Decomposition of degenerate Gromov-Witten invariants Joint with Q. Chen, M. Gross and B. Siebert

Dan Abramovich

Brown University

October 16, 2013

Abramovich (Brown)

Decomposition of degenerate Gromov-Witter

October 16, 2013 1 / 27

Hero:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Hero:

• 12

▲□▶ ▲圖▶ ▲臣▶ ★臣▶

Motto:

イロト イヨト イヨト イヨト

\bullet thinking about 12 \mapsto beautiful math

Image: A math a math

э

\bullet thinking about 12 \mapsto beautiful math

Image: A math a math

э

12 = number of rational cubics through p_1, \ldots, p_8

3

イロト イポト イヨト イヨト

12 = number of rational cubics through p_1, \ldots, p_8

More generally

12 = number of rational curves in an elliptic pencil on a rational surface

12 = number of rational cubics through p_1, \ldots, p_8

More generally

 $12=\mbox{number}$ of rational curves in an elliptic pencil on a rational surface specifically

12 = number of rational plane sections of $X^{(3)} \subset \mathbb{P}^3$ through p_1, p_2

degeneration.

Abramovich (Brown)

3

<ロ> (日) (日) (日) (日) (日)

degeneration.

• Pick general planes $H_1(p_1) = H_2(p_2) = 0$; H_3

(日) (周) (三) (三)

degeneration.

- Pick general planes $H_1(p_1) = H_2(p_2) = 0$; H_3
- Write pencil

< A >

$$H_1 H_2 H_3 + t X^{(3)} = 0$$

3

degeneration.

- Pick general planes $H_1(p_1) = H_2(p_2) = 0$; H_3
- Write pencil

$$H_1 H_2 H_3 + t X^{(3)} = 0$$

• To make it a normal crossings degeneration, blow up H_1 and then H_2 .

degeneration.

- Pick general planes $H_1(p_1) = H_2(p_2) = 0$; H_3
- Write pencil

$$H_1 H_2 H_3 + t X^{(3)} = 0$$

• To make it a normal crossings degeneration, blow up H_1 and then H_2 .

Abramovich (Brown)

Decomposition of degenerate Gromov-Witte

Heros:

• 12

▲口→ ▲圖→ ▲国→ ▲国→

Heros:

- 12
- Bernd Siebert (2001)

3

イロト イポト イヨト イヨト

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

3

<ロ> (日) (日) (日) (日) (日)

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

→

▲ 同 ▶ → 三 ▶

3

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

• Apply logarithmic GW theory (Gross's talk)

•
$$\overline{\mathcal{M}} := \overline{\mathcal{M}}_{\Gamma}(X/B)$$

$$\blacktriangleright \ \ \mathsf{\Gamma} = (g, \beta,$$

3 x 3

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

• Apply logarithmic GW theory (Gross's talk)

•
$$\overline{\mathcal{M}} := \overline{\mathcal{M}}_{\Gamma}(X/B)$$

$$\blacktriangleright \ \ \Gamma = (g, \beta, u_1, u_2)$$

3 x 3

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

• Apply logarithmic GW theory (Gross's talk)

•
$$\overline{\mathcal{M}} := \overline{\mathcal{M}}_{\Gamma}(X/B)$$

•
$$\Gamma = (g, \beta, u_1, u_2) = (0, H, 0, 0)$$

3 x 3

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

• Apply logarithmic GW theory (Gross's talk)

•
$$\overline{\mathcal{M}} := \overline{\mathcal{M}}_{\Gamma}(X/B)$$

• $\Gamma = (g, \beta, u_1, u_2) = (0, H, 0, 0)$
• $[\overline{\mathcal{M}}]^{\text{virt}}$

3 x 3

< 67 ▶

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

• Apply logarithmic GW theory (Gross's talk)

•
$$\overline{\mathcal{M}} := \overline{\mathcal{M}}_{\Gamma}(X/B)$$

• $\Gamma = (g, \beta, u_1, u_2) = (0, H, 0, 0)$
• $[\overline{\mathcal{M}}]^{\text{virt}}$
• $e_i : M \longrightarrow X$

3 x 3

$$\begin{array}{c} X \\ \downarrow \\ B = \mathbb{A}^1 \qquad \ni 0 \end{array}$$

