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Inference for Mean of Normal

x̄ − µ
s/
√

n
= t

Frequentist 1− α level interval: x̄ ± s√
n

tn−1,1−α/2.

Bayes

Assume µ is random.

Assume µ has improper
distribution.

[µ|x̄ , s] ∼ x̄ − s√
n

tn−1

Fisher

Fiducial Equation:
µ = x̄ − s√

n
t.

Assume [t|x̄ , s] ∼ tn−1.

[µ|x̄ , s] ∼ x̄ − s√
n

tn−1.
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Augmenting the Inferential Framework

Fiducial Equation (Taraldsen and Lindqvist 2013)

X = G (θ,U) where X ∈X , θ ∈ Θ, U ∈U
G is the structure equation. U is (God’s) uncertainty.

Together, G and U determine the sampling distribution.

The sampling distribution does not determine G and U.

Method Type of Replication Relevant?

Frequentist data given parameter X|θ
Bayes parameter given data θ|X X

Fiducial uncertainty given data U|X X

Why should finding U|x be any easier than finding θ|x?
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Destination
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Which Smells Fishier: Bayes or Fiducial?

Inference for Mean of Normal

x̄ − µ
s/
√

n
= t

t is our missing data with prior distribution: t ∼ tn−1.

Bayes

Objective prior for µ.

What does objective prior
mean?

Ad hoc arguments give
π(µ) ∝ 1.

Fiducial

Objective posterior for t.

What does objective
posterior mean?

Ignore information on t in
(x̄ , s) that’s tied to π.

Objective Posterior: Throw away data until we don’t need
a prior on µ.
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An Old Idea

1 Obtain f (U|x) without invoking π(dθ).

2 Use structural relation x = G (θ,U) to obtain π(θ|x) from
f (U|x).

A probability statement concerning ē [the error] is ipso
facto a probability statement concerning θ. (Fraser 1968)

One can get a random realization from the fiducial
distribution of ξ by generating U and solving the structural
equation for ξ. (Hannig 2009)

The key point is that knowing θ is equivalent to knowing
U; in other words, inference on θ is equivalent to
predicting the value of the unobserved U. (Martin, Zhang,
and Liu 2010)
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A Missing (Data) Perspective: Prior = Nuisance

The conditional distribution of X given U depends on π.

f (x|U,π) =

∫
f (x|U,θ)π (dθ) =

∫
1 {x =G (θ,U)}π (dθ)

Predicting the Missing U

f (U|x, π) ∝ f (U) f (x|U, π) .

We can treat π (dθ) as an infinite dimensional nuisance
parameter in the “U-likelihood”, f (x|U, π).

π can be viewed as a nuisance parameter only if we switch the
problem from inference for θ to prediction of U.

Can we get to π(θ|x) without going through π(θ)?

Can we predict U without any knowledge of the nuisance?
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A Meaningful Definition of Objective

U-Likelihood

f (x|U, π) contains all information in x about U and π.

Goal: Extract information on U not contaminated by the
nuisance parameter π.

Technique: Throw away data contaminated by π. Reduce x to
A(x).

Objective Posterior for U

f (U|A(x)) is an objective posterior for U if it does not depend on the
value of the nuisance parameter, π.

Requires f (A(x)|U, π) = f (A(x)|U).
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Conclusions

Didn’t You Say You Were Ancillary?

Does there exist a statistic, A(x), s.t. f (A(x)|U) is free of the
nuisance π?

How about statistics ancillary for θ?

An Ancillarity Paradox from Basu (1964)

Let (X ,Y ) have fiducial equation

X = ε1 and Y = ρε1 +
√

1− ρε2 where εi i.i.d. N (0, 1)

X ,Y are marginally ancillary but not jointly ancillary.

P (X = x |ε, ρ) = 1 {x = ε1} is free of ρ.

P (Y = y |ε, ρ) = 1
{

y = ρε1 +
√

1− ρε2

}
depends on ρ.

