STUDIES OF CLOSED/OPEN MIRROR SYMMETRY FOR QUINTIC THREE-FOLDS THROUGH LOG MIXED HODGE THEORY

- 0. Introduction
- 1. Log mixed Hodge theory
	- 1.1. Category $\mathcal{B}(\log)$
	- 1.2. Ringed space $(S^{\log}, \mathcal{O}_S^{\log})$ $\binom{\log}{S}$
	- 1.3. Toric variety
	- 1.4. Graded polarized LMH
	- 1.5. Nilpotent orbit and period map
	- 1.6. Moduli of LMH of specified type
- 3. Quintic threefolds
	- 3.2. Quintic threefold and its mirror
	- 3.3. Picard-Fuchs equation on B-model of mirror *V ◦*
	- 3.4. A-model of quintic *V*
	- 3.5. **Z**-structure
	- 3.6. Correspondence table
	- 3.9. Proof of (4) in Introduction
- 4. Proof of (6) in Introduction

0. Introduction

Fundamental Diagram

For classifying space *D* of MHS of specified type,

Hope to understand Hodge theoretic aspect of MS by this.

Mirror symmetry for quintic 3-folds

Mirror symmetry for A-model of quintic 3-fold *V* and B-model of its mirror *V ◦* was predicted in [CDGP91], and proved in following (1) – (3) , which are equivalent.

Every statement is near large radius point q_0 of complexified Kähler moduli $\mathcal{K}\mathcal{M}(V)$ and maximally unipotent monodromy point p_0 of complex moduli $\mathcal{M}(V^{\circ}).$

 $t := y_1/y_0, u := t/2\pi i$ and $q := e^t = e^{2\pi i u}$ from 3.3 below and respective ones in 3.4 below.

- (1) $(Potential. [LLuY97]) \quad \Phi_{GW}^V(t) = \Phi_{GM}^{V^{\circ}}(t).$
- (2) (*Solutions.* [Gi96], [Gi97p])

$$
J_V := 5H\left(1 + tH + \frac{d\Phi}{dt}\frac{H^2}{5} + \left(t\frac{d\Phi}{dt} - 2\Phi\right)\frac{H^3}{5}\right)
$$

$$
I_V := 5H(y_0 + y_1H + y_2H^2 + y_3H^3)
$$

Then, $y_0 J_V = I_V$.

(3) (*Variation of Hodge structure.* [Morrison97]) $(q_0 \in \overline{\mathcal{KM}}(V)) \stackrel{\sim}{\leftarrow} (p_0 \in \overline{\mathcal{M}}(V^{\circ}))$ by canonical coordinate $q = \exp(2\pi i u)$, lifts over the punctured $\mathcal{K}\mathcal{M}(V) \stackrel{\sim}{\leftarrow} \mathcal{M}(V^{\circ})$ to

 $(\mathcal{H}^V,S,\nabla^{\text{middle}},\mathcal{H}_{\mathbf{Z}}^V,\mathcal{F};1,[\text{pt}])\stackrel{\sim}{\leftarrow}(\mathcal{H}^{V^{\circ}},Q,\nabla^{\text{GM}},\mathcal{H}_{\mathbf{Z}}^{V^{\circ}},\mathcal{F};\tilde{\Omega},g_0).$

Our (4) below is equivalent to (1) – (3) .

(4) (*Log period map*)

σ : monodromy cone transformed by a level structure into End of reference fiber of local system for A- and B- models. Then, we have diagram of horizontal log period maps

$$
(q_0 \in \overline{\mathcal{KM}}(V)) \stackrel{\sim}{\leftarrow} (p_0 \in \overline{\mathcal{M}}(V^{\circ}))
$$

$$
\downarrow
$$

$$
([\sigma, \exp(\sigma_{\mathbf{C}})F_0] \in \Gamma(\sigma)^{\text{gp}} \setminus D_{\sigma})
$$

with extensions of specified sections in (3), where $(\sigma, \exp(\sigma_{\mathbf{C}})F_0)$ is nilpotent orbit and $\Gamma(\sigma)^{\text{gp}}\backslash D_{\sigma}$ is fine moduli of LH of specified type. *Open mirror symmetry for quintic 3-folds*

(5) (*Inhomogenous solutions*, [Walcher07], [PSW08p], [MW09]) *L*: Picard-Fuchs differential operator for quintic mirror.

$$
\mathcal{T}_A = \frac{u}{2} \pm \left(\frac{1}{4} + \frac{1}{2\pi^2} \sum_{d \text{ odd}} n_d q^{d/2}\right).
$$

$$
\mathcal{T}_B = \int_{C_-}^{C_+} \Omega, \quad \{C_\pm, \text{line}\} = \{x_1 + x_2 = x_3 + x_4 = 0\} \cap X_\psi.
$$

$$
L(y_0(z)\mathcal{T}_A(z)) = L(\mathcal{T}_B(z)) = \frac{15}{16\pi^2}\sqrt{z}) \quad (z = \frac{1}{\psi^5}).
$$

In a neighborhood of MUM point p_0 , we have the following (6) .

(6) (*Computations of admissible normal function and domainwall tension on MUM point*)

 $\mathcal{H}_{\mathbf{Q}} := \mathcal{H}_{\mathbf{Q}}^{V^{\circ}}, \quad \mathcal{T} := \mathcal{T}_{B}$

- $L_{\mathbf{Q}}$: translation of local system $\mathbf{Q} \oplus \mathcal{H}_{\mathbf{Q}}$ by $\mathcal{T}e^0$ in $\mathcal{E}xt^1(\mathbf{Q}, \mathcal{H}_{\mathbf{Q}})$
- $J_{L_{\mathbf{Q}}}$: Néron model for admissible normal function over Te^0 , whose weak fan is constructed in [KNU13p, Néron models for admissible normal functions]

$$
S := (z^{1/2}\text{-plane}) \longrightarrow J_{L_{\mathbf{Q}}} \stackrel{\text{transl}}{\simeq} \mathcal{H}_{\mathcal{O}} / (F^2 + \mathcal{H}_{\mathbf{Q}}) \stackrel{\text{pol}}{\simeq} (F^2)^* / \mathcal{H}_{\mathbf{Q}}
$$

$$
\downarrow
$$

$$
\bar{J}_{L_{\mathbf{Q}}} \simeq \mathcal{H}_{\mathcal{O}} / (F^1 + \mathcal{H}_{\mathbf{Q}}) \simeq (F^3)^* / \mathcal{H}_{\mathbf{Q}}
$$

To state following assertions, we use e^0 , e^1 which are part of basis of $\mathcal{H}_{\mathcal{O}}$ respecting Deligne decomposition at p_0 (see 6 (2B)).