• Apply logarithmic GW theory (Gross's talk)

•
$$\overline{\mathcal{M}} := \overline{\mathcal{M}}_{\Gamma}(X/B)$$

•
$$\Gamma = (g, \beta, u_1, u_2) = (0, H, 0, 0)$$

• $e_i: M \longrightarrow X$ (Ask Steffen Marcus)

3. 3

< 4 →

Heros:

• 12

• Bernd Siebert (2001)

3

イロト イヨト イヨト イヨト

Heros:

- 12
- Bernd Siebert (2001)
- Q. Chen, M. Gross, B. Siebert

A 🖓

3

• $i_b: \{b\} \hookrightarrow B$

- 2

イロト イポト イヨト イヨト

•
$$i_b: \{b\} \hookrightarrow B$$

Theorem

$$i_b^! \left[\overline{\mathcal{M}}\right]^{\mathsf{virt}} = \left[\overline{\mathcal{M}}_{\Gamma}(X_b)\right]^{\mathsf{virt}}$$

3

イロト イポト イヨト イヨト

•
$$i_b: \{b\} \hookrightarrow B$$

Theorem

$$i_b^! \left[\overline{\mathcal{M}}\right]^{\mathsf{virt}} = \left[\overline{\mathcal{M}}_{\mathsf{\Gamma}}(X_b)\right]^{\mathsf{virt}}$$

• Gromov-Witten of X_b = Gromov-Witten of X_0

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

•
$$i_b: \{b\} \hookrightarrow B$$

Theorem

$$i_b^! \left[\overline{\mathcal{M}}\right]^{\mathsf{virt}} = \left[\overline{\mathcal{M}}_{\mathsf{\Gamma}}(X_b)\right]^{\mathsf{virt}}$$

• Gromov-Witten of X_b = Gromov-Witten of X_0

۲

$$\begin{split} \int_{[\overline{\mathcal{M}}_b]^{\mathrm{virt}}} \mathbf{e}^* \gamma &= \int_{[\overline{\mathcal{M}}]^{\mathrm{virt}}} \mathbf{e}^* \gamma \cup \pi^* b = \int_{[\overline{\mathcal{M}}]^{\mathrm{virt}}} \mathbf{e}^* \gamma \cup \pi^* \mathbf{0} \\ &= \int_{[\overline{\mathcal{M}}_0]^{\mathrm{virt}}} \mathbf{e}^* \gamma \end{split}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

For each singular point b_i there is a plane H_i through p_1, p_2 and b_i

For each singular point b_i there is a plane H_i through p_1, p_2 and b_i

get

12

For each singular point b_i there is a plane H_i through p_1, p_2 and b_i

get

12 = 9

For each singular point b_i there is a plane H_i through p_1, p_2 and b_i

get

12 = 9 Anomaly?!?
12
$$\stackrel{?}{=}$$
 9 + $\hbar(D...)$

The balance

There is a unique plane through p_1, p_2, O .

47 ▶

The balance

There is a unique plane through p_1, p_2, O .

get

12

___ ▶
The balance

There is a unique plane through p_1, p_2, O .

get

$$12 = 9 + 1$$

___ ▶

The balance

There is a unique plane through p_1, p_2, O .

get

$$12 = 9 + 1 \times 3$$

What's with this multiplicity 3?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem (ACGS)

$$[\overline{\mathcal{M}}_0]^{\mathsf{virt}} = \sum_{f^t: G \to \Sigma_X} m_{f^t} [\overline{\mathcal{M}}_{f^t}]^{\mathsf{virt}}$$

where

• Σ_X, Σ_B are the polyhedral cone complexes with integral structures of X, B, defined in [K-K-M-SD]

3

< 同 ト く ヨ ト く ヨ ト

Theorem (ACGS)

$$[\overline{\mathcal{M}}_0]^{\mathsf{virt}} = \sum_{f^t: G o \Sigma_X} m_{f^t} [\overline{\mathcal{M}}_{f^t}]^{\mathsf{virt}}$$

where

- Σ_X, Σ_B are the polyhedral cone complexes with integral structures of *X*, *B*, defined in [K-K-M-SD]
- f^t runs over vertically rigid tropical maps in Σ_X / Σ_B ,

