
- What does objective prior mean?
- Ad hoc arguments give $\pi(\mu) \propto 1.$

Fiducial

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

• t is our missing data with prior distribution: $t \sim t_{n-1}$.

Bayes

- Objective prior for μ .
- What does objective prior mean?
- Ad hoc arguments give $\pi(\mu) \propto 1.$

Fiducial

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• *Objective* posterior for *t*.

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

t is our missing data with prior distribution: t ~ t_{n-1}.

Bayes

- Objective prior for μ.
- What does objective prior mean?
- Ad hoc arguments give $\pi(\mu) \propto 1.$

Fiducial

- *Objective* posterior for *t*.
- What does objective posterior mean?

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

t is our missing data with prior distribution: t ~ t_{n-1}.

Bayes

- Objective prior for μ .
- What does objective prior mean?
- Ad hoc arguments give $\pi(\mu) \propto 1.$

Fiducial

- Objective posterior for t.
- What does objective posterior mean?
- Ignore information on t in (\bar{x}, s) that's tied to π .

Who's Crazier? 5/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Inference for Mean of Normal

$$\frac{\bar{x}-\mu}{s/\sqrt{n}}=t$$

t is our missing data with prior distribution: t ~ t_{n-1}.

Bayes

- Objective prior for μ .
- What does objective prior mean?
- Ad hoc arguments give $\pi(\mu) \propto 1.$

Fiducial

- Objective posterior for t.
- What does objective posterior mean?
- Ignore information on t in (\bar{x}, s) that's tied to π .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Objective Posterior: Throw away data until we don't need a prior on $\mu.$

Who's Crazier? 6/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Who's Crazier? 6/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• Obtain $f(\mathbf{U}|\mathbf{x})$ without invoking $\pi(d\theta)$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Who's Crazier? 6/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- **Obtain** $f(\mathbf{U}|\mathbf{x})$ without invoking $\pi(d\theta)$.
- **2** Use structural relation $\mathbf{x} = G(\theta, \mathbf{U})$ to obtain $\pi(\theta | \mathbf{x})$ from $f(\mathbf{U} | \mathbf{x})$.

Who's Crazier? 6/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- **Obtain** $f(\mathbf{U}|\mathbf{x})$ without invoking $\pi(d\theta)$.
- **2** Use structural relation $\mathbf{x} = G(\theta, \mathbf{U})$ to obtain $\pi(\theta | \mathbf{x})$ from $f(\mathbf{U} | \mathbf{x})$.

A probability statement concerning \overline{e} [the error] is ipso facto a probability statement concerning θ . (Fraser 1968)

Who's Crazier? 6/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Obtain $f(\mathbf{U}|\mathbf{x})$ without invoking $\pi(d\theta)$.
- **2** Use structural relation $\mathbf{x} = G(\theta, \mathbf{U})$ to obtain $\pi(\theta | \mathbf{x})$ from $f(\mathbf{U} | \mathbf{x})$.

A probability statement concerning \overline{e} [the error] is ipso facto a probability statement concerning θ . (Fraser 1968)

One can get a random realization from the fiducial distribution of ξ by generating U and solving the structural equation for ξ . (Hannig 2009)

Who's Crazier? 6/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Obtain $f(\mathbf{U}|\mathbf{x})$ without invoking $\pi(d\theta)$.
- **2** Use structural relation $\mathbf{x} = G(\theta, \mathbf{U})$ to obtain $\pi(\theta | \mathbf{x})$ from $f(\mathbf{U} | \mathbf{x})$.

A probability statement concerning \overline{e} [the error] is ipso facto a probability statement concerning θ . (Fraser 1968)

One can get a random realization from the fiducial distribution of ξ by generating U and solving the structural equation for ξ . (Hannig 2009)

The key point is that knowing θ is equivalent to knowing **U**; in other words, inference on θ is equivalent to predicting the value of the unobserved **U**. (Martin, Zhang, and Liu 2010)

Who's Crazier? 7/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 7/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• The conditional distribution of **X** given **U** depends on π .

$$f(\mathbf{x}|\mathbf{U},\pi) = \int f(\mathbf{x}|\mathbf{U},\theta) \,\pi(d\theta) = \int \mathbb{1}\left\{\mathbf{x} = G(\theta,\mathbf{U})\right\} \pi(d\theta)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Who's Crazier? 7/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• The conditional distribution of **X** given **U** depends on π .

$$f(\mathbf{x}|\mathbf{U},\pi) = \int f(\mathbf{x}|\mathbf{U},\theta) \,\pi(d\theta) = \int \mathbb{1}\left\{\mathbf{x} = G(\theta,\mathbf{U})\right\} \pi(d\theta)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Predicting the Missing ${\bf U}$

 $f(\mathbf{U}|\mathbf{x},\pi) \propto f(\mathbf{U}) f(\mathbf{x}|\mathbf{U},\pi)$.

Who's Crazier? 7/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• The conditional distribution of **X** given **U** depends on π .

$$f\left(\mathbf{x}|\mathbf{U},\pi\right) = \int f\left(\mathbf{x}|\mathbf{U},\theta\right)\pi\left(d\theta\right) = \int \mathbb{1}\left\{\mathbf{x} = G\left(\theta,\mathbf{U}\right)\right\}\pi\left(d\theta\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Predicting the Missing **U**

$$f(\mathbf{U}|\mathbf{x},\pi) \propto f(\mathbf{U}) f(\mathbf{x}|\mathbf{U},\pi).$$

 We can treat π (dθ) as an infinite dimensional nuisance parameter in the "U-likelihood", f(x|U, π).

Who's Crazier? 7/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• The conditional distribution of **X** given **U** depends on π .

$$f\left(\mathbf{x}|\mathbf{U},\pi\right) = \int f\left(\mathbf{x}|\mathbf{U},\theta\right)\pi\left(d\theta\right) = \int 1\left\{\mathbf{x} = G\left(\theta,\mathbf{U}\right)\right\}\pi\left(d\theta\right)$$

Predicting the Missing **U**

$$f(\mathbf{U}|\mathbf{x},\pi) \propto f(\mathbf{U}) f(\mathbf{x}|\mathbf{U},\pi)$$
.

- We can treat π (dθ) as an infinite dimensional nuisance parameter in the "U-likelihood", f(x|U, π).
- π can be viewed as a nuisance parameter only if we switch the problem from inference for θ to prediction of **U**.

Who's Crazier? 7/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• The conditional distribution of **X** given **U** depends on π .

$$f\left(\mathbf{x}|\mathbf{U},\pi\right) = \int f\left(\mathbf{x}|\mathbf{U},\theta\right)\pi\left(d\theta\right) = \int 1\left\{\mathbf{x} = G\left(\theta,\mathbf{U}\right)\right\}\pi\left(d\theta\right)$$

Predicting the Missing **U**

$$f(\mathbf{U}|\mathbf{x},\pi) \propto f(\mathbf{U}) f(\mathbf{x}|\mathbf{U},\pi)$$
.

- We can treat π (dθ) as an infinite dimensional nuisance parameter in the "U-likelihood", f(x|U, π).
- π can be viewed as a nuisance parameter only if we switch the problem from inference for θ to prediction of **U**.

Can we get to $\pi(\theta|\mathbf{x})$ without going through $\pi(\theta)$?

Who's Crazier? 7/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• The conditional distribution of **X** given **U** depends on π .

$$f\left(\mathbf{x}|\mathbf{U},\pi\right) = \int f\left(\mathbf{x}|\mathbf{U},\theta\right)\pi\left(d\theta\right) = \int 1\left\{\mathbf{x} = G\left(\theta,\mathbf{U}\right)\right\}\pi\left(d\theta\right)$$

Predicting the Missing **U**

$$f(\mathbf{U}|\mathbf{x},\pi) \propto f(\mathbf{U}) f(\mathbf{x}|\mathbf{U},\pi)$$
.

- We can treat π (dθ) as an infinite dimensional nuisance parameter in the "U-likelihood", f(x|U, π).
- π can be viewed as a nuisance parameter **only if** we switch the problem from inference for θ to prediction of **U**.

Can we get to $\pi(\theta|\mathbf{x})$ without going through $\pi(\theta)$?

Can we predict $\boldsymbol{\mathsf{U}}$ without any knowledge of the nuisance?

Who's Crazier? 8/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Who's Crazier? 8/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

U-Likelihood

• $f(\mathbf{x}|\mathbf{U},\pi)$ contains all information in \mathbf{x} about \mathbf{U} and π .

Who's Crazier? 8/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

U-Likelihood

• $f(\mathbf{x}|\mathbf{U},\pi)$ contains all information in \mathbf{x} about \mathbf{U} and π .

• Goal: Extract information on **U** not contaminated by the nuisance parameter *π*.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Who's Crazier? 8/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

U-Likelihood

- $f(\mathbf{x}|\mathbf{U},\pi)$ contains all information in \mathbf{x} about \mathbf{U} and π .
- Goal: Extract information on **U** not contaminated by the nuisance parameter *π*.
- **Technique**: Throw away data contaminated by π . Reduce **x** to $A(\mathbf{x})$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Who's Crazier? 8/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

$\pmb{\mathsf{U}}\text{-}\mathsf{Likelihood}$

- $f(\mathbf{x}|\mathbf{U},\pi)$ contains all information in \mathbf{x} about \mathbf{U} and π .
- Goal: Extract information on **U** not contaminated by the nuisance parameter *π*.
- **Technique**: Throw away data contaminated by π . Reduce **x** to $A(\mathbf{x})$.