- (6.1) Te^{0} as truncated normal function $S \rightarrow \bar{J}_{1,L_{\mathbf{Q}}}.$
- (6.2) Truncated normal function in (6.1) uniquely lifts to admissible normal function $S \to J_{1,L_\mathbf{Q}}$.
- (6.3) Followings are mirror:

$$
0 \to H^4(V, \mathbf{Z}) \to H^4(V - Lg) \to H^2(Lg) \to 0
$$

$$
0 \to \mathbf{Z}e^1(\text{gr}_2^M) \to \frac{1}{2}\mathbf{Z}e^1(\text{gr}_2^M) \to (2\text{-torsion}) \to 0
$$

Here *Lg* is real Lagrangian, and $M = M(N, W)$ around MUM point p_0 .

 (6.4) (5) tells that inverse of admissible normal function in (6.2) from its image is given by $16\pi^2/15$ times *L* applying to extension of $L_{\mathbf{Q}}$.

1. Log mixed Hodge theory

1.1. Category $\mathcal{B}(\log)$

S : subset of analytic space *Z*.

Strong topology of S in Z is strongest one among topologies on *S* s.t. for \forall analytic space *A* and \forall morphism $f : A \rightarrow Z$ with $f(A) \subset S$, $f : A \to S$ is continuous.

Log structure on local ringed space *S* is sheaf of monoids *M* on *S* and homomorphisim $\alpha : M \to \mathcal{O}_S$ s.t. $\alpha^{-1} \mathcal{O}_S^{\times}$ $\stackrel{\sim}{\rightarrow} \mathcal{O}_S^\times$.

fs means finitely generated, integral and saturated.

Analytic space is call *log smooth* if, locally, it is isomorphic to open set of toric variety.

Log manifold is log local ringed space over **C** which has open covering (U_λ) ^{λ} satisfying:

For each λ , there exist log smooth fs log analytic space Z_{λ} , finite subset I_{λ} of global log differential 1-forms $\Gamma(Z_{\lambda}, \omega_{Z_{\lambda}}^{1}),$ and isomorphism of log local ringed spaces over **C** between U_{λ} and open subset in strong topology of

 $S_{\lambda} := \{ z \in Z_{\lambda} \mid \text{image of } I_{\lambda} \text{ in stalk } \omega_z^1 \}$ $\frac{1}{z}$ is zero} in Z_{λ} .

1.2. Ringed space $(S^{\log}, \mathcal{O}_S^{\log})$ $\binom{\log}{S}$

 $S \in \mathcal{B}(\log).$

 $S^{\log} := \{(s, h) | s \in S, h : M_s^{\text{gp}} \to \mathbf{S}^1 \text{ hom. s.t. } h(u) = u/|u| \ (u \in \mathcal{O}_{S,s}^{\times})\}$ endowed with weakest topology s.t. followings are continuous.

 (1) $\tau : S^{\log} \to S$, $(s, h) \mapsto s$.

(2) For Vopen
$$
U \subset S
$$
 and $\forall f \in \Gamma(U, M^{\text{gp}}), \tau^{-1}(U) \to \mathbf{S}^1$, $(s, h) \mapsto h(f_s)$.

τ is proper, surjective with $\tau^{-1}(s) = (\mathbf{S}^1)^{r(s)}$, $r(s) := \text{rank}(M^{\text{gp}}/\mathcal{O}_S^{\times})_s$ varies with $s \in S$. Define $\mathcal L$ on S^{\log} as fiber product:

$$
\begin{array}{cccc}\n\mathcal{L} & \xrightarrow{\exp} & \tau^{-1}(M^{\text{gp}}) & \ni & (f \text{ at } (s, h)) \\
\downarrow & & \downarrow & & \downarrow \\
\text{Cont}(*, i\mathbf{R}) & \xrightarrow{\exp} & \text{Cont}(*, \mathbf{S}^1) & \ni & h(f)\n\end{array}
$$

 $\iota : \tau^{-1}(\mathcal{O}_S) \to \mathcal{L}$ is induced from

$$
f \in \tau^{-1}(\mathcal{O}_S) \xrightarrow{\exp} \tau^{-1}(\mathcal{O}_S^{\times}) \subset \tau^{-1}(M^{\text{gp}})
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
(f - \bar{f})/2 \in \text{Cont}(*, i\mathbf{R}) \xrightarrow{\exp} \text{Cont}(*, \mathbf{S}^1)
$$

Define

$$
\mathcal{O}_S^{\log} := \frac{\tau^{-1}(\mathcal{O}_S) \otimes \text{Sym}_{\mathbf{Z}}(\mathcal{L})}{(f \otimes 1 - 1 \otimes \iota(f)) \mid f \in \tau^{-1}(\mathcal{O}_S))}.
$$

Thus $\tau: (S^{\log}, \mathcal{O}_S^{\log})$ S^{log}_{S} \rightarrow (*S*, \mathcal{O}_{S}) as ringed spaces over **C**. For $s \in S$ and $t \in \tau^{-1}(s) \subset S^{\log}$, let $t_j \in \mathcal{L}_t$ $(1 \leq j \leq r(s))$ s.t. images in $(M^{\rm gp}/\mathcal O_S^{\times})_s$ of $\exp(t_j)$ form a basis. Then, $\mathcal{O}_{S,t}^{\log} = \mathcal{O}_{S,s}[t_j \ (1 \leq j \leq r(s)]$ is polynomial ring.