Situation reverses by switching the roles of X and Y in the
fiducial equation.

Whether or not A(x) is free of π given U depends on G .
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Representational Ancillarity

Definition of R-Ancillarity

A statistic A(x) is representationally ancillary w.r.t. G if there exists
a representation AG s.t. A (G (θ,U)) = AG (U) ∀θ.

A(x) is R-ancillary if and only if U|A (x) , π ∼ U|A (x).

Lemma (also see Barnard, 1995)

If A1(x) and A2(x) are both R-ancillaries w.r.t. G , then they are
jointly R-ancillary w.r.t. G .

Write A1,A2 as A1,G (U),A2,G (U). Then (A1,G (U),A2,G (U))
remains a R-ancillary w.r.t. G .

In Basu’s paradox, X ,Y are both ancillaries but they are not
R-ancillaries with respect to the same G .
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What Do Representations Buy Us?

Fiducial inference depends on G because whether a statistic is
ancillary for π depends on whether it is R-ancillary for G .

Definition of ancillarity as distributional independence of A(x)
from θ is insufficient.

We require the notion of representational (or functional)
independence.
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Is Fiducial Hazardous?

Cox Hazard Model Fiducial

regression
coef. β
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In...

U

baseline
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λ(dt)
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π(dθ)
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Fiducial Is Just Partial Likelihood

Partial Likelihood for U

Assume the decomposition, x =(T (x),A (x)) where A (x) is
R-ancillary w.r.t. G .

The joint (U, π)-likelihood factors as

f (x|U, π) = f (T (x) |A (x) ,U, π)f (A (x) |U).

f (T (x) |A (x) ,U, π) requires prior specification.

f (A (x) |U) is known independent of the prior, π.

Fiducial Recipe for U|x

1 Ignore factor f (T (x) |A (x) ,U, π) because information on U
“cannot be disentangled” from prior.

2 Use f (A (x) |U) to obtain f (U|A(x)) ∝ f (U)f (A(x)|U).

3 Pretend f (U|A(x)) = f (U|x). Refreshing or Revolting?
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When the Recipe Works...

Exponential Hyperbola

V = 1
λE1 and W = λE2 where E1,E2 are iid exponential.

λ̂ = (W /V )1/2 is the MLE and A = (VW )1/2 is an R-ancillary.

Solve λ̂ = λ (E2/E1)1/2 to obtain λ = λ̂ (E1/E2)1/2.

Impute (E2/E1)1/2 according to its prior distribution. Parallels
using marginal likelihood f (λ̂|λ).

But λ̂ is not sufficient. Can we do better?

We observe A = (E1E2)1/2. Impute (E2/E1)1/2 according to
f (E1,E2|A). Parallels using conditional likelihood f (λ̂|A, λ).

Why does conditioning on ancillary statistics recover second
order information?

Fiducial Answer: It increases our efficiency of predicting U.
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An Often Forgotten Ingredient in Fiducial Cooking

X has the following fiducial equation

X = G (θ,U) =

{
0 0 ≤ U < θ
1 θ ≤ U < 1

where U ∼Unif[0, 1] and θ ∈ [1/4, 1/2].

Key Question: Without π(θ), what do we know about U?
What is the free information in X about U?

The only additional information available to us is the fact
that the value of U and x must be compatible. (Hannig
2009)

If X = 0, U ∈ [0, 1/2], shall we predict U as Unif[0, 1/2]?
If X = 1, U ∈ [1/4, 1], shall we predict U as Unif[1/4, 1]?

What are we forgetting by doing this?
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We Observe and Observe that We Observe

x-Compatible Regions

If we generate data x = G (θ0,U0), we learn that U0 resides in

M (G (θ0,U0)) = {U : ∃θ ∈ Θ s.t. G (θ0,U0) =G (θ,U)} .