Objective Posterior for ${\bf U}$

 $f(\mathbf{U}|A(\mathbf{x}))$ is an objective posterior for **U** if it does not depend on the value of the nuisance parameter, π .

イロト 不得下 不同下 不同下

3

Who's Crazier? 8/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

$\pmb{\mathsf{U}}\text{-}\mathsf{Likelihood}$

- $f(\mathbf{x}|\mathbf{U},\pi)$ contains all information in \mathbf{x} about \mathbf{U} and π .
- Goal: Extract information on **U** not contaminated by the nuisance parameter *π*.
- **Technique**: Throw away data contaminated by π . Reduce **x** to $A(\mathbf{x})$.

Objective Posterior for ${\bf U}$

 $f(\mathbf{U}|A(\mathbf{x}))$ is an objective posterior for **U** if it does not depend on the value of the nuisance parameter, π .

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

• Requires $f(A(\mathbf{x})|\mathbf{U},\pi) = f(A(\mathbf{x})|\mathbf{U})$.

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Who's Crazier? 9/31

- Keli Liu and Xiao-Li Meng
- The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• How about statistics ancillary for θ ?

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?

イロト 不得下 イヨト イヨト

• How about statistics ancillary for θ ?

An Ancillarity Paradox from Basu (1964)

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?
 - How about statistics ancillary for θ ?

An Ancillarity Paradox from Basu (1964)

• Let (X, Y) have fiducial equation

$$X = \varepsilon_1$$
 and $Y = \rho \varepsilon_1 + \sqrt{1 - \rho} \varepsilon_2$ where ε_i i.i.d. $N(0, 1)$

イロト 不得下 イヨト イヨト

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?
 - How about statistics ancillary for θ ?

An Ancillarity Paradox from Basu (1964)

• Let (X, Y) have fiducial equation

 $X = \varepsilon_1$ and $Y = \rho \varepsilon_1 + \sqrt{1 - \rho} \varepsilon_2$ where ε_i i.i.d. N(0, 1)

イロト 不得下 イヨト イヨト

• X, Y are marginally ancillary but not jointly ancillary.

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?
 - How about statistics ancillary for θ ?

An Ancillarity Paradox from Basu (1964)

• Let (X, Y) have fiducial equation

 $X = \varepsilon_1$ and $Y = \rho \varepsilon_1 + \sqrt{1 - \rho} \varepsilon_2$ where ε_i i.i.d. N(0, 1)

イロト 不得下 イヨト イヨト

- X, Y are marginally ancillary but not jointly ancillary.
- $P(X = x | \varepsilon, \rho) = 1\{x = \varepsilon_1\}$ is free of ρ .

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?
 - How about statistics ancillary for θ ?

An Ancillarity Paradox from Basu (1964)

• Let (X, Y) have fiducial equation

 $X = \varepsilon_1$ and $Y = \rho \varepsilon_1 + \sqrt{1 - \rho} \varepsilon_2$ where ε_i i.i.d. N(0, 1)

- X, Y are marginally ancillary but not jointly ancillary.
- $P(X = x | \varepsilon, \rho) = 1\{x = \varepsilon_1\}$ is free of ρ .
- $P(Y = y | \varepsilon, \rho) = 1\{y = \rho \varepsilon_1 + \sqrt{1 \rho} \varepsilon_2\}$ depends on ρ .

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?
 - How about statistics ancillary for θ ?

An Ancillarity Paradox from Basu (1964)

• Let (X, Y) have fiducial equation

 $X = \varepsilon_1$ and $Y = \rho \varepsilon_1 + \sqrt{1 - \rho} \varepsilon_2$ where ε_i i.i.d. N(0, 1)

- X, Y are marginally ancillary but not jointly ancillary.
- $P(X = x | \varepsilon, \rho) = 1 \{x = \varepsilon_1\}$ is free of ρ .
- $P(Y = y | \varepsilon, \rho) = 1\{y = \rho \varepsilon_1 + \sqrt{1 \rho} \varepsilon_2\}$ depends on ρ .
- Situation reverses by switching the roles of X and Y in the fiducial equation.

Who's Crazier? 9/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

- Does there exist a statistic, A(x), s.t. f(A(x)|U) is free of the nuisance π?
 - How about statistics ancillary for θ ?

An Ancillarity Paradox from Basu (1964)

• Let (X, Y) have fiducial equation

 $X = \varepsilon_1$ and $Y = \rho \varepsilon_1 + \sqrt{1 - \rho} \varepsilon_2$ where ε_i i.i.d. N(0, 1)

- X, Y are marginally ancillary but not jointly ancillary.
- $P(X = x | \varepsilon, \rho) = 1 \{x = \varepsilon_1\}$ is free of ρ .
- $P(Y = y | \varepsilon, \rho) = 1\{y = \rho \varepsilon_1 + \sqrt{1 \rho} \varepsilon_2\}$ depends on ρ .
- Situation reverses by switching the roles of X and Y in the fiducial equation.

イロト 不得下 イヨト イヨト

• Whether or not $A(\mathbf{x})$ is free of π given **U** depends on *G*.

Representational Ancillarity

Who's Crazier? 10/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Who's Crazier? 10/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Definition of R-Ancillarity

A statistic $A(\mathbf{x})$ is representationally ancillary w.r.t. G if there exists a representation A_G s.t. $A(G(\theta, \mathbf{U})) = A_G(\mathbf{U}) \forall \theta$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 10/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Definition of R-Ancillarity

A statistic $A(\mathbf{x})$ is representationally ancillary w.r.t. G if there exists a representation A_G s.t. $A(G(\theta, \mathbf{U})) = A_G(\mathbf{U}) \forall \theta$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• $A(\mathbf{x})$ is *R*-ancillary if and only if $\mathbf{U}|A(\mathbf{x}), \pi \sim \mathbf{U}|A(\mathbf{x})$.

Who's Crazier? 10/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Definition of R-Ancillarity

A statistic $A(\mathbf{x})$ is representationally ancillary w.r.t. G if there exists a representation A_G s.t. $A(G(\theta, \mathbf{U})) = A_G(\mathbf{U}) \forall \theta$.

• $A(\mathbf{x})$ is *R*-ancillary if and only if $\mathbf{U}|A(\mathbf{x}), \pi \sim \mathbf{U}|A(\mathbf{x})$.

Lemma (also see Barnard, 1995)

If $A_1(\mathbf{x})$ and $A_2(\mathbf{x})$ are both *R*-ancillaries w.r.t. *G*, then they are jointly *R*-ancillary w.r.t. *G*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 10/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Definition of R-Ancillarity

A statistic $A(\mathbf{x})$ is representationally ancillary w.r.t. G if there exists a representation A_G s.t. $A(G(\theta, \mathbf{U})) = A_G(\mathbf{U}) \forall \theta$.

• $A(\mathbf{x})$ is *R*-ancillary if and only if $\mathbf{U}|A(\mathbf{x}), \pi \sim \mathbf{U}|A(\mathbf{x})$.

Lemma (also see Barnard, 1995)

If $A_1(\mathbf{x})$ and $A_2(\mathbf{x})$ are both *R*-ancillaries w.r.t. *G*, then they are jointly *R*-ancillary w.r.t. *G*.

Write A₁, A₂ as A_{1,G}(U), A_{2,G}(U). Then (A_{1,G}(U), A_{2,G}(U)) remains a R-ancillary w.r.t. G.

Who's Crazier? 10/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Definition of R-Ancillarity

A statistic $A(\mathbf{x})$ is representationally ancillary w.r.t. G if there exists a representation A_G s.t. $A(G(\theta, \mathbf{U})) = A_G(\mathbf{U}) \forall \theta$.

• $A(\mathbf{x})$ is *R*-ancillary if and only if $\mathbf{U}|A(\mathbf{x}), \pi \sim \mathbf{U}|A(\mathbf{x})$.

Lemma (also see Barnard, 1995)

If $A_1(\mathbf{x})$ and $A_2(\mathbf{x})$ are both *R*-ancillaries w.r.t. *G*, then they are jointly *R*-ancillary w.r.t. *G*.

- Write A₁, A₂ as A_{1,G}(U), A_{2,G}(U). Then (A_{1,G}(U), A_{2,G}(U)) remains a R-ancillary w.r.t. G.
- In Basu's paradox, X, Y are both ancillaries but they are not *R*-ancillaries with respect to the same *G*.

Who's Crazier? 11/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

Who's Crazier? 11/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• Fiducial inference depends on *G* because whether a statistic is ancillary for *π* depends on whether it is *R*-ancillary for *G*.