1.3. Toric variety

 σ : nilpotent cone in g_R , i.e., sharp cone generated by finite number of mutually commutative nilpotent elements. $Γ$: subgroup of G **z**, and $Γ(σ) := Γ ∩ exp(σ)$. Assume σ is generated over $\mathbf{R}_{\geq 0}$ by log $\Gamma(\sigma)$. $P(\sigma) := \Gamma(\sigma)^{\vee} = \text{Hom}(\Gamma(\sigma), \mathbf{N}).$ $\text{toric}_{\sigma} := \text{Hom}(P(\sigma), \mathbf{C}^{\text{mult}}) \supset \text{torus}_{\sigma} := \text{Hom}(P(\sigma)^{\text{gp}}, \mathbf{C}^{\times}),$ $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{C} \rightarrow \mathbb{C}^{\times} \rightarrow 1$ induces $0 \to \text{Hom}(P(\sigma)^{\text{gp}}, \mathbf{Z}) \to \text{Hom}(P(\sigma)^{\text{gp}}, \mathbf{C}) \stackrel{\mathbf{e}}{\to} \text{Hom}(P(\sigma)^{\text{gp}}, \mathbf{C}^{\times}) \to 1,$ where $e(z \otimes \log \gamma) := e^{2\pi i z} \otimes \gamma \ (z \in \mathbf{C}, \ \gamma \in \Gamma(\sigma)^{\text{gp}} = \text{Hom}(P(\sigma)^{\text{gp}}, \mathbf{Z}).$ $\rho \prec \sigma$ induces surjection $P(\rho) \leftarrow P(\sigma)$ hence open toric_{*ρ*} \hookrightarrow toric_{*σ*}. $0_{\rho} \in \text{toric}_{\rho}$ is $P(\rho) \to \mathbf{C}^{\text{mult}}$; $1 \mapsto 1$, other elements of $P(\rho) \mapsto 0$. $0_\rho \in \text{toric}_{\rho} \subset \text{toric}_{\sigma}$ by above open immersion. Then, as set, toric_{σ} = {**e**(*z*)0_{*ρ*} | $\rho \prec \sigma$, $z \in \sigma_{\mathbf{C}}/(\rho_{\mathbf{C}} + \log \Gamma(\sigma)^{\text{gp}})$ }.

 $\text{For } S := \text{toric}_{\sigma}, \text{ polar coordinate } \mathbf{R}_{\geq 0} \times \mathbf{S}^1 \to \mathbf{R}_{\geq 0} \cdot \mathbf{S}^1 = \mathbf{C} \text{ induces }$

$$
\tau : S^{\log} = \text{Hom}(P(\sigma), \mathbf{R}_{\geq 0}^{\text{mult}}) \times \text{Hom}(P(\sigma), \mathbf{S}^1)
$$

\n
$$
= \{ (\mathbf{e}(iy)0_{\rho}, \mathbf{e}(x)) \mid \rho \prec \sigma, x \in \sigma_{\mathbf{R}}/(\rho_{\mathbf{R}} + \log \Gamma(\sigma)^{\text{gp}}), y \in \sigma_{\mathbf{R}}/\rho_{\mathbf{R}} \}
$$

\n
$$
\rightarrow S = \text{Hom}(P(\sigma), \mathbf{C}^{\text{mult}}),
$$

\n
$$
\tau(\mathbf{e}(iy)0_{\rho}, \mathbf{e}(x)) = \mathbf{e}(x + iy)0_{\rho}.
$$

 $\text{By } 0 \to \rho_{\mathbf{R}}/\log \Gamma(\rho)^{\text{gp}} \to \sigma_{\mathbf{R}}/\log \Gamma(\sigma)^{\text{gp}} \to \sigma_{\mathbf{R}}/(\rho_{\mathbf{R}} + \log \Gamma(\sigma)^{\text{gp}}) \to 0,$ $\tau^{-1}(\mathbf{e}(a+ib)0_{\rho}) = \{(\mathbf{e}(ib)0_{\rho}, \mathbf{e}(a+x)) | x \in \rho_{\mathbf{R}}/\log \Gamma(\rho)^{\text{gp}}\} \simeq (\mathbf{S}^1)^r,$ as set, where $r := \text{rank } \rho$ varies with $\rho \prec \sigma$.

 $H_{\sigma} = (H_{\sigma, \mathbf{Z}}, W, (\langle , \rangle_w)_w)$: canonical local system on S^{\log} by representation $\pi_1(S^{\log}) = \Gamma(\sigma)^{\text{gp}} \subset G_{\mathbf{Z}} = \text{Aut}(H_0, W, (\langle , \rangle_w)_w).$

1.4. Graded polarized LMH

 $S \in \mathcal{B}(\log).$ *Pre-graded polarized log mixed Hodge structure on S* is $H = (H_{\mathbf{Z}}, W, (\langle , \rangle_w)_w, H_{\mathcal{O}})$ consisting of $H_{\mathbf{Z}}$: local system of **Z**-free modules of finite rank on S^{\log} , W : increasing filtration W of $H_Q := \mathbf{Q} \otimes H_Z$, *〈 , 〉^w* : nondegenerate (*−*1)*^w*-symmetric **Q**-bilinear form on gr*^W ^w* , $H_{\mathcal{O}}$: locally free \mathcal{O}_S -module on *S* satisfying: $\exists \mathcal{O}_S^{\log} \otimes_{\mathbf{Z}} H_{\mathbf{Z}} \simeq \mathcal{O}_S^{\log} \otimes_{\mathcal{O}_S} H_{\mathcal{O}} \text{ (log Riemann-Hilbert correspondence)},$ *∃* $FH_{\mathcal{O}}$: decreasing filt. of $H_{\mathcal{O}}$ s.t. $F^pH_{\mathcal{O}}$, $H_{\mathcal{O}}/F^pH_{\mathcal{O}}$ locally free. $\mathrm{Put}\,\, F^p := \mathcal{O}_S^{\log}$ $S \otimes_{\mathcal{O}_S} F^p H_{\mathcal{O}}.$ Then $\tau_* F^p = F^p H_{\mathcal{O}}.$ $\langle F^p(\text{gr}^W_w), F^q(\text{gr}^W_w) \rangle_w = 0 \ (p + q > w).$

Pre-GPLMH on *S* is *GPLMH* on *S* if its pullback to each $s \in S$ is GPLMH on *s* in the following sense. Let $(H_{\mathbf{Z}}, W, (\langle , \rangle_w)_w, H_{\mathcal{O}})$ be a pre-GPLMH on log point *s*.