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (ACGS)

$$[\overline{\mathcal{M}}_0]^{\mathsf{virt}} = \sum_{f^t: G \to \Sigma_X} m_{f^t} [\overline{\mathcal{M}}_{f^t}]^{\mathsf{virt}}$$

where

- Σ_X, Σ_B are the polyhedral cone complexes with integral structures of *X*, *B*, defined in [K-K-M-SD]
- f^t runs over vertically rigid tropical maps in Σ_X / Σ_B ,
- $\overline{\mathcal{M}}_{f^t} \subset \overline{\mathcal{M}}_0$ is the subspace of maps with tropicalization $\succeq f^t$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (ACGS)

$$[\overline{\mathcal{M}}_0]^{\mathsf{virt}} = \sum_{f^t: G \to \Sigma_X} m_{f^t} [\overline{\mathcal{M}}_{f^t}]^{\mathsf{virt}}$$

where

- Σ_X, Σ_B are the polyhedral cone complexes with integral structures of *X*, *B*, defined in [K-K-M-SD]
- f^t runs over vertically rigid tropical maps in Σ_X / Σ_B ,
- $\overline{\mathcal{M}}_{f^t} \subset \overline{\mathcal{M}}_0$ is the subspace of maps with tropicalization $\succeq f^t$
- m_f is the map $N_{f^t} = \mathbb{N} \rightarrow N_B = \mathbb{N}$ described below.

$$\Sigma_X = (\mathbb{R}_{\geq 0})^3$$

- 4 ⊒ →

A (1) > 4

3

$$\Sigma_X = (\mathbb{R}_{\geq 0})^3 \longrightarrow \Sigma_B = \mathbb{R}_{\geq 0}$$

3

< 🗇 🕨 🔸

$$egin{array}{rcl} \Sigma_X = (\mathbb{R}_{\geq 0})^3 & \longrightarrow & \Sigma_B = \mathbb{R}_{\geq 0} \ (x,y,z) & \mapsto & x+y+z \end{array}$$

3

< 🗇 🕨 🔸

$$egin{array}{rcl} \Sigma_X = (\mathbb{R}_{\geq 0})^3 & \longrightarrow & \Sigma_B = \mathbb{R}_{\geq 0} \ (x,y,z) & \mapsto & x+y+z \end{array}$$

It is convenient to draw a slice x + y + z = 1:

Abramovich (Brown)

Decomposition of degenerate Gromov-Witter

October 16, 2013 13 / 27

Decomposing the example: the extra curve

___ ▶

Decomposing the example: the extra curve

• The moduli space of such is $\mathbb{R}_{\geq 0}$. Its integer generator has $E_O = (1, 1, 1), L_1 = (3, 0, 0)$ etc.

Decomposing the example: the extra curve

- The moduli space of such is $\mathbb{R}_{\geq 0}$. Its integer generator has $E_O = (1, 1, 1), L_1 = (3, 0, 0)$ etc.
- It lies over $x + y + z = 3 \in \Sigma_B$.

In general,

October 16, 2013 15 / 27

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

In general,

• Vertices of a slice G of Σ_C are labeled by g_i, β_i and target cones σ_i .

In general,

- Vertices of a slice G of Σ_C are labeled by g_i, β_i and target cones σ_i .
- Edges are labeled by slope vectors u_i .

In general,

- Vertices of a slice G of Σ_C are labeled by g_i, β_i and target cones σ_i .
- Edges are labeled by slope vectors u_i .
- The fact that only finitely many *u_j* are possible given Γ is a nontrivial result.