Who's Crazier? 11/31

- Keli Liu and Xiao-Li Meng
- The Art of Creating Missingness

A Partial Look at Fiducial

- Observed Not At Random
- ls Utopia Possible?
- Conclusions

- Fiducial inference depends on *G* because whether a statistic is ancillary for *π* depends on whether it is *R*-ancillary for *G*.
- Definition of ancillarity as *distributional independence* of $A(\mathbf{x})$ from θ is insufficient.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 11/31

- Keli Liu and Xiao-Li Meng
- The Art of Creating Missingness

A Partial Look at Fiducial

- Observed Not At Random
- ls Utopia Possible?
- Conclusions

- Fiducial inference depends on *G* because whether a statistic is ancillary for *π* depends on whether it is *R*-ancillary for *G*.
- Definition of ancillarity as *distributional independence* of A(x) from θ is insufficient.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• We require the notion of *representational* (or functional) *independence*.

Cox Hazard Model

Fiducial

Who's Crazier? 12/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Who's	
Crazier?	
13/31	

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\bf U}$

・ロト・日本・モート・ヨー しょう

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${f U}$

• Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ クタマ

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\bm U}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\bm U}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• $f(T(\mathbf{x})|A(\mathbf{x}), \mathbf{U}, \pi)$ requires prior specification.

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\bm U}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

- $f(T(\mathbf{x})|A(\mathbf{x}), \mathbf{U}, \pi)$ requires prior specification.
- $f(A(\mathbf{x})|\mathbf{U})$ is known independent of the prior, π .

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\bf U}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

- $f(T(\mathbf{x})|A(\mathbf{x}), \mathbf{U}, \pi)$ requires prior specification.
- $f(A(\mathbf{x})|\mathbf{U})$ is known independent of the prior, π .

Fiducial Recipe for $\mathbf{U}|\mathbf{x}$

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\bm U}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

- $f(T(\mathbf{x})|A(\mathbf{x}), \mathbf{U}, \pi)$ requires prior specification.
- $f(A(\mathbf{x})|\mathbf{U})$ is known independent of the prior, π .

Fiducial Recipe for **U**|x

 Ignore factor f (T (x) |A(x), U, π) because information on U "cannot be disentangled" from prior.

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\boldsymbol{\mathsf{U}}}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

- $f(T(\mathbf{x})|A(\mathbf{x}), \mathbf{U}, \pi)$ requires prior specification.
- $f(A(\mathbf{x})|\mathbf{U})$ is known independent of the prior, π .

Fiducial Recipe for U x

- Ignore factor f (T (x) |A(x), U, π) because information on U "cannot be disentangled" from prior.
- **2** Use $f(A(\mathbf{x})|\mathbf{U})$ to obtain $f(\mathbf{U}|A(\mathbf{x})) \propto f(\mathbf{U})f(A(\mathbf{x})|\mathbf{U})$.

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\bm U}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

- $f(T(\mathbf{x})|A(\mathbf{x}), \mathbf{U}, \pi)$ requires prior specification.
- $f(A(\mathbf{x})|\mathbf{U})$ is known independent of the prior, π .

Fiducial Recipe for U x

- Ignore factor f (T (x) |A(x), U, π) because information on U "cannot be disentangled" from prior.
- **2** Use $f(A(\mathbf{x})|\mathbf{U})$ to obtain $f(\mathbf{U}|A(\mathbf{x})) \propto f(\mathbf{U})f(A(\mathbf{x})|\mathbf{U})$.
- **③** Pretend $f(\mathbf{U}|A(\mathbf{x})) = f(\mathbf{U}|\mathbf{x})$.

Who's Crazier? 13/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Partial Likelihood for ${\boldsymbol{\mathsf{U}}}$

- Assume the decomposition, $\mathbf{x} = (T(\mathbf{x}), A(\mathbf{x}))$ where $A(\mathbf{x})$ is *R*-ancillary w.r.t. *G*.
- The joint (\mathbf{U}, π) -likelihood factors as

 $f(\mathbf{x}|\mathbf{U},\pi) = f(T(\mathbf{x})|A(\mathbf{x}),\mathbf{U},\pi)f(A(\mathbf{x})|\mathbf{U}).$

- $f(T(\mathbf{x})|A(\mathbf{x}), \mathbf{U}, \pi)$ requires prior specification.
- $f(A(\mathbf{x})|\mathbf{U})$ is known independent of the prior, π .

Fiducial Recipe for U x

- Ignore factor f (T (x) |A(x), U, π) because information on U "cannot be disentangled" from prior.
- **2** Use $f(A(\mathbf{x})|\mathbf{U})$ to obtain $f(\mathbf{U}|A(\mathbf{x})) \propto f(\mathbf{U})f(A(\mathbf{x})|\mathbf{U})$.
- Solution Pretend $f(\mathbf{U}|A(\mathbf{x})) = f(\mathbf{U}|\mathbf{x})$. Refreshing or Revolting?

Who's Crazier? 14/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Who's Crazier? 14/31

When the Recipe Works...

Exponential Hyperbola

• $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.

The Art of

Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.

Who's Crazier? 14/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Who's Crazier? 14/31

When the Recipe Works...

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an R-ancillary.

• Solve $\hat{\lambda} = \lambda \left(E_2 / E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1 / E_2 \right)^{1/2}$.

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

- Solve $\hat{\lambda} = \lambda \left(E_2/E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1/E_2 \right)^{1/2}$.
- Impute $(E_2/E_1)^{1/2}$ according to its prior distribution.

Who's Crazier? 14/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.
- Solve $\hat{\lambda} = \lambda \left(E_2/E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1/E_2 \right)^{1/2}$.
- Impute $(E_2/E_1)^{1/2}$ according to its prior distribution. Parallels using marginal likelihood $f(\hat{\lambda}|\lambda)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Who's Crazier? 14/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.
- Solve $\hat{\lambda} = \lambda \left(E_2/E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1/E_2 \right)^{1/2}$.
- Impute $(E_2/E_1)^{1/2}$ according to its prior distribution. Parallels using marginal likelihood $f(\hat{\lambda}|\lambda)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

• But $\hat{\lambda}$ is not sufficient. Can we do better?

Who's Crazier? 14/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.
- Solve $\hat{\lambda} = \lambda \left(E_2/E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1/E_2 \right)^{1/2}$.
- Impute $(E_2/E_1)^{1/2}$ according to its prior distribution. Parallels using marginal likelihood $f(\hat{\lambda}|\lambda)$.
- But $\hat{\lambda}$ is not sufficient. Can we do better?
- We observe $A = (E_1 E_2)^{1/2}$. Impute $(E_2/E_1)^{1/2}$ according to $f(E_1, E_2|A)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Who's Crazier? 14/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.
- Solve $\hat{\lambda} = \lambda \left(E_2/E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1/E_2 \right)^{1/2}$.
- Impute $(E_2/E_1)^{1/2}$ according to its prior distribution. Parallels using marginal likelihood $f(\hat{\lambda}|\lambda)$.
- But $\hat{\lambda}$ is not sufficient. Can we do better?
- We observe $A = (E_1E_2)^{1/2}$. Impute $(E_2/E_1)^{1/2}$ according to $f(E_1, E_2|A)$. Parallels using conditional likelihood $f(\hat{\lambda}|A, \lambda)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Crazier? 14/31 Keli Liu and

Who's

Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.
- Solve $\hat{\lambda} = \lambda \left(E_2/E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1/E_2 \right)^{1/2}$.
- Impute $(E_2/E_1)^{1/2}$ according to its prior distribution. Parallels using marginal likelihood $f(\hat{\lambda}|\lambda)$.
- But $\hat{\lambda}$ is not sufficient. Can we do better?
- We observe $A = (E_1E_2)^{1/2}$. Impute $(E_2/E_1)^{1/2}$ according to $f(E_1, E_2|A)$. Parallels using conditional likelihood $f(\hat{\lambda}|A, \lambda)$.
- Why does conditioning on ancillary statistics recover second order information?

14/31 Keli Liu and Xiao-Li Meng

Who's Crazier?

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Exponential Hyperbola

- $V = \frac{1}{\lambda}E_1$ and $W = \lambda E_2$ where E_1, E_2 are iid exponential.
- $\hat{\lambda} = (W/V)^{1/2}$ is the MLE and $A = (VW)^{1/2}$ is an *R*-ancillary.
- Solve $\hat{\lambda} = \lambda \left(E_2/E_1 \right)^{1/2}$ to obtain $\lambda = \hat{\lambda} \left(E_1/E_2 \right)^{1/2}$.
- Impute $(E_2/E_1)^{1/2}$ according to its prior distribution. Parallels using marginal likelihood $f(\hat{\lambda}|\lambda)$.
- But $\hat{\lambda}$ is not sufficient. Can we do better?
- We observe $A = (E_1E_2)^{1/2}$. Impute $(E_2/E_1)^{1/2}$ according to $f(E_1, E_2|A)$. Parallels using conditional likelihood $f(\hat{\lambda}|A, \lambda)$.
- Why does conditioning on ancillary statistics recover second order information?
- Fiducial Answer: It increases our efficiency of predicting U.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

14/31 Keli Liu and Xiao-Li Meng

Who's Crazier?

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

An Often Forgotten Ingredient in Fiducial Cooking

Who's Crazier? 15/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Who's Crazier? 15/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• X has the following fiducial equation

$$X = G(heta, U) = \left\{egin{array}{cc} 0 & 0 \leq U < heta \ 1 & heta \leq U < 1 \end{array}
ight.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

where $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$.