- (1) (Admissibility) *∃ M*(*N, W*) for *∀* logarithm *N* of local monodromy of local system $(H_{\mathbf{R}}, W, (\langle , \rangle_w)_w)$.
- (2) (Griffiths transversality) $\nabla F^p \subset \omega_s^{1,\log} \otimes F^{p-1}$, where $\omega_s^{1,\log}$ $\frac{1}{s}$ ^{1,log} is log diff. 1-forms on $(s^{\log}, \mathcal{O}_s^{\log}), \nabla = d \otimes 1_{H_\mathbf{Z}} : \mathcal{O}_s^{\log} \otimes H_\mathbf{Z} \to \omega_s^{1, \log} \otimes H_\mathbf{Z}.$
- (3) (Positivity) For $t \in s^{\log}$ and **C**-alg. hom. $a: \mathcal{O}_{s,t}^{\log} \to \mathbf{C}$, $F(a) := \mathbf{C} \otimes_{\mathcal{O}_{s,t}^{\log}} F_t$ a filtration on $H_{\mathbf{C},t}$.

Then, $(H_{\mathbf{Z},t}(\mathrm{gr}^W_w), \langle , \rangle_w, F(a))$ is PHS of weight *w* if *a* is sufficiently twisted: $|\exp(a(\log q_j))| \ll 1 \ (\forall j)$ for $(q_j)_{1 \leq j \leq n} \subset M_s$ which induce generators of $M_s/\mathcal{O}_s^{\times}$.

1.5. Nilpotent orbit

Fix $\Lambda := (H_0, W, (\langle , \rangle_w)_w, (h^{p,q})_{p,q})$, where H_0 is free **Z**-module of finite rank, *W* is increasing filtration on $H_{0,\mathbf{Q}} := \mathbf{Q} \otimes H_0$, *〈 , 〉^w* is nondegenerate (*−*1)*^w*-symmetric form on gr*^W ^w* , $(h^{p,q})_{p,q}$ is set of Hodge numbers.

- *D* : classifying space of GPMHS for data Λ, consisting of all Hodge filtrations.
- \check{D} : "compact dual".
- $G_A := \text{Aut}(H_{0,A}, W, (\langle , \ \rangle_w)_w),$ $\mathfrak{g}_A := \text{End}(H_{0,A}, W, (\langle , \rangle_w)_w)$ $(A = \mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}).$
- $\sigma \subset \mathfrak{g}_{\mathbf{R}}$: *nilpotent cone*, i.e., sharp cone generated by finite number of mutually commutative nilpotent elements.

 $Z \subset \check{D}$ is σ *-nilpotent orbit* if (1)–(4) hold for $F \in Z$.

- (1) $Z = \exp(\sigma_{\mathbf{C}})F$.
- $(2) ∃ M(N, W)$ for any $N ∈ σ$.
- (3) $NF^p \subset F^{p-1}$ for any $N \in \sigma$ any p .
- (4) If N, \ldots, N_n generate σ and $y_j \gg 0$ ($\forall j$), then $\exp(\sum_j iy_j N_j) F \in D$.

Weak fan Σ *in* $\mathfrak{g}_{\mathbf{Q}}$ is set of nilpotent cones in $\mathfrak{g}_{\mathbf{R}}$, defined over \mathbf{Q} , s.t.

- (5) Every $\sigma \in \Sigma$ is admissible relative to *W*.
- (6) If $\sigma \in \Sigma$ and $\tau \prec \sigma$, then $\tau \in \Sigma$.
- (7) If $\sigma, \sigma' \in \Sigma$ have a common interior point and if there exists $F \in \check{D}$ such that (σ, F) and (σ', F) generate nilpotent orbits, then $\sigma = \sigma'$.

Let Σ be weak fan and Γ be subgroup of $G_{\mathbf{Z}}$. Σ and Γ are *strongly compatible* if (8)–(9) hold:

- (8) If $\sigma \in \Sigma$ and $\gamma \in \Gamma$, then $\text{Ad}(\gamma)\sigma \in \Sigma$.
- (9) For $\forall \sigma \in \Sigma$, σ is generated by log $\Gamma(\sigma)$, where $\Gamma(\sigma) := \Gamma \cap \exp(\sigma)$.

1.6. Moduli of LMH of type Φ

 $\Phi = (\Lambda, \Sigma, \Gamma) : \Lambda$ is from 1.4, Σ weak fan and Γ subgroup of $G_{\mathbf{Z}}$ s.t. Σ and Γ are strongly compatible.

 $\sigma \in \Sigma$. $S := \text{toric}_{\sigma}, H_{\sigma} = (H_{\sigma, \mathbf{Z}}, W, (\langle , \rangle_w)_w)$ on S^{\log} .

Universal pre-GPLMH H on \check{E}_{σ} := toric_{σ} × \check{D} is given by H_{σ} together with isomorphism $\mathcal{O}_{\breve{F}}^{\log}$ $\frac{\log \beta}{\check{E}_{\sigma}} \otimes_{\mathbf{Z}} H_{\sigma, \mathbf{Z}} = \mathcal{O}_{\check{E}_{\sigma}}^{\log}$ $\sum_{\tilde{E}_{\sigma}}^{I^{O}g} \otimes_{\mathcal{O}_{\tilde{E}_{\sigma}}} H_{\mathcal{O}}$, where $H_{\mathcal{O}} := \mathcal{O}_{\check{E}_{\sigma}} \otimes H_0$ is the free $\mathcal{O}_{\check{E}_{\sigma}}$ -module coming from that on \check{D} endowed with universal Hodge filtration *F*.

 $E_{\sigma} := \{ x \in \check{E}_{\sigma} \mid H(x) \text{ is a GPLMH} \}.$ Note that slits appear in E_{σ} because of log-point-wise Griffiths transversality 1.3 (2) and positivity 1.3 (3) , or equivalently 1.4 (3) and 1.4 (4) respectively.