The tropical moduli space

$$\overline{\mathcal{M}}_{f^t}^{\operatorname{trop}} = \left\{ \left((v_i), (e_j) \right) \in \prod \sigma_i \times \prod \mathbb{R}_{\geq 0} \middle| \begin{array}{c} \forall v_{1,j} - q_j \longrightarrow v_{2,j} \\ v_{2,j} - v_{1,j} = e_j u_{q_j} \end{array} \right\}.$$

3

< 🗇 🕨 🔸

The tropical moduli space

$$\overline{\mathcal{M}}_{f^t}^{\operatorname{trop}} = \left\{ \left((v_i), (e_j) \right) \in \prod \sigma_i \times \prod \mathbb{R}_{\geq 0} \middle| \begin{array}{c} \forall v_{1,j} - q_j \longrightarrow v_{2,j} \\ v_{2,j} - v_{1,j} = e_j u_{q_j} \end{array} \right\}.$$

It evidently has the lattice

$$N_{f^t} = \left\{ \left((v_i), (e_j) \right) \in \prod N_{\sigma_i} \times \prod \mathbb{N} \mid \forall v_{1,j} - q_j \rightarrow v_{2,j} \\ v_{2,j} - v_{1,j} = e_j u_{q_j} \end{array} \right\}.$$

• f^t is vertically rigid

< 🗇 🕨 🔸

э

• f^t is vertically rigid

$$\Leftrightarrow \dim \overline{\mathcal{M}}_{f^t}^{\operatorname{trop}} = 1$$

< 🗇 🕨 🔸

э

• f^t is vertically rigid

 $\Leftrightarrow {\sf dim}\, \overline{\mathcal{M}}_{\mathit{f^t}}^{\rm trop} = 1$

$$\Leftrightarrow \overline{\mathcal{M}}_{f^t}^{\operatorname{trop}} \simeq \mathbb{R}_{\geq 0},$$

3

→ Ξ →

Image: A math a math

• f^t is vertically rigid

$$\Leftrightarrow \mathsf{dim}\, \overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} = 1$$

$$\Leftrightarrow \overline{\mathcal{M}}_{f^t}^{\operatorname{trop}} \simeq \mathbb{R}_{\geq 0}, \quad \textit{N}_{f^t} \simeq \mathbb{N}.$$

< 🗇 🕨 🔸

э

• f^t is vertically rigid

$$\Leftrightarrow \mathsf{dim}\, \overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} = 1$$

$$\Leftrightarrow \overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} \simeq \mathbb{R}_{\geq 0}, \quad N_{f^t} \simeq \mathbb{N}.$$

• $\overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} \to \Sigma_B$

3

- 4 ⊒ →

< 🗇 🕨 🔸

• f^t is vertically rigid

$$\Leftrightarrow \dim \overline{\mathcal{M}}_{f^t}^{\operatorname{trop}} = 1$$

$$\Leftrightarrow \overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} \simeq \mathbb{R}_{\geq 0}, \quad N_{f^t} \simeq \mathbb{N}.$$

• $\overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} \to \Sigma_B$

$$\Sigma_B = \mathbb{R}_{\geq 0}, \quad \textit{N}_B \simeq \mathbb{N}.$$

3

- 4 ⊒ →

< 🗇 🕨 🔸

• *f*^t is vertically rigid

$$\Leftrightarrow \dim \overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} = 1$$

$$\Leftrightarrow \overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} \simeq \mathbb{R}_{\geq 0}, \quad N_{f^t} \simeq \mathbb{N}.$$

• $\overline{\mathcal{M}}_{f^t}^{\mathrm{trop}} \to \Sigma_B$

$$\Sigma_B = \mathbb{R}_{\geq 0}, \quad N_B \simeq \mathbb{N}.$$

• m_{f^t} is determined by

\bullet thinking about 12 \mapsto beautiful math

3

< (T) > <

- \bullet thinking about 12 \mapsto beautiful math
- work out the unobstructed case. The rest will follow.

- \bullet thinking about 12 \mapsto beautiful math
- work out the unobstructed case. The rest will follow.
- N.B. the example is unobstructed

Heros:

• 12

- Bernd Siebert (2001)
- Q. Chen, M. Gross, B. Siebert

< 🗗 🕨 🔸

3

Heros:

• 12

- Bernd Siebert (2001)
- Q. Chen, M. Gross, B. Siebert
- Costello, Manolache

< 67 ▶

3

• Log unobstructed is toroidal.

- Log unobstructed is toroidal.
- So $\overline{\mathcal{M}} \to B$ is a toroidal morphism locally a dominant torus equivariant map of toric varieties.

- Log unobstructed is toroidal.
- So $\overline{\mathcal{M}} \to B$ is a toroidal morphism locally a dominant torus equivariant map of toric varieties.
- [K-K-M-SD] gives $\Sigma_M \to \Sigma_B$.