Who's Crazier? 15/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• X has the following fiducial equation

$$X = {\it G}\left(heta, U
ight) = \left\{egin{array}{cc} 0 & 0 \leq U < heta \ 1 & heta \leq U < 1 \end{array}
ight.$$

where $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$.

• Key Question: Without $\pi(\theta)$, what do we know about *U*? What is the free information in *X* about *U*?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 15/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• X has the following fiducial equation

$$X = {\it G}\left(heta, U
ight) = \left\{egin{array}{cc} 0 & 0 \leq U < heta \ 1 & heta \leq U < 1 \end{array}
ight.$$

where $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$.

• Key Question: Without $\pi(\theta)$, what do we know about *U*? What is the free information in *X* about *U*?

The only additional information available to us is the fact that the value of U and x must be compatible. (Hannig 2009)

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()

Who's Crazier? 15/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• X has the following fiducial equation

$$X = G\left(heta, U
ight) = \left\{egin{array}{cc} 0 & 0 \leq U < heta \ 1 & heta \leq U < 1 \end{array}
ight.$$

where $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$.

• Key Question: Without $\pi(\theta)$, what do we know about *U*? What is the free information in *X* about *U*?

The only additional information available to us is the fact that the value of U and x must be compatible. (Hannig 2009)

• If X = 0, $U \in [0, 1/2]$, shall we predict U as Unif[0, 1/2]?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Who's Crazier? 15/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• X has the following fiducial equation

$$X = {\it G}\left(heta, U
ight) = \left\{egin{array}{cc} 0 & 0 \leq U < heta \ 1 & heta \leq U < 1 \end{array}
ight.$$

where $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$.

• Key Question: Without $\pi(\theta)$, what do we know about *U*? What is the free information in *X* about *U*?

The only additional information available to us is the fact that the value of U and x must be compatible. (Hannig 2009)

If X = 0, U ∈ [0, 1/2], shall we predict U as Unif[0, 1/2]?
 If X = 1, U ∈ [1/4, 1], shall we predict U as Unif[1/4, 1]?

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()

Who's Crazier? 15/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• X has the following fiducial equation

$$X = {\it G}\left(heta, U
ight) = \left\{egin{array}{cc} 0 & 0 \leq U < heta \ 1 & heta \leq U < 1 \end{array}
ight.$$

where $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$.

• Key Question: Without $\pi(\theta)$, what do we know about *U*? What is the free information in *X* about *U*?

The only additional information available to us is the fact that the value of U and x must be compatible. (Hannig 2009)

• If X = 0, $U \in [0, 1/2]$, shall we predict U as Unif[0, 1/2]? If X = 1, $U \in [1/4, 1]$, shall we predict U as Unif[1/4, 1]?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• What are we forgetting by doing this?

Who's Crazier? 16/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Who's Crazier? 16/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

x-Compatible Regions

▲□ > ▲圖 > ▲ 臣 > ▲臣 > ― 臣 … のへで

Who's Crazier? 16/31 x-Compatible Regions

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• If we generate data $\mathbf{x} = G(\theta_0, \mathbf{U}_0)$, we learn that \mathbf{U}_0 resides in

 $\mathcal{M}\left(\mathcal{G}\left(\theta_{0},\boldsymbol{\mathsf{U}}_{0}\right)\right)=\left\{\boldsymbol{\mathsf{U}}:\exists\theta\in\Theta\text{ s.t. }\mathcal{G}\left(\theta_{0},\boldsymbol{\mathsf{U}}_{0}\right)\!=\!\mathcal{G}\left(\theta,\boldsymbol{\mathsf{U}}\right)\right\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 16/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- If we generate data $\mathbf{x} = G(\theta_0, \mathbf{U}_0)$, we learn that \mathbf{U}_0 resides in $\mathcal{M}(G(\theta_0, \mathbf{U}_0)) = \{\mathbf{U} : \exists \theta \in \Theta \text{ s.t. } G(\theta_0, \mathbf{U}_0) = G(\theta, \mathbf{U})\}.$
- Hannig (2009) assumes that

x-Compatible Regions

 $f(\mathbf{U}|\mathcal{M}(\mathbf{X}) = \mathcal{M}(\mathbf{x})) = f(\mathbf{U}|\mathbf{U} \in \mathcal{M}(\mathbf{x})),$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

hence does not depend on π .

Who's Crazier? 16/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- If we generate data $\mathbf{x} = G(\theta_0, \mathbf{U}_0)$, we learn that \mathbf{U}_0 resides in $\mathcal{M}(G(\theta_0, \mathbf{U}_0)) = \{\mathbf{U} : \exists \theta \in \Theta \text{ s.t. } G(\theta_0, \mathbf{U}_0) = G(\theta, \mathbf{U})\}.$
- Hannig (2009) assumes that

x-Compatible Regions

 $f(\mathbf{U}|\mathcal{M}(\mathbf{X}) = \mathcal{M}(\mathbf{x})) = f(\mathbf{U}|\mathbf{U} \in \mathcal{M}(\mathbf{x})),$

hence does not depend on π .

• The event $\{\mathcal{M}(\mathbf{X}) = \mathcal{M}(\mathbf{x})\}$ contains two pieces of information:

Who's Crazier? 16/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- If we generate data $\mathbf{x} = G(\theta_0, \mathbf{U}_0)$, we learn that \mathbf{U}_0 resides in $\mathcal{M}(G(\theta_0, \mathbf{U}_0)) = \{\mathbf{U} : \exists \theta \in \Theta \text{ s.t. } G(\theta_0, \mathbf{U}_0) = G(\theta, \mathbf{U})\}.$
- Hannig (2009) assumes that

x-Compatible Regions

 $f(\mathbf{U}|\mathcal{M}(\mathbf{X}) = \mathcal{M}(\mathbf{x})) = f(\mathbf{U}|\mathbf{U} \in \mathcal{M}(\mathbf{x})),$

hence does not depend on π .

The event {M(X) = M(x)} contains two pieces of information:
 U₀ ∈ M(x).

Who's Crazier? 16/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- If we generate data $\mathbf{x} = G(\theta_0, \mathbf{U}_0)$, we learn that \mathbf{U}_0 resides in $\mathcal{M}(G(\theta_0, \mathbf{U}_0)) = \{\mathbf{U} : \exists \theta \in \Theta \text{ s.t. } G(\theta_0, \mathbf{U}_0) = G(\theta, \mathbf{U})\}.$
- Hannig (2009) assumes that

x-Compatible Regions

 $f(\mathbf{U}|\mathcal{M}(\mathbf{X}) = \mathcal{M}(\mathbf{x})) = f(\mathbf{U}|\mathbf{U} \in \mathcal{M}(\mathbf{x})),$

hence does not depend on $\pi.$

The event {M(X) = M(x)} contains two pieces of information: **U**₀ ∈ M(x).

2 How we came to observe $U_0 \in \mathcal{M}(x)$.

Who's Crazier? 16/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- If we generate data $\mathbf{x} = G(\theta_0, \mathbf{U}_0)$, we learn that \mathbf{U}_0 resides in $\mathcal{M}(G(\theta_0, \mathbf{U}_0)) = \{\mathbf{U} : \exists \theta \in \Theta \text{ s.t. } G(\theta_0, \mathbf{U}_0) = G(\theta, \mathbf{U})\}.$
- Hannig (2009) assumes that

x-Compatible Regions

 $f(\mathbf{U}|\mathcal{M}(\mathbf{X}) = \mathcal{M}(\mathbf{x})) = f(\mathbf{U}|\mathbf{U} \in \mathcal{M}(\mathbf{x})),$

hence does not depend on $\pi.$

The event {M(X) = M(x)} contains two pieces of information: **U**₀ ∈ M(x).

2 How we came to observe $U_0 \in \mathcal{M}(x)$.

• To correct use the information in (1), we need to condition on the how, i.e., condition on the observation process.

Who's Crazier? 17/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 17/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Reminder:
$$U \sim \text{Unif}[0, 1]$$
 and $\theta \in [1/4, 1/2]$
$$X = G(\theta, U) = \begin{cases} 0 & 0 \le U < \theta\\ 1 & \theta \le U < 1 \end{cases}$$

Who's Crazier? 17/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Reminder:
$$U \sim \text{Unif}[0, 1]$$
 and $\theta \in [1/4, 1/2]$
$$X = G(\theta, U) = \begin{cases} 0 & 0 \le U < \theta\\ 1 & \theta \le U < 1 \end{cases}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

•
$$\mathcal{M}(0) = [0, 1/2], \ \mathcal{M}(1) = [1/4, 1].$$

Who's Crazier? 17/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Reminder: $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$ $X = G(\theta, U) = \begin{cases} 0 & 0 \le U < \theta \\ 1 & \theta < U < 1 \end{cases}$

•
$$\mathcal{M}(0) = [0, 1/2], \ \mathcal{M}(1) = [1/4, 1].$$

• $\mathbb{I}{B}$ is indicator function. Let $\mathbb{I}_x \equiv \mathbb{I}{U \in \mathcal{M}(x)}$ for x = 0, 1.