 $\text{As set}, D_{\Sigma} := \{(\sigma, Z) \in \check{D}_{\text{orb}} \mid \text{nilpotent orbit}, \sigma \in \Sigma, Z \subset \check{D}\}.$

Let $\sigma \in \Sigma$. Assume Γ is neat. Structure as object of $\mathcal{B}(\log)$ on $\Gamma \backslash D_{\Sigma}$ is introduced by diagram:

$$
E_{\sigma} \quad \overset{\text{GPLMH}}{\subset} \quad \check{E} := \text{toric}_{\sigma} \times \check{D}
$$
\n
$$
\downarrow \sigma_{\text{C-torsor}}
$$
\n
$$
\Gamma(\sigma)^{\text{gp}} \setminus D_{\sigma}
$$
\n
$$
\downarrow \text{loc. isom.}
$$
\n
$$
\Gamma \setminus D_{\Sigma}
$$

Action of $h \in \sigma_{\mathbf{C}}$ on $(\mathbf{e}(a)0_{\rho}, F) \in E_{\sigma}$ is $(\mathbf{e}(h+a)0_{\rho}, \exp(-h)F)$, and projection is $(e(a)0_{\rho}, F) \mapsto (\rho, \exp(\rho_{\mathbf{C}} + a)F)$.

 $S \in \mathcal{B}(\log).$

LMH of type Φ on *S* is a pre-GPLMH $H = (H_{\mathbf{Z}}, W, (\langle , \rangle_w)_w, H_{\mathcal{O}})$ endowed with Γ-level structure

 $\mu \in H^0(S^{\log}, \Gamma \setminus \text{Isom}((H_{\mathbf{Z}}, W, (\langle , \rangle_w)_w), (H_0, W, (\langle , \rangle_w)_w)))$ satisfying the following condition: For $\forall s \in S$, $\forall t \in \tau^{-1}(s) = s^{\log s}$, \forall representative $\tilde{\mu}_t : H_{\mathbf{Z},t} \stackrel{\sim}{\to} H_0, \exists \sigma \in \Sigma \text{ s.t. } \sigma \text{ contains } \tilde{\mu}_t P_s \tilde{\mu}_t^{-1} \text{ and }$ $(\sigma, \tilde{\mu}_t(\mathbf{C} \otimes_{\mathcal{O}_{S,t}^{\log}}$ $\sum_{S,t}$ F_t)) generates a nilpotent orbit.

 $\text{Here } P_s := \text{Image}(\text{Hom}((M_S/\mathcal{O}_S^{\times})_s, \mathbf{N}) \hookrightarrow \pi_1(s^{\log}) \to \text{Aut}(H_{\mathbf{Z},t}))$ is local monodromy monoid P_s of $H_{\mathbf{Z}}$ at *s*. (Then, the smallest such σ exists.)

Theorem. (i) $\Gamma \backslash D_{\Sigma} \in \mathcal{B}(\log)$ *, which is Hausdorff. If* Γ *is neat,* $\Gamma \backslash D_{\Sigma}$ *is log manifold.*

(ii) *On* $\mathcal{B}(\log)$, $\Gamma \backslash D_{\Sigma}$ *represents functor* LMH_{Φ} *of LMH of type* Φ *.*

Log period map. *Let* $S \in \mathcal{B}(\log)$ *. Then we have isomorphism*

 $LMH_{\Phi}(S) \stackrel{\sim}{\to} Map(S, \Gamma \ D_{\Sigma}), H \mapsto (S \ni s \mapsto [\sigma, \exp(\sigma_{\mathbf{C}}))\tilde{\mu}_t(\mathbf{C} \otimes_{\mathcal{O}_{S, t}^{\log n}})$ $\left[\mathop{\mathrm{log}}\limits_{S,t} F_t) \right]$

which is functorial in S.

Log period map is a unified compactification of period map and normal function of Griffiths.

3. Quintic threefolds

3.2. Quintic threefold and its mirror

V : general quintic 3-fold in **P**⁴ .

 V_{ψ} : $f := \sum_{j=1}^{5} x_j^5 + \psi \prod_{j=1}^{5} x_j = 0$ in \mathbf{P}^4 $(\psi \in \mathbf{P}^1)$. $G := \{(a_j) \in (\mu_5)^5 \mid a_1 \dots a_5 = 1\}$ acts $V_{\psi}, x_j \mapsto a_j x_j$. V°_{ψ} : a crepant resolution of quotient singularity of V_{ψ}/G . Devide further by action $(x_1, ..., x_5)$ \mapsto $(a^{-1}x_1, x_2, ..., x_5)$ $(a \in \mu_5)$.

3.3. Picard-Fuchs equation on the mirror *V ◦*

 Ω : holomorphic 3-form on V_{ψ}° induced from

$$
\operatorname{Res}_{V_{\psi}}\left(\frac{\psi}{f}\sum_{j=1}^{5}(-1)^{j-1}x_jdx_1\wedge\cdots\wedge(dx_j)^{\wedge}\wedge\cdots\wedge dx_5\right)
$$

$$
z:=1/\psi^5, \delta:=zd/dz.
$$

$$
L:=\delta^4+5z(5\delta+1)(5\delta+2)(5\delta+3)(5\delta+4)
$$

is Picard-Fuchs differential operator for Ω, i.e., *L*Ω = 0 via Gauss-Manin connection *∇*.

 $z = 0$: maximally unipotent monodromy point, $z = \infty$: Gepner point, *z* = *−*5 *−*5 : conifold point.

 y_j ($0 \le j \le 3$) : basis of solutions for *L*. $y_0 = \sum_{n=0}^{\infty}$ (5*n*)! $\frac{(5n)!}{(n!)^5}(-z)^n,$ $y_1 = y_0 \log(-z) + 5 \sum_{n=1}^{\infty}$ (5*n*)! $\frac{(5n)!}{(n!)^5} \left(\sum_{j=n+1}^{5n} \right)$ 1 *j*) (*−z*) *n*.