Hannig (2009) assumes that

f (U|M(X) =M(x)) = f (U|U ∈M(x)),

hence does not depend on π.

The event {M(X) =M(x)} contains two pieces of information:

1 U0 ∈M(x).

2 How we came to observe U0 ∈M(x).

To correct use the information in (1), we need to condition
on the how, i.e., condition on the observation process.
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Bernoulli with Restricted Parameter Space

Reminder: U ∼Unif[0, 1] and θ ∈ [1/4, 1/2]

X = G (θ,U) =

{
0 0 ≤ U < θ
1 θ ≤ U < 1

M (0) = [0, 1/2], M (1) = [1/4, 1].

I{B} is indicator function. Let Ix ≡ I {U ∈M (x)} for x = 0, 1.

We do not observe Ix . It must be inferred from data.

What We Actually Observe

Iobs = X I1 + (1− X )I0 (Note: Iobs = 1)

For x ∈ X, define

Ox =

{
1 if Iobs = Ix
0 otherwise
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A Sleight of Hand

M(X ) contains the information Ix through Iobs and {Ox}.

f (U|M (X ) , π) = f
(
U|Iobs ,O0,O1, π

)
Rewrite the posterior using the law of total probability∑

t∈{0,1}

f (U|Ix = t,O0,O1, π) P
(
Ix = t|Iobs ,O0,O1

)
Problem: The distribution of O0,O1 depends on π.

The Sleight of Hand

To remove the dependence on π, make the substitution

f (U|Ix = t,O0,O1, π) = f (U|Ix = t)

We ignore how we learned {Ix = t}.
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O, We Just Ignored You!

A Mismatch

Using the sleight of hand, rewrite the now π-free posterior∑
t∈{0,1}

f (U|Ix = t) P
(
Ix = t|Iobs ,O0,O1

)
We ignored O0,O1 in the first term BUT continue to condition
on it in the second term—incoherent.

It is this incoherence which leads to the incorrect assumption

f (U|M(X ) =M(x), π) = f (U|U ∈M(x))

Confidence Validity (Rubin 1976)

The posterior f (U|U ∈M(x)) leads to valid confidence regions
for U if the observation process is ignorable

P (Ix = 1|O0 = o0,O1 = o1,U, π) = P (Ix = 1|U)
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A Free Lunch? Take a Second Look.

Suppose we observe I0 = 1 and I1 is missing.

Condition for confidence validity does not hold:

P (I0 = 1|U, θ) = I {U ≤ 1/2}

P (I0 = 1|O0 = 1,O1 = 0,U, θ) = I{U ≤ θ}

Confidence valid inferences for U requires modeling O0,O1.

The distribution of (O0,O1) depends on π: the reduction
X →M(X ) does not throw away enough information.

The information U ∈M(x) seems free. But to use it correctly
requires paying the price of a prior on θ.
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The Consequences of Being Cheap

Actual Posterior, X = 0

Eπ(θ|x=0)[I {U ≤ θ} /θ]

Naive Posterior, X = 0

2I {U ≤ 1/2}

Ignoring {O0,O1} equivalent to assuming point mass prior at
θ = 1/2—most dogmatic of all!
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Know the Price

Takeaway: The information U ∈M(x) is not free—may
require assuming π.

Question 1: So when is this information free? When is
U|M(x) objective—free of π?

Question 2: What is maximal amount of free information
about U? What is the “best” objective posterior for U?
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Conclusions

How Small Can You Go?

U|M(x) is an objective posterior for U if and only if an
R-ancillary statistic captures the information in M(x).

R-Ancillary Regions

If A(x) is R-ancillary s.t. A(G (θ0,U0)) = AG (U0), the
R-ancillary region defined by A is the set

AG (U0) = {U :AG (U) = AG (U0)}

The smaller the R-ancillary region, the more informative A is.

Any R-ancillary region is rougher than the x compatible region.