Who's Crazier? 17/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Reminder: $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$ $X = G(\theta, U) = \begin{cases} 0 & 0 \le U < \theta \\ 1 & \theta < U < 1 \end{cases}$

•
$$\mathcal{M}(0) = [0, 1/2], \ \mathcal{M}(1) = [1/4, 1].$$

• $\mathbb{I}{B}$ is indicator function. Let $\mathbb{I}_x \equiv \mathbb{I}{U \in \mathcal{M}(x)}$ for x = 0, 1.

• We **do not observe** \mathbb{I}_{x} . It must be **inferred** from data.

Who's Crazier? 17/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Reminder: $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$ $X = G(\theta, U) = \begin{cases} 0 & 0 \le U < \theta \\ 1 & \theta < U < 1 \end{cases}$

•
$$\mathcal{M}(0) = [0, 1/2], \ \mathcal{M}(1) = [1/4, 1].$$

- $\mathbb{I}{B}$ is indicator function. Let $\mathbb{I}_x \equiv \mathbb{I}{U \in \mathcal{M}(x)}$ for x = 0, 1.
- We **do not observe** \mathbb{I}_{x} . It must be **inferred** from data.

What We Actually Observe

•
$$\mathbb{I}^{obs} = X\mathbb{I}_1 + (1 - X)\mathbb{I}_0$$
 (Note: $\mathbb{I}^{obs} = 1$)

Who's Crazier? 17/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

1

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Reminder: $U \sim \text{Unif}[0, 1]$ and $\theta \in [1/4, 1/2]$ $X = G(\theta, U) = \begin{cases} 0 & 0 \le U < \theta \\ 1 & \theta < U < 1 \end{cases}$

•
$$\mathcal{M}(0) = [0, 1/2], \ \mathcal{M}(1) = [1/4, 1].$$

- $\mathbb{I}{B}$ is indicator function. Let $\mathbb{I}_x \equiv \mathbb{I}{U \in \mathcal{M}(x)}$ for x = 0, 1.
- We **do not observe** \mathbb{I}_{x} . It must be **inferred** from data.

What We Actually Observe

•
$$\mathbb{I}^{obs} = X \mathbb{I}_1 + (1 - X) \mathbb{I}_0$$
 (Note: $\mathbb{I}^{obs} = 1$)

• For $x \in \mathbb{X}$, define

$$O_x = \begin{cases} 1 & \text{if } \mathbb{I}^{obs} = \mathbb{I}_x \\ 0 & \text{otherwise} \end{cases}$$

Who's Crazier? 18/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

Who's Crazier? 18/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• $\mathcal{M}(X)$ contains the information \mathbb{I}_x through \mathbb{I}^{obs} and $\{O_x\}$.

$$f\left(U|\mathcal{M}\left(X
ight),\pi
ight)=f\left(U|\mathbb{I}^{obs},O_{0},O_{1},\pi
ight)$$

*ロ * * ● * * ● * * ● * ● * ● * ●

Who's Crazier? 18/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• $\mathcal{M}(X)$ contains the information \mathbb{I}_x through \mathbb{I}^{obs} and $\{O_x\}$.

$$f\left(U|\mathcal{M}\left(X
ight),\pi
ight)=f\left(U|\mathbb{I}^{obs},\mathit{O}_{0},\mathit{O}_{1},\pi
ight)$$

• Rewrite the posterior using the law of total probability

$$\sum_{t \in \{0,1\}} f(U|\mathbb{I}_{x} = t, O_{0}, O_{1}, \pi) P(\mathbb{I}_{x} = t|\mathbb{I}^{obs}, O_{0}, O_{1})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 18/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• $\mathcal{M}(X)$ contains the information \mathbb{I}_x through \mathbb{I}^{obs} and $\{O_x\}$.

$$f\left(U|\mathcal{M}\left(X
ight),\pi
ight)=f\left(U|\mathbb{I}^{obs},\mathit{O}_{0},\mathit{O}_{1},\pi
ight)$$

• Rewrite the posterior using the law of total probability

$$\sum_{t \in \{0,1\}} f\left(U|\mathbb{I}_{x} = t, O_{0}, O_{1}, \pi\right) P\left(\mathbb{I}_{x} = t|\mathbb{I}^{obs}, O_{0}, O_{1}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• **Problem:** The distribution of O_0 , O_1 depends on π .

Who's Crazier? 18/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• $\mathcal{M}(X)$ contains the information \mathbb{I}_x through \mathbb{I}^{obs} and $\{O_x\}$.

$$f\left(U|\mathcal{M}\left(X
ight) ,\pi
ight) =f\left(U|\mathbb{I}^{obs},\mathit{O}_{0},\mathit{O}_{1},\pi
ight)$$

• Rewrite the posterior using the law of total probability

$$\sum_{t \in \{0,1\}} f(U|\mathbb{I}_{x} = t, O_{0}, O_{1}, \pi) P(\mathbb{I}_{x} = t|\mathbb{I}^{obs}, O_{0}, O_{1})$$

• **Problem:** The distribution of O_0 , O_1 depends on π .

The Sleight of Hand

 $\bullet\,$ To remove the dependence on $\pi,$ make the substitution

$$f\left(U|\mathbb{I}_{x}=t, O_{0}, O_{1}, \pi
ight)=f\left(U|\mathbb{I}_{x}=t
ight)$$

Who's Crazier? 18/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• $\mathcal{M}(X)$ contains the information \mathbb{I}_x through \mathbb{I}^{obs} and $\{O_x\}$.

$$f\left(U|\mathcal{M}\left(X
ight) ,\pi
ight) =f\left(U|\mathbb{I}^{obs},\mathit{O}_{0},\mathit{O}_{1},\pi
ight)$$

• Rewrite the posterior using the law of total probability

$$\sum_{t \in \{0,1\}} f(U|\mathbb{I}_{x} = t, O_{0}, O_{1}, \pi) P(\mathbb{I}_{x} = t|\mathbb{I}^{obs}, O_{0}, O_{1})$$

• **Problem:** The distribution of O_0 , O_1 depends on π .

The Sleight of Hand

• To remove the dependence on π , make the substitution

$$f\left(U|\mathbb{I}_{\mathsf{x}}=t, O_0, O_1, \pi
ight)=f\left(U|\mathbb{I}_{\mathsf{x}}=t
ight)$$

3

• We ignore how we learned $\{\mathbb{I}_x = t\}$.

Who's Crazier? 19/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 19/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

A Mismatch

• Using the sleight of hand, rewrite the now π -free posterior

Who's Crazier? 19/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

A Mismatch

• Using the sleight of hand, rewrite the now $\pi\text{-}{\rm free}$ posterior

$$\sum_{t \in \{0,1\}} f\left(U|\mathbb{I}_x = t\right) P\left(\mathbb{I}_x = t|\mathbb{I}^{obs}, O_0, O_1\right)$$

*ロ * * ● * * ● * * ● * ● * ● * ●

Who's Crazier? 19/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

A Mismatch

• Using the sleight of hand, rewrite the now $\pi\text{-}\text{free}$ posterior

$$\sum_{\in \{0,1\}} f\left(U | \mathbb{I}_x = t \right) P\left(\mathbb{I}_x = t | \mathbb{I}^{obs}, O_0, O_1 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• We ignored O_0, O_1 in the first term **BUT** continue to condition on it in the second term—**incoherent**.

Who's Crazier? 19/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

A Mismatch

 $\bullet\,$ Using the sleight of hand, rewrite the now $\pi\textsc{-}\mathrm{free}$ posterior

$$\sum_{\in \{0,1\}} f\left(U | \mathbb{I}_{\mathsf{x}} = t \right) P\left(\mathbb{I}_{\mathsf{x}} = t | \mathbb{I}^{obs}, O_0, O_1 \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

- We ignored O_0, O_1 in the first term **BUT** continue to condition on it in the second term—**incoherent**.
- It is this incoherence which leads to the incorrect assumption $f(U|\mathcal{M}(X) = \mathcal{M}(x), \pi) = f(U|U \in \mathcal{M}(x))$

Who's Crazier? 19/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

A Mismatch

 $\bullet\,$ Using the sleight of hand, rewrite the now $\pi\textsc{-}\mathrm{free}$ posterior

$$\sum_{\in \{0,1\}} f\left(U | \mathbb{I}_{\mathsf{x}} = t
ight) P\left(\mathbb{I}_{\mathsf{x}} = t | \mathbb{I}^{obs}, O_0, O_1
ight)$$

- We ignored O_0, O_1 in the first term **BUT** continue to condition on it in the second term—incoherent.
- It is this incoherence which leads to the incorrect assumption $f(U|\mathcal{M}(X) = \mathcal{M}(x), \pi) = f(U|U \in \mathcal{M}(x))$

Confidence Validity (Rubin 1976)

 The posterior f(U|U ∈ M(x)) leads to valid confidence regions for U if the observation process is ignorable

$$P(\mathbb{I}_{x} = 1 | O_{0} = o_{0}, O_{1} = o_{1}, U, \pi) = P(\mathbb{I}_{x} = 1 | U)$$

A Free Lunch? Take a Second Look.

Who's Crazier? 20/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

A Free Lunch? Take a Second Look.

Who's Crazier? 20/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Suppose we observe $\mathbb{I}_0=1$ and \mathbb{I}_1 is missing.