 $t := y_1/y_0, u := t/2\pi i: \text{ canonical parameters}$ $q := e^t = e^{2\pi i u}$: canonical coordinate, which is specific chart of log structure and gives mirror map.

$$
\Phi_{\text{GM}}^{V^{\circ}} = \frac{5}{2} \Big(\frac{y_1}{y_0} \frac{y_2}{y_0} - \frac{y_3}{y_0} \Big) : \text{Gauss-Manin potential of } V_z^{\circ}.
$$

 $ilde{\Omega} := \Omega/y_0$. Yukawa coupling at $z = 0$ is

$$
Y := -\int_{V^{\circ}} \tilde{\Omega} \wedge \nabla_{\delta} \nabla_{\delta} \tilde{\Omega} = \frac{5}{(1 + 5^5 z) y_0(z)^2} \Big(\frac{q}{z} \frac{dz}{dq}\Big)^3.
$$

3.4. A-model of the quintic *V*

 $T_1 = H$: hyperplane section of *V* in \mathbf{P}^4 $K(V) = \mathbf{R}_{>0}T_1$: Kähler cone of *V*. $u:$ coordinate of $\mathbf{C}T_1$, $t:=2\pi i u$. Complexified Kähler moduli is

 $\mathcal{K}\mathcal{M}(V) := (H^2(V,\mathbf{R}) + iK(V))/H^2(V,\mathbf{Z}) \stackrel{\sim}{\rightarrow} \Delta^*,$ $uT_1 \mapsto q := e^{2\pi i u}.$

 $C \in H_2(V, \mathbf{Z})$: homology class of line on *V*. $T^1 \in H^4(V,\mathbf{Z})$: Poincaré dual of *C*. For $\beta = dC \in H_2(V, \mathbf{Z})$, define $q^{\beta} := q^{\int_{\beta} T^1} = q^d$. Gromov-Witten potential of *V* is

$$
\Phi_{\rm GW}^V := \frac{1}{6} \int_V (tT_1)^3 + \sum_{0 \neq \beta \in H_2(V,\mathbf{Z})} N_d q^{\beta} = \frac{5t^3}{6} + \sum_{d>0} N_d q^d.
$$

Here Gomov-Witten invariant N_d is

$$
\overline{M}_{0,0}(\mathbf{P}^4, d) \xleftarrow{\pi_1} \overline{M}_{0,1}(\mathbf{P}^4, d) \xrightarrow{e_1} \mathbf{P}^4,
$$
\n
$$
N_d := \int_{\overline{M}_{0,0}(\mathbf{P}^4, d)} c_{5d+1}(\pi_{1*}e_1^*\mathcal{O}_{\mathbf{P}^4}(5)).
$$

 $N_d = 0$ if $d \leq 0$. $N_d = \sum$ $k|d|n d/k$ ^{*r*-3}, $n_{d/k}$ is instanton number.

3.5. Z-structure

B-model $\mathcal{H}^{V^{\circ}}$: $f: X \to S^*$ family of quintic-mirrors over punctured nbd of p_0 . $\mathcal{H}^{V^{\circ}}_{\mathbf{Z}}$ \mathbf{Z}^{V} : extension of $R^3 f_* \mathbf{Z}$ over S^{\log} . N : monodromy logarithm at p_0 , $W = W(N)$: monodromy weight filtration. $\text{Define } W_{k,\mathbf{Z}} := W_k \cap \mathcal{H}_{\mathbf{Z}}^{V^{\circ}}$ \mathbf{z}^{\vee} for all *k*.

 $b \in S^{\log}$: base point.

 $g_0, g_1, g_3, g_2:$ symplectic **Z**-basis of $\mathcal{H}^{V^{\circ}}_{\mathbf{Z}}$ $\mathbf{Z}^{\mathcal{V}}(b)$ for cup product, s.t. g_0, \ldots, g_k generate $W_{2k}(b)$ for all *k*.

For $s \in \mathcal{O}_S^{\log} \otimes_{\mathcal{O}} \mathcal{H}_{\mathcal{O}}^{V^{\circ}}$, followings are equivalent. (1) *s* belongs to $\mathcal{H}_{\mathbf{Z}}^{V^{\circ}}$ **Z** . $(2) \nabla s = 0 \ (\nabla = \nabla^{\text{GM}}) \text{ and } s(b) \in \mathcal{H}_{\mathbf{Z}}^{V^{\circ}}$ $\mathbf{Z}^{V^{\circ}}(b)$ for some $b \in S^{\log}$. $(3) \nabla s = 0$ and $s(\text{gr}_k^W) \in \text{gr}_{k,\mathbf{Z}}^W$ for $k := \min\{l \mid s \in \mathcal{O}_S^{\log} \otimes W_l\}.$

A-model \mathcal{H}^V : $\nabla = \nabla^{\text{middle}}$: A-model connection from 3.6 (3A) below. For $s \in \mathcal{O}_S^{\log} \otimes \mathcal{H}_{\mathcal{O}}^V$, define $s \in \mathcal{H}_{\mathbf{Z}}^V$ if $\nabla s = 0$ and $s(\text{gr}_{2p}^W) \in H^{3-p,3-p}$ $(V, \mathbf{Z}), W_{2q} := \bigoplus_{l \leq q} H^{3-l,3-l}(V), p := \min\{q \mid s \in \mathcal{O}_S^{\log} \otimes W_{2q}\}.$ $0 \in S = \Delta$, $b \in \tau^{-1}(0) \subset S^{\log}$. $\mathcal{O}_{S,b}^{\log} = \mathcal{O}_{S,0}[t] = \mathbf{C}\{q\}[t]$: stalk at *b*. $q = e^t = e^{2\pi i u}, u = x + iy$ with *x*, *y* real. For $s \in \mathcal{O}_S^{\log} \otimes_{\mathcal{O}} \mathcal{H}_{\mathcal{O}}^V$, followings are equivalent. (4) *s* belongs to $\mathcal{H}_{\mathbf{Z}}^{V}$.

- (5) $\nabla s = 0$ and $s(b) \in \mathcal{H}_{\mathbf{Z}}^{V}(b)$ for some $b \in S^{\log}$.
- (6) $\nabla s = 0$ and, for fixed $x = 0$, limit as $y \to \infty$ of $\exp(iy(-N))s$ over S^{\log} belongs to $\bigoplus_{p} H^{p,p}(V, \mathbf{Z})$.
- (7) $\nabla s = 0$ and specialization $x \mapsto 0$ of limit of $\exp(iy(-N))s$ over S^{\log} with *x* fixed and $y \to \infty$ belongs to $\bigoplus_{p} H^{p,p}(V, \mathbf{Z})$.