- Log unobstructed is toroidal.
- So $\overline{\mathcal{M}} \to B$ is a toroidal morphism locally a dominant torus equivariant map of toric varieties.
- [K-K-M-SD] gives $\Sigma_M \rightarrow \Sigma_B$.
- toroidal divisors $D_{ au} \Longleftrightarrow$ rays au of Σ_M
- Log unobstructed is toroidal.
- So $\overline{\mathcal{M}} \to B$ is a toroidal morphism locally a dominant torus equivariant map of toric varieties.
- [K-K-M-SD] gives $\Sigma_M \rightarrow \Sigma_B$.
- toroidal divisors $D_{ au} \iff$ rays au of Σ_M

• Write
$$[\overline{\mathcal{M}}_0] = \sum_{\tau} m_{\tau} D_{\tau}$$
,

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

• Take a toric chart at the generic point of $D_{ au}$

• Toric varieties: $V_ au \simeq \mathbb{A}^1 imes (\mathbb{C}^*)^{d-1}$

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

- Toric varieties: $V_ au \simeq \mathbb{A}^1 imes (\mathbb{C}^*)^{d-1}$
- Monoid lattices: $\mathbb{N}=M_{\mathbb{A}^1}$ ightarrow $M_{ au}\simeq\mathbb{N} imes\mathbb{Z}^{d-1}$

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

- Toric varieties: $V_ au \simeq \mathbb{A}^1 imes (\mathbb{C}^*)^{d-1}$
- Monoid lattices: $\mathbb{N} = M_{\mathbb{A}^1} \to M_{ au} \simeq \mathbb{N} \times \mathbb{Z}^{d-1}$ $1 \mapsto (m_1, m_2, \dots, m_d)$

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

• Take a toric chart at the generic point of $D_{ au}$

- Toric varieties: $V_ au \simeq \mathbb{A}^1 imes (\mathbb{C}^*)^{d-1}$
- Monoid lattices: $\mathbb{N} = M_{\mathbb{A}^1} \to M_{\tau} \simeq \mathbb{N} \times \mathbb{Z}^{d-1}$ $1 \mapsto (m_1, m_2, \dots, m_d)$

So *m_τ*

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

- Toric varieties: $V_ au \simeq \mathbb{A}^1 imes (\mathbb{C}^*)^{d-1}$
- Monoid lattices: $\mathbb{N} = M_{\mathbb{A}^1} \to M_{\tau} \simeq \mathbb{N} \times \mathbb{Z}^{d-1}$ $1 \mapsto (m_1, m_2, \dots, m_d)$
- So $m_{\tau} = \operatorname{mult}_{D_{\tau}} \pi^* t$

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

- Toric varieties: $V_ au \simeq \mathbb{A}^1 imes (\mathbb{C}^*)^{d-1}$
- Monoid lattices: $\mathbb{N} = M_{\mathbb{A}^1} \to M_{\tau} \simeq \mathbb{N} \times \mathbb{Z}^{d-1}$ $1 \mapsto (m_1, m_2, \dots, m_d)$ • So $m_{\tau} = \operatorname{mult}_{D_{\tau}} \pi^* t = \operatorname{mult}_{D_{\tau}} (x_1^{m_1} x_2^{m_2} x_d^{m_d})$

 $f_{\tau}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by m_{τ} .

Proof.

- Toric varieties: $V_ au \simeq \mathbb{A}^1 imes (\mathbb{C}^*)^{d-1}$
- Monoid lattices: $\mathbb{N} = M_{\mathbb{A}^1} \to M_{\tau} \simeq \mathbb{N} \times \mathbb{Z}^{d-1}$ $1 \mapsto (m_1, m_2, \dots, m_d)$ • So $m_{\tau} = \operatorname{mult}_{D_{\tau}} \pi^* t = \operatorname{mult}_{D_{\tau}} (x_1^{m_1} x_2^{m_2} x_d^{m_d}) = m_1$

How to tie this together?

Theorem (Gross-Siebert, Remark 1.18) Given a point

$$\mathcal{S} = (\operatorname{\mathsf{Spec}} \mathbb{C}, \mathcal{P} imes \mathbb{C}^*) \subset \overline{\mathcal{M}}$$

3

< 回 > < 三 > < 三 >

How to tie this together?