A Free Lunch? Take a Second Look.

Who's Crazier? 20/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- Suppose we observe $\mathbb{I}_0=1$ and \mathbb{I}_1 is missing.
- Condition for confidence validity does not hold:

Who's Crazier? 20/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- Suppose we observe $\mathbb{I}_0 = 1$ and \mathbb{I}_1 is missing.
- Condition for confidence validity does not hold:

$$\begin{split} & P\left(\mathbb{I}_0=1|U,\theta\right)=\mathbb{I}\left\{U\leq 1/2\right\}\\ & P\left(\mathbb{I}_0=1|O_0=1,O_1=0,U,\theta\right)=\mathbb{I}\left\{U\leq\theta\right\} \end{split}$$

Who's Crazier? 20/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- Suppose we observe $\mathbb{I}_0=1$ and \mathbb{I}_1 is missing.
- Condition for confidence validity does not hold:

$$\begin{split} &P\left(\mathbb{I}_0=1|U,\theta\right)=\mathbb{I}\left\{U\leq 1/2\right\}\\ &P\left(\mathbb{I}_0=1|O_0=1,O_1=0,U,\theta\right)=\mathbb{I}\left\{U\leq\theta\right\} \end{split}$$

• Confidence valid inferences for U requires modeling O_0, O_1 .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Who's Crazier? 20/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- Suppose we observe $\mathbb{I}_0=1$ and \mathbb{I}_1 is missing.
- Condition for confidence validity does not hold:

$$\begin{split} & P\left(\mathbb{I}_0 = 1 | U, \theta\right) = \mathbb{I}\left\{U \leq 1/2\right\} \\ & P\left(\mathbb{I}_0 = 1 | O_0 = 1, O_1 = 0, U, \theta\right) = \mathbb{I}\left\{U \leq \theta\right\} \end{split}$$

• Confidence valid inferences for U requires modeling O_0, O_1 .

• The distribution of (O_0, O_1) depends on π : the reduction $X \to \mathcal{M}(X)$ does not throw away enough information.

Who's Crazier? 20/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

- Suppose we observe $\mathbb{I}_0=1$ and \mathbb{I}_1 is missing.
- Condition for confidence validity does not hold:

$$\begin{split} P\left(\mathbb{I}_0 = 1 | U, \theta\right) &= \mathbb{I}\left\{U \leq 1/2\right\}\\ P\left(\mathbb{I}_0 = 1 | O_0 = 1, O_1 = 0, U, \theta\right) &= \mathbb{I}\left\{U \leq \theta\right\} \end{split}$$

- Confidence valid inferences for U requires modeling O_0, O_1 .
- The distribution of (O_0, O_1) depends on π : the reduction $X \to \mathcal{M}(X)$ does not throw away enough information.
- The information U ∈ M(x) seems free. But to use it correctly requires paying the price of a prior on θ.

Who's Crazier? 21/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 21/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Actual Posterior, X = 0 $\mathbb{E}^{\pi(\theta|x=0)}[\mathbb{I} \{U \le \theta\} / \theta]$

Who's Crazier? 21/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Actual Posterior, X = 0 $\mathbb{E}^{\pi(\theta|x=0)}[\mathbb{I} \{U \le \theta\} / \theta]$ Naive Posterior, X = 0 $2\mathbb{I} \{ U \le 1/2 \}$

Who's Crazier? 21/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Actual Posterior, X = 0 $\mathbb{E}^{\pi(\theta|x=0)}[\mathbb{I} \{U \le \theta\} / \theta]$ Naive Posterior, X = 0 $2\mathbb{I} \{ U \le 1/2 \}$

• Ignoring $\{O_0, O_1\}$ equivalent to assuming point mass prior at $\theta = 1/2$ —most dogmatic of all!

Who's Crazier? 21/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Actual Posterior, X = 0 $\mathbb{E}^{\pi(\theta|x=0)}[\mathbb{I} \{U \le \theta\} / \theta]$ Naive Posterior, X = 0 $2\mathbb{I} \{ U \le 1/2 \}$

• Ignoring $\{O_0, O_1\}$ equivalent to assuming point mass prior at $\theta = 1/2$ —most dogmatic of all!

Who's Crazier? 22/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Who's Crazier? 22/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Takeaway: The information $\mathbf{U} \in \mathcal{M}(\mathbf{x})$ is not free—may require assuming π .

- Who's Crazier? 22/31
- Keli Liu and Xiao-Li Meng
- The Art of Creating Missingness
- A Partial Look at Fiducial
- Observed Not At Random
- ls Utopia Possible?
- Conclusions

• Takeaway: The information $\mathbf{U} \in \mathcal{M}(\mathbf{x})$ is not free—may require assuming π .

Question 1: So when is this information free? When is
 U|M(x) objective—free of π?

- Who's Crazier? 22/31
- Keli Liu and Xiao-Li Meng
- The Art of Creating Missingness
- A Partial Look at Fiducial
- Observed Not At Random
- ls Utopia Possible?
- Conclusions

Takeaway: The information U ∈ M(x) is not free—may require assuming π.

Question 1: So when is this information free? When is
 U|M(x) objective—free of π?

• Question 2: What is maximal amount of free information about U? What is the "best" objective posterior for U?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 23/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 23/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• **U**| $\mathcal{M}(\mathbf{x})$ is an objective posterior for **U** if and only if an *R*-ancillary statistic captures the information in $\mathcal{M}(\mathbf{x})$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Who's Crazier? 23/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• **U**| $\mathcal{M}(\mathbf{x})$ is an objective posterior for **U** if and only if an *R*-ancillary statistic captures the information in $\mathcal{M}(\mathbf{x})$.

R-Ancillary Regions

Who's Crazier? 23/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

• **U**| $\mathcal{M}(\mathbf{x})$ is an objective posterior for **U** if and only if an *R*-ancillary statistic captures the information in $\mathcal{M}(\mathbf{x})$.

R-Ancillary Regions

 If A(x) is R-ancillary s.t. A(G(θ₀, U₀)) = A_G(U₀), the R-ancillary region defined by A is the set

 $\mathcal{A}_{G}\left(\boldsymbol{\mathsf{U}}_{\boldsymbol{\mathsf{0}}}\right) = \left\{\boldsymbol{\mathsf{U}}: \mathcal{A}_{G}\left(\boldsymbol{\mathsf{U}}\right) = \mathcal{A}_{G}\left(\boldsymbol{\mathsf{U}}_{0}\right)\right\}$

Who's Crazier? 23/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• **U**| $\mathcal{M}(\mathbf{x})$ is an objective posterior for **U** if and only if an *R*-ancillary statistic captures the information in $\mathcal{M}(\mathbf{x})$.

R-Ancillary Regions

 If A(x) is R-ancillary s.t. A(G(θ₀, U₀)) = A_G(U₀), the R-ancillary region defined by A is the set

$$\mathcal{A}_{G}\left(\mathsf{U}_{\mathsf{0}}\right) = \left\{\mathsf{U}: \mathcal{A}_{G}\left(\mathsf{U}\right) = \mathcal{A}_{G}\left(\mathsf{U}_{0}\right)\right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• The smaller the *R*-ancillary region, the more informative *A* is.

Who's Crazier? 23/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• **U**| $\mathcal{M}(\mathbf{x})$ is an objective posterior for **U** if and only if an *R*-ancillary statistic captures the information in $\mathcal{M}(\mathbf{x})$.

R-Ancillary Regions

 If A(x) is R-ancillary s.t. A(G(θ₀, U₀)) = A_G(U₀), the R-ancillary region defined by A is the set

$$\mathcal{A}_{G}\left(\mathsf{U}_{\mathsf{0}}
ight) = \left\{\mathsf{U}: \mathcal{A}_{G}\left(\mathsf{U}
ight) = \mathcal{A}_{G}\left(\mathsf{U}_{0}
ight)
ight\}$$

- The smaller the *R*-ancillary region, the more informative *A* is.
- Any R-ancillary region is rougher than the \mathbf{x} compatible region.

 $\mathcal{M}(G(heta_0, \mathbf{U_0})) \subset \mathcal{A}_G(\mathbf{U_0}) \quad \forall \theta_0, \ \forall \mathcal{A}_G$

Who's Crazier? 23/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• **U**| $\mathcal{M}(\mathbf{x})$ is an objective posterior for **U** if and only if an *R*-ancillary statistic captures the information in $\mathcal{M}(\mathbf{x})$.

R-Ancillary Regions

 If A(x) is R-ancillary s.t. A(G(θ₀, U₀)) = A_G(U₀), the R-ancillary region defined by A is the set

$$\mathcal{A}_{G}\left(\mathsf{U}_{\mathsf{0}}\right) = \left\{\mathsf{U}: \mathcal{A}_{G}\left(\mathsf{U}\right) = \mathcal{A}_{G}\left(\mathsf{U}_{0}\right)\right\}$$

- The smaller the *R*-ancillary region, the more informative *A* is.
- Any *R*-ancillary region is rougher than the **x** compatible region.

 $\mathcal{M}(G(\theta_0, \mathbf{U_0})) \subset \mathcal{A}_G(\mathbf{U_0}) \quad \forall \theta_0, \ \forall \mathcal{A}_G$

• What is the smallest we can make A_G ? Does a smallest region even exist?