M(G (θ0,U0)) ⊂ AG (U0) ∀θ0, ∀AG

What is the smallest we can make AG? Does a smallest
region even exist?
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From the Cave to Utopia?

R-ancillary statistics are jointly R-ancillary. Intersection of
R-ancillary regions is an R-ancillary region.

Utopia ⊂ Cave

UG (U0) =
⋃
θ0∈Θ

M (G (θ0,U0)) ⊂
⋂

A: R-ancillary for G

AG (U0) = CG (U0)

The maximal R-ancillary, Amax, restricts U0 to the Cave.

Ultimately, we hope to restrict U0 to Utopia, which is the
universal “Cramer-Rao lower bound for conditioning”.

Can we achieve Utopia?
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Can Statisticians Achieve Utopia?

Despite all the cynicism in the world, we happily report...

Utopia Can Always Be Achieved

Utopia =
⋃
θ0∈Θ

M (G (θ0,U0)) =
⋂

A: R-ancillary for G

AG (U0) = Cave

1 The collection of Utopia sets, {UG (U0)}U0∈U, partitions the
pivot space into equivalence classes.

2 The set of pivot space equivalence classes corresponds to a set
of sample space equivalence classes.

3 The index for the sample space equivalence class is observed
and is R-ancillary.

Utopia represents an upper bound on the informativeness
of an R-ancillary. It is always achieved.
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Making Relevant Subsets Relevant Again

Fisher (1934) argued that we should condition on relevant
subsets. Of what space?

Classical Way

Subsets of the sample
space, X.

Level-sets of ancillary
statistics.

Paradoxes: Which ancillary
statistics? Existence?

New Way

Subsets of the pivot space,
U.

Level-sets of R-ancillary
statistics.

Unique “most relevant”
subset—Utopia.

U, the uncertainty, dictates how hard the inference problem is.

Condition on U⇔ Condition on difficulty of inference.

Want to give same effort for all difficulties.
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Want to give same effort for all difficulties.
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The Best for U

The optimal achievable objective (free of π) posterior for U:
f (U|Amax).

“Heaven Is Possible” If and Only If...

With respect to fixed G ,

f (U|Amax (x)) = f (U|M (x)) , ∀x ∈ X

if and only if ∀U ∈U, ∀θ ∈ Θ, M (G (θ,U)) = UG (U) where UG (U)
is the Utopia set containing U.

Interpretation

M(G (θ,U)) is the information we get back about U if data are
generated using θ.

Invariance of M(G (θ,U)) to θ implies that information content
is independent of the true parameter value.
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When Is the Best for U Good Enough for θ?

An Objective Posterior for θ

1 f (U|Amax) = f (U|M(x)).

2 x = G (θ,U) can be solved for θ, yielding a function, θ(U; x),
from M(x) to Θ.

Then θ(U; x) as a function of U ∼ f (U|Amax) induces a
Frequentist calibrated posterior distribution for θ.

Most Relevant Confidence Regions

Let CU be a 1− α probability set w.r.t. f (U|Amax).

For fixed G , CU is a most relevant confidence region for U.

The mapping θ(U, x) (not necessarily function) converts CU

into a most relevant 1− α level confidence region, Cθ for θ.

Cθ attains posterior probability 1− α if (1) and (2) hold.
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Posterior Reflections: From U to θ Through G

Invert x = G (θ,U) to
θ∗(U; x) = {θ : G (θ,U) = x}

M (x) = UG (U0)

θ∗ (U; x) is
singleton.

Fiducial posterior
is θ∗(U; x)|Amax

θ∗ (U; x) is
not singleton.

Dempster-Shafer
theory for distri-
bution over 2Θ.

M(x)
proper
⊂ UG(U0)

Amax not
informative

enough.

Approximate
R-ancillarity?

Uncongeniality: Inconsistent use of the full data, x, and the
partial data, Amax , in different phases of the analysis.

Non-uniqueness: How does one choose G ?
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