3.6. Correspondence table

We use $\Phi_{\text{GW}}^V = \Phi_{\text{GM}}^{V^{\circ}} =: \Phi$. (1A) *Polarization of A-model of V .*

$$
S(\alpha, \beta) := (-1)^p \int_V \alpha \cup \beta \quad (\alpha \in H^{p,p}(V), \beta \in H^{3-p,3-p}(V)).
$$

(1B) *Polarization of B-model of* V° *.*

$$
Q(\alpha, \beta) := (-1)^{3(3-1)/2} \int_{V^{\circ}} \alpha \cup \beta = - \int_{V^{\circ}} \alpha \cup \beta \quad (\alpha, \beta \in H^3(V^{\circ})).
$$

(2A) *Specified sections inducing* \mathbf{Z} *-basis of* gr^W *for A-model of* V *.*

$$
T_0 := 1 \in H^0(V, \mathbf{Z}), \ T_1 := H \in H^2(V, \mathbf{Z}),
$$

$$
T^1 := C \in H^4(V, \mathbf{Z}), \ T^0 := [pt] \in H^6(V, \mathbf{Z}),
$$

Then $S(T_0, T^0) = 1$ and $S(T_1, T^1) = -1$. Hence T_0 , T_1 , $-T^0$, T^1 form symplectic base for *S*. (2B) *Specified sections inducing* **Z**-basis of gr^W *for B-model of* V° *.*

$$
\mathcal{H}_{\mathcal{O}} = \bigoplus_{p} I^{p,p}, \quad \text{where} \quad I^{p,p} := \mathcal{W}_{2p} \cap \mathcal{F}^p \stackrel{\sim}{\to} \text{gr}_{2p}^{\mathcal{W}}.
$$

Since $N(\text{gr}^W_{2p})=0$, gr^W_{2p} is a constant sheaf and hence

$$
\mathrm{gr}^{\mathcal{W}}_{2p} \supset \mathrm{gr}^{\mathcal{W}}_{2p} \supset (\mathrm{gr}^{\mathcal{W}}_{2p})_{\mathbf{Z}} := W_{2p,\mathbf{Z}}/W_{2p-1,\mathbf{Z}}.
$$

Take

$$
e_0 := \tilde{\Omega} \in I^{3,3}, e_1 \in I^{2,2}, e^1 \in I^{1,1}, e^0 = g_0 \in I^{0,0}
$$

inducing generators of $(\text{gr}^W_{2p})_{\mathbf{Z}}$, and $Q(e_0, e^0) = 1, Q(e_1, e^1) = -1.$ Hence $e_0, e_1, -e^0, e^1$ form symplectic base for Q .

(3A) *A-model connection* $\nabla = \nabla^{\text{middle}}$ *of V*.

$$
\nabla_{\delta} T^{0} := 0, \quad \nabla_{\delta} T^{1} := T^{0},
$$

\n
$$
\nabla_{\delta} T_{1} := \frac{1}{(2\pi i)^{3}} \frac{d^{3} \Phi}{du^{3}} T^{1} = \left(5 + \frac{1}{(2\pi i)^{3}} \frac{d^{3} \Phi_{hol}}{du^{3}}\right) T^{1},
$$

\n
$$
\nabla_{\delta} T_{0} := T_{1}.
$$

 ∇ is flat, i.e., $\nabla^2 = 0$.

(3B) *B*-model connection $\nabla = \nabla^{GM}$ of V° .

$$
\nabla_{\delta}e^{0} = 0, \quad \nabla_{\delta}e^{1} = e^{0},
$$

\n
$$
\nabla_{\delta}e_{1} = \frac{1}{(2\pi i)^{3}} \frac{d^{3}\Phi}{du^{3}}e^{1} = Ye^{1} = \frac{5}{(1+5^{5})y_{0}(z)^{2}} \left(\frac{q}{z} \frac{dz}{dq}\right)^{3}e^{1},
$$

\n
$$
\nabla_{\delta}e_{0} = e_{1}.
$$

(4A) ∇ -*flat* **Z**-basis for $\mathcal{H}_{\mathbf{Z}}^{V}$.

$$
s^{0} := T^{0}, \quad s^{1} := T^{1} - uT^{0} = \exp(-uH)T^{1},
$$

\n
$$
s_{1} := T_{1} - \frac{1}{(2\pi i)^{3}} \frac{d^{2}\Phi}{du^{2}} T^{1} + \frac{1}{(2\pi i)^{3}} \frac{d\Phi}{du} T^{0}
$$

\n
$$
= \exp(-uH)T_{1} - \left(\sum_{d>0} \frac{N_{d}d^{2}}{2\pi i} q^{d}\right) T^{1} + \left(\sum_{d>0} \frac{N_{d}d}{(2\pi i)^{2}} q^{d}\right) T^{0},
$$

\n
$$
s_{0} := T_{0} - uT_{1} + \frac{1}{(2\pi i)^{3}} \left(u \frac{d^{2}\Phi}{du^{2}} - \frac{d\Phi}{du}\right) T^{1} - \frac{1}{(2\pi i)^{3}} \left(u \frac{d\Phi}{du} - 2\Phi\right) T^{0}
$$

\n
$$
= \exp(-uH)T_{0} + \left(\sum_{d>0} \frac{N_{d}d^{2}}{2\pi i} uq^{d} - \sum_{d>0} \frac{N_{d}d}{(2\pi i)^{2}} q^{d}\right) T^{1}
$$

\n
$$
- \left(\sum_{d>0} \frac{N_{d}d}{(2\pi i)^{2}} uq^{d} - \sum_{d>0} \frac{2N_{d}}{(2\pi i)^{3}} q^{d}\right) T^{0}.
$$