Who's Crazier? 24/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 24/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• *R*-ancillary statistics are jointly *R*-ancillary. Intersection of *R*-ancillary regions is an *R*-ancillary region.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Who's Crazier? 24/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• *R*-ancillary statistics are jointly *R*-ancillary. Intersection of *R*-ancillary regions is an *R*-ancillary region.

$\mathsf{Utopia} \subset \mathsf{Cave}$

$$\mathcal{U}_{G}\left(\mathsf{U}_{0}\right)=\bigcup_{\theta_{0}\in\Theta}\mathcal{M}\left(G\left(\theta_{0},\mathsf{U}_{0}\right)\right)\subset\bigcap_{A:\ R\text{-ancillary for }G}\mathcal{A}_{G}\left(\mathsf{U}_{0}\right)=\mathcal{C}_{G}\left(\mathsf{U}_{0}\right)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Who's Crazier? 24/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• *R*-ancillary statistics are jointly *R*-ancillary. Intersection of *R*-ancillary regions is an *R*-ancillary region.

Utopia \subset Cave

$$\mathcal{U}_{G}\left(\mathsf{U}_{0}\right)=\bigcup_{\theta_{0}\in\Theta}\mathcal{M}\left(G\left(\theta_{0},\mathsf{U}_{0}\right)\right)\subset\bigcap_{A:\ R\text{-ancillary for }G}\mathcal{A}_{G}\left(\mathsf{U}_{0}\right)=\mathcal{C}_{G}\left(\mathsf{U}_{0}\right)$$

• The maximal R-ancillary, A_{\max} , restricts U_0 to the Cave.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Who's Crazier? 24/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• *R*-ancillary statistics are jointly *R*-ancillary. Intersection of *R*-ancillary regions is an *R*-ancillary region.

Utopia \subset Cave

$$\mathcal{U}_{G}\left(\boldsymbol{\mathsf{U}}_{0}\right)=\bigcup_{\theta_{0}\in\Theta}\mathcal{M}\left(G\left(\theta_{0},\boldsymbol{\mathsf{U}}_{0}\right)\right)\subset\bigcap_{A:\;R\text{-ancillary for }G}\mathcal{A}_{G}\left(\boldsymbol{\mathsf{U}}_{0}\right)=\mathcal{C}_{G}\left(\boldsymbol{\mathsf{U}}_{0}\right)$$

- The maximal R-ancillary, A_{\max} , restricts $\mathbf{U}_{\mathbf{0}}$ to the Cave.
- Ultimately, we hope to restrict U₀ to Utopia, which is the universal "Cramer-Rao lower bound for conditioning".

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 24/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

• *R*-ancillary statistics are jointly *R*-ancillary. Intersection of *R*-ancillary regions is an *R*-ancillary region.

Utopia \subset Cave

$$\mathcal{U}_{G}\left(\mathsf{U}_{0}\right)=\bigcup_{\theta_{0}\in\Theta}\mathcal{M}\left(G\left(\theta_{0},\mathsf{U}_{0}\right)\right)\subset\bigcap_{A:\;R\text{-ancillary for }G}\mathcal{A}_{G}\left(\mathsf{U}_{0}\right)=\mathcal{C}_{G}\left(\mathsf{U}_{0}\right)$$

- The maximal R-ancillary, A_{max} , restricts $\mathbf{U}_{\mathbf{0}}$ to the Cave.
- Ultimately, we hope to restrict U₀ to Utopia, which is the universal "Cramer-Rao lower bound for conditioning".

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Can we achieve Utopia?

W	10′s
Cra	zier?
25	/31
20	/ 51

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Who's	
Crazier?	
25/31	

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Despite all the cynicism in the world, we happily report...

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Who's Crazier? 25/31

Keli Liu and Xiao-Li Meng

U

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Despite all the cynicism in the world, we happily report...

Utopia Can Always Be Achieved

$$\mathsf{topia} = \bigcup_{\theta_0 \in \Theta} \mathcal{M} \left(\mathcal{G} \left(\theta_0, \mathsf{U}_0 \right) \right) = \bigcap_{A: \ R-\mathsf{ancillary for} \ G} \mathcal{A}_G \left(\mathsf{U}_0 \right) = \mathsf{Cave}$$

Who's Crazier? 25/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

Despite all the cynicism in the world, we happily report...

Utopia Can Always Be Achieved

$$\mathsf{Jtopia} = \bigcup_{\theta_0 \in \Theta} \mathcal{M} \left(\mathcal{G} \left(\theta_0, \mathsf{U}_0 \right) \right) = \bigcap_{A: \ R \text{-ancillary for } \mathcal{G}} \mathcal{A}_{\mathcal{G}} \left(\mathsf{U}_0 \right) = \mathsf{Cave}$$

● The collection of Utopia sets, {U_G(U₀)}_{U₀∈U}, partitions the pivot space into equivalence classes.

- 日本 - 1 日本 - 日本 - 日本

Who's Crazier? 25/31

Keli Liu and Xiao-Li Meng

U

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Despite all the cynicism in the world, we happily report...

Utopia Can Always Be Achieved

$$\mathsf{topia} = \bigcup_{\theta_0 \in \Theta} \mathcal{M} \left(\mathcal{G} \left(\theta_0, \mathbf{U}_0 \right) \right) = \bigcap_{A: \ R-\text{ancillary for } \mathcal{G}} \mathcal{A}_{\mathcal{G}} \left(\mathbf{U}_0 \right) = \mathsf{Cave}$$

- O The collection of Utopia sets, {U_G(U₀)}_{U₀∈U}, partitions the pivot space into equivalence classes.
- Provide the set of pivot space equivalence classes corresponds to a set of sample space equivalence classes.

Who's Crazier? 25/31

Keli Liu and Xiao-Li Meng

U

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Despite all the cynicism in the world, we happily report...

Utopia Can Always Be Achieved

$$\mathsf{topia} = \bigcup_{\theta_0 \in \Theta} \mathcal{M} \left(\mathcal{G} \left(\theta_0, \mathsf{U}_0 \right) \right) = \bigcap_{A: \ R-\mathsf{ancillary for} \ \mathcal{G}} \mathcal{A}_{\mathcal{G}} \left(\mathsf{U}_0 \right) = \mathsf{Cave}$$

- The collection of Utopia sets, $\{\mathcal{U}_G(\mathbf{U}_0)\}_{\mathbf{U}_0 \in \mathbb{U}}$, partitions the pivot space into equivalence classes.
- On the set of pivot space equivalence classes corresponds to a set of sample space equivalence classes.
- The index for the sample space equivalence class is observed and is *R*-ancillary.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Who's Crazier? 25/31

Keli Liu and Xiao-Li Meng

U

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Despite all the cynicism in the world, we happily report...

Utopia Can Always Be Achieved

$$\mathsf{topia} = \bigcup_{\theta_0 \in \Theta} \mathcal{M} \left(\mathcal{G} \left(\theta_0, \mathsf{U}_0 \right) \right) = \bigcap_{A: \ R-\mathsf{ancillary for} \ \mathcal{G}} \mathcal{A}_{\mathcal{G}} \left(\mathsf{U}_0 \right) = \mathsf{Cave}$$

- O The collection of Utopia sets, {U_G(U₀)}_{U₀∈U}, partitions the pivot space into equivalence classes.
- On the set of pivot space equivalence classes corresponds to a set of sample space equivalence classes.
- The index for the sample space equivalence class is observed and is *R*-ancillary.
- Utopia represents an upper bound on the informativeness of an *R*-ancillary. It is always achieved.

シック・ 川 ・ ・ エッ・ ・ 日 ・ うらう

Making Relevant Subsets Relevant Again

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Making Relevant Subsets Relevant Again

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant* subsets.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Making Relevant Subsets Relevant Again

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space**?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space**?

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Classical Way

• Subsets of the sample space, X.

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

New Way

• Subsets of the **pivot space**, U.

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

New Way

• Subsets of the **pivot space**, U.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Level-sets of *R*-ancillary statistics.

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

New Way

- Subsets of the **pivot space**, U.
- Level-sets of *R*-ancillary statistics.
- Unique "most relevant" subset—Utopia.

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

New Way

- Subsets of the **pivot space**, U.
- Level-sets of *R*-ancillary statistics.
- Unique "most relevant" subset—Utopia.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• U, the uncertainty, dictates how hard the inference problem is.

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

New Way

- Subsets of the **pivot space**, U.
- Level-sets of *R*-ancillary statistics.
- Unique "most relevant" subset—Utopia.

- $\bullet~$ U, the uncertainty, dictates how hard the inference problem is.
- Condition on $\boldsymbol{U} \Leftrightarrow$ Condition on difficulty of inference.

Who's Crazier? 26/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

• Fisher (1934) argued that we should condition on *relevant subsets*. **Of what space?**

Classical Way

- Subsets of the sample space, X.
- Level-sets of ancillary statistics.
- Paradoxes: Which ancillary statistics? Existence?

New Way

- Subsets of the **pivot space**, U.
- Level-sets of *R*-ancillary statistics.
- Unique "most relevant" subset—Utopia.