Theorem (Gross-Siebert, Remark 1.18)

Given a point

$$\mathcal{S} = (\operatorname{\mathsf{Spec}} \mathbb{C}, \mathcal{P} imes \mathbb{C}^*) \subset \overline{\mathcal{M}}$$

corresponding to a stable log map

くほと くほと くほと

How to tie this together?

(4個) (4回) (4回) (5)

Heros:

• 12

- Bernd Siebert (2001)
- Q. Chen, M. Gross, B. Siebert
- Costello, Manolache

-

< 67 ▶

3

Heros:

- 12
- Bernd Siebert (2001)
- Q. Chen, M. Gross, B. Siebert
- Costello, Manolache
- Olsson; Cadman-Fantechi-Wise; Chen, Gross; Marcus; Ulirsch

The tool we use is Artin-Olsson fans.

• Olsson defines a stack Log of log structures

The tool we use is Artin-Olsson fans.

- Olsson defines a stack Log of log structures
- An Artin Fan is a logarithmic Artin stack \mathcal{X} such that the morphism $\mathcal{X} \to \text{Log}$ is étale and representable.

The tool we use is Artin-Olsson fans.

- Olsson defines a stack Log of log structures
- An Artin Fan is a logarithmic Artin stack \mathcal{X} such that the morphism $\mathcal{X} \to \text{Log}$ is étale and representable.
- There is a functorial universal way to associate to a logarithmic X an artin fan A_X and strict surjective morphism X → A_X. It is initial among morphisms to an Artin fan factoring X → Log.

The tool we use is Artin-Olsson fans.

- Olsson defines a stack Log of log structures
- An Artin Fan is a logarithmic Artin stack \mathcal{X} such that the morphism $\mathcal{X} \to \text{Log}$ is étale and representable.
- There is a functorial universal way to associate to a logarithmic X an artin fan A_X and strict surjective morphism X → A_X. It is initial among morphisms to an Artin fan factoring X → Log.
- If N is a sharp monoid define $\mathbb{A}_P = \operatorname{Spec} \mathbb{C}[N^{\vee}], T_P = \operatorname{Spec} \mathbb{C}[(N^{\vee})^{\operatorname{gp}}]$, and finally $\mathcal{A}_P = [\mathbb{A}_P/T_P]$.

- 31

The tool we use is **Artin-Olsson fans**.

- Olsson defines a stack Log of log structures
- An Artin Fan is a logarithmic Artin stack X such that the morphism $\mathcal{X} \rightarrow \mathsf{Log}$ is étale and representable.
- There is a functorial universal way to associate to a logarithmic X an artin fan \mathcal{A}_X and strict surjective morphism $X \to \mathcal{A}_X$. It is initial among morphisms to an Artin fan factoring $X \rightarrow Log$.
- If N is a sharp monoid define $\mathbb{A}_P = \operatorname{Spec} \mathbb{C}[N^{\vee}], T_P = \operatorname{Spec} \mathbb{C}[(N^{\vee})^{\operatorname{gp}}], \text{ and finally } \mathcal{A}_P = [\mathbb{A}_P/T_P].$
- \mathcal{A}_X is locally like this.

・ 同 ト ・ 三 ト ・ 三 ト

We have a cartesian diagram

- 御下 - 西下 - 西下 - 西

We have a cartesian diagram

By the unobstructed case

$$[(\mathcal{A}_{\overline{\mathcal{M}}})_0] = \sum_{f^t} m_{f^t} [(\mathcal{A}_{\overline{\mathcal{M}}})_{f^t}].$$

3

くほと くほと くほと

We have another cartesian diagram

3

<ロ> (日) (日) (日) (日) (日)

We have another cartesian diagram

A standard argument with obstructions shows that the theorem of Costello-Manolache applies, so $\Psi_* \left[\coprod m_{f^t} \overline{\mathcal{M}}_{f^t} \right]^{\text{virt}} = \left[\overline{\mathcal{M}}_0 \right]^{\text{virt}}$ as required.

Thank you for your attention.

3

< 🗇 🕨