- $\bullet~$ U, the uncertainty, dictates how hard the inference problem is.
- Condition on $\boldsymbol{U} \Leftrightarrow$ Condition on difficulty of inference.
- Want to give same effort for all difficulties.

The Best for ${\boldsymbol{\mathsf{U}}}$

Who's	
Cra	zier?
27	/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

The Best for ${\boldsymbol{\mathsf{U}}}$

Who's Crazier? 27/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

The optimal achievable objective (free of π) posterior for U:
 f(U|A_{max}).

The Best for **U**

Who's Crazier? 27/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

The optimal achievable objective (free of π) posterior for U:
 f(U|A_{max}).

"Heaven Is Possible" If and Only If...

With respect to fixed G,

$$f\left(\mathbf{U}|A_{\mathsf{max}}\left(\mathbf{x}
ight)
ight)=f\left(\mathbf{U}|\mathcal{M}\left(\mathbf{x}
ight)
ight),\,\,orall\mathbf{x}\in\mathbb{X}$$

if and only if $\forall \mathbf{U} \in \mathbb{U}$, $\forall \theta \in \Theta$, $\mathcal{M}(G(\theta, \mathbf{U})) = \mathcal{U}_G(\mathbf{U})$ where $\mathcal{U}_G(\mathbf{U})$ is the Utopia set containing \mathbf{U} .

The Best for **U**

Who's Crazier? 27/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

The optimal achievable objective (free of π) posterior for U:
 f(U|A_{max}).

"Heaven Is Possible" If and Only If ...

With respect to fixed G,

$$f\left(\mathbf{U}|A_{\mathsf{max}}\left(\mathbf{x}
ight)
ight)=f\left(\mathbf{U}|\mathcal{M}\left(\mathbf{x}
ight)
ight),\,\,orall\mathbf{x}\in\mathbb{X}$$

if and only if $\forall \mathbf{U} \in \mathbb{U}$, $\forall \theta \in \Theta$, $\mathcal{M}(G(\theta, \mathbf{U})) = \mathcal{U}_G(\mathbf{U})$ where $\mathcal{U}_G(\mathbf{U})$ is the Utopia set containing \mathbf{U} .

Interpretation

M(*G*(θ, U)) is the information we get back about U if data are generated using θ.

The Best for **U**

Who's Crazier? 27/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

The optimal achievable objective (free of π) posterior for U:
 f(U|A_{max}).

"Heaven Is Possible" If and Only If ...

With respect to fixed G,

$$f\left(\mathbf{U}|A_{\mathsf{max}}\left(\mathbf{x}
ight)
ight)=f\left(\mathbf{U}|\mathcal{M}\left(\mathbf{x}
ight)
ight),\,\,orall\mathbf{x}\in\mathbb{X}$$

if and only if $\forall \mathbf{U} \in \mathbb{U}$, $\forall \theta \in \Theta$, $\mathcal{M}(G(\theta, \mathbf{U})) = \mathcal{U}_G(\mathbf{U})$ where $\mathcal{U}_G(\mathbf{U})$ is the Utopia set containing \mathbf{U} .

Interpretation

- *M*(*G*(θ, U)) is the information we get back about U if data are generated using θ.
- Invariance of $\mathcal{M}(G(\theta, \mathbf{U}))$ to θ implies that information content is **independent** of the true parameter value.

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

An Objective Posterior for θ

 $f(\mathbf{U}|A_{\max}) = f(\mathbf{U}|\mathcal{M}(\mathbf{x})).$

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

An Objective Posterior for θ

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

An Objective Posterior for θ

- **2** $\mathbf{x} = G(\theta, \mathbf{U})$ can be solved for θ , yielding a function, $\theta(\mathbf{U}; \mathbf{x})$, from $\mathcal{M}(\mathbf{x})$ to Θ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

 Then θ(U; x) as a function of U ~ f(U|A_{max}) induces a Frequentist calibrated posterior distribution for θ.

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

An Objective Posterior for θ

- **2** $\mathbf{x} = G(\theta, \mathbf{U})$ can be solved for θ , yielding a function, $\theta(\mathbf{U}; \mathbf{x})$, from $\mathcal{M}(\mathbf{x})$ to Θ .
 - Then θ(U; x) as a function of U ~ f(U|A_{max}) induces a Frequentist calibrated posterior distribution for θ.

Most Relevant Confidence Regions

• Let C_U be a $1 - \alpha$ probability set w.r.t. $f(\mathbf{U}|A_{\max})$.

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

An Objective Posterior for θ

- **2** $\mathbf{x} = G(\theta, \mathbf{U})$ can be solved for θ , yielding a function, $\theta(\mathbf{U}; \mathbf{x})$, from $\mathcal{M}(\mathbf{x})$ to Θ .
 - Then θ(U; x) as a function of U ~ f(U|A_{max}) induces a Frequentist calibrated posterior distribution for θ.

Most Relevant Confidence Regions

- Let C_U be a 1α probability set w.r.t. $f(\mathbf{U}|A_{\max})$.
- For fixed G, C_U is a **most relevant** confidence region for **U**.

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

An Objective Posterior for θ

- **2** $\mathbf{x} = G(\theta, \mathbf{U})$ can be solved for θ , yielding a function, $\theta(\mathbf{U}; \mathbf{x})$, from $\mathcal{M}(\mathbf{x})$ to Θ .
 - Then θ(U; x) as a function of U ~ f(U|A_{max}) induces a Frequentist calibrated posterior distribution for θ.

Most Relevant Confidence Regions

- Let C_U be a 1α probability set w.r.t. $f(\mathbf{U}|A_{\max})$.
- For fixed G, C_U is a most relevant confidence region for **U**.
- The mapping θ(U, x) (not necessarily function) converts C_U into a most relevant 1 α level confidence region, C_θ for θ.

Who's Crazier? 28/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed Not At Random

Is Utopia Possible?

Conclusions

An Objective Posterior for θ

- **2** $\mathbf{x} = G(\theta, \mathbf{U})$ can be solved for θ , yielding a function, $\theta(\mathbf{U}; \mathbf{x})$, from $\mathcal{M}(\mathbf{x})$ to Θ .
 - Then θ(U; x) as a function of U ~ f(U|A_{max}) induces a Frequentist calibrated posterior distribution for θ.

Most Relevant Confidence Regions

- Let C_U be a 1α probability set w.r.t. $f(\mathbf{U}|A_{\max})$.
- For fixed G, C_U is a most relevant confidence region for **U**.
- The mapping θ(U, x) (not necessarily function) converts C_U into a most relevant 1 α level confidence region, C_θ for θ.
- C_{θ} attains posterior probability 1α if (1) and (2) hold.

Who's Crazier? 29/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Invert
$$\mathbf{x} = G(\theta, \mathbf{U})$$
 to
 $\theta^*(\mathbf{U}; \mathbf{x}) = \{\theta : G(\theta, \mathbf{U}) = \mathbf{x}\}$

Who's Crazier? 29/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Invert
$$\mathbf{x} = G(\theta, \mathbf{U})$$
 to
 $\theta^*(\mathbf{U}; \mathbf{x}) = \{\theta : G(\theta, \mathbf{U}) = \mathbf{x}\}$
 $\mathcal{M}(\mathbf{x}) = \mathcal{U}_G(\mathbf{U}_0)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Lool at Fiducial

Observed No At Random

ls Utopia Possible?

Conclusions

• Uncongeniality: Inconsistent use of the full data, **x**, and the partial data, A_{max} , in different phases of the analysis.

• Uncongeniality: Inconsistent use of the full data, **x**, and the partial data, A_{max} , in different phases of the analysis.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Non-uniqueness: How does one choose G?

Bibliography

Who's Crazier? 30/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Loo at Fiducial

Observed Not At Random

ls Utopia Possible?

Conclusions

Barnard, G. A. (1995). Pivotal Models and the Fiducial Argument. *International Statistical Review*, 63(3): 309-323.

- Basu, D. (1964). Recovery of ancillary information. *Sankhya*, 26: 3-16.
- Dawid, A.P. and M. Stone (1982). The Function-Model Basis of Fiducial Inference. *Annals of Statistics*, 10(4): 1054-1067.

 Dempster, A.P. (2008). The Dempster-Shafer calculus for statisticians. *International Journal of Approximate Reasoning*, 48: 365-377.

Fraser, D.A.S. (1968). *The Structure of Inference*. John Wiley & Sons, New York-London-Sydney.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Bibliography

Who's Crazier? 31/31

Keli Liu and Xiao-Li Meng

The Art of Creating Missingness

A Partial Look at Fiducial

Observed No At Random

Is Utopia Possible?

Conclusions

Hannig, Jan. (2009). On Generalized Fiducial Inference. *Statistica Sinica*, 19: 491-544.

Martin, R., J. Zhang, and C. Liu (2010). Dempster-Shafer Theory and Statistical Inference with Weak Beliefs. *Statistical Science*, 20(1): 72-87.

Rubin, Donald B. (1976). Inference and missing data. Biometrika, 63(3): 581-592.

Taraldsen, G. and B. Lindqvsit (2013). Fiducial Theory and Optimal Inference. *Annals of Statistics*, 41(1): 323-341.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○