(4B)
$$
\nabla
$$
-flat **Z**-basis for $\mathcal{H}_{\mathbf{Z}}^{V^{\circ}}$.
\n
$$
s^{0} := e^{0}, \quad s^{1} := e^{1} - ue^{0},
$$
\n
$$
s_{1} := e_{1} - \frac{1}{(2\pi i)^{3}} \frac{d^{2}\Phi}{du^{2}} e^{1} + \frac{1}{(2\pi i)^{3}} \frac{d\Phi}{du} e^{0},
$$
\n
$$
s_{0} := e_{0} - ue_{1} + \frac{1}{(2\pi i)^{3}} \left(u \frac{d^{2}\Phi}{du^{2}} - \frac{d\Phi}{du} \right) e^{1} - \frac{1}{(2\pi i)^{3}} \left(u \frac{d\Phi}{du} - 2\Phi \right) e^{0}.
$$

(5A) *Monodromy logarithm for A-model of V around q*0*.*

$$
Ns^0 = 0, \quad Ns^1 = -s^0, \quad Ns_1 = -5s^1, \quad Ns_0 = -s_1.
$$

Matrix of monodromy logarithm *N* via basis s^0, s^1, s_1, s_0 coincides with matrix of cup product with $-H$ via basis T^0, T^1, T_1, T_0 .

(5B) Monodromy logarithm for B-model of V° around p_0 .

$$
Ns^0 = 0, \quad Ns^1 = -s^0, \quad Ns_1 = -5s^1, \quad Ns_0 = -s_1.
$$

(6A)
$$
T^{0} = s^{0}, \quad T^{1} = s^{1} + us^{0},
$$

$$
T_{1} = s_{1} + \frac{1}{(2\pi i)^{3}} \frac{d^{2} \Phi}{du^{2}} s^{1} + \frac{1}{(2\pi i)^{3}} \left(u \frac{d^{2} \Phi}{du^{2}} - \frac{d\Phi}{du} \right) s^{0},
$$

$$
= \left(s_{1} + 5us^{1} + \frac{5}{2} u^{2} s^{0} \right) + \left(\sum_{d>0} \frac{N_{d} d^{2}}{2\pi i} q^{d} \right) s^{1}
$$

$$
+ \left(\sum_{d>0} \frac{N_{d} d^{2}}{2\pi i} u q^{d} - \sum_{d>0} \frac{N_{d} d}{(2\pi i)^{2}} q^{d} \right) s^{0}
$$

$$
T_{0} = 1_{V} = s_{0} + us_{1} + \frac{1}{(2\pi i)^{3}} \frac{d\Phi}{du} s^{1} + \frac{1}{(2\pi i)^{3}} \left(u \frac{d\Phi}{du} - 2\Phi \right) s^{0}
$$

$$
= \left(s_{0} + us_{1} + \frac{5}{2} u^{2} s^{1} + \frac{5}{6} u^{3} s^{0} \right) + \left(\sum_{d>0} \frac{N_{d} d}{(2\pi i)^{2}} q^{d} \right) s^{1}
$$

$$
+ \left(\sum_{d>0} \frac{N_{d} d}{(2\pi i)^{2}} u q^{d} - 2 \sum_{d>0} \frac{N_{d}}{(2\pi i)^{3}} q^{d} \right) s^{0}.
$$

(6B)
$$
e^{0} = s^{0}, \quad e^{1} = s^{1} + us^{0},
$$

$$
e_{1} = s_{1} + \frac{1}{(2\pi i)^{3}} \frac{d^{2} \Phi}{du^{2}} s^{1} + \frac{1}{(2\pi i)^{3}} \left(u \frac{d^{2} \Phi}{du^{2}} - \frac{d\Phi}{du} \right) s^{0},
$$

$$
= \left(s_{1} + 5us^{1} + \frac{5}{2} u^{2} s^{0} \right) + \left(\sum_{d>0} \frac{N_{d} d^{2}}{2\pi i} q^{d} \right) s^{1}
$$

$$
+ \left(\sum_{d>0} \frac{N_{d} d^{2}}{2\pi i} u q^{d} - \sum_{d>0} \frac{N_{d} d}{(2\pi i)^{2}} q^{d} \right) s^{0}
$$

$$
e_{0} = \tilde{\Omega} = s_{0} + us_{1} + \frac{1}{(2\pi i)^{3}} \frac{d\Phi}{du} s^{1} + \frac{1}{(2\pi i)^{3}} \left(u \frac{d\Phi}{du} - 2\Phi \right) s^{0}
$$

$$
= \left(s_{0} + us_{1} + \frac{5}{2} u^{2} s^{1} + \frac{5}{6} u^{3} s^{0} \right) + \left(\sum_{d>0} \frac{N_{d} d}{(2\pi i)^{2}} q^{d} \right) s^{1}
$$

$$
+ \left(\sum_{d>0} \frac{N_{d} d}{(2\pi i)^{2}} u q^{d} - 2 \sum_{d>0} \frac{N_{d}}{(2\pi i)^{3}} q^{d} \right) s^{0}
$$

$$
= s_{0} + \frac{1}{2\pi i} \frac{y_{1}}{y_{0}} s_{1} + \frac{5}{(2\pi i)^{2}} \frac{y_{2}}{y_{0}} s^{1} + \frac{5}{(2\pi i)^{3}} \frac{y_{3}}{y_{0}} s^{0}.
$$

3.9. Proof of (3) \Rightarrow (4) in Introduction

Proof 1, by nilpotent orbit theorem. $S^* := \mathcal{K}\mathcal{M}(V) \subset S := \mathcal{K}\mathcal{M}(V)$ for A-model, $S^* := \mathcal{M}(V^{\circ}) \subset S := \mathcal{M}(V^{\circ})$ for B-model. *S* endowed with log structure associated to $S \setminus S^*$. VPHS on S^* with unipotent monodromy along $S \setminus S^*$ extends uniquely to a LVPH on *S* by LH theoretic interpretation of nilpotent orbit theorem of Schmid. $1 = T_0$ (resp. [pt] = T^0) for A-model and $\tilde{\Omega} = e_0$ (resp. $g_0 = e^0$) for B-model extend over *S* as canonical extension (resp. invariant section). \Box

Proof 2, by correspondence table in 3.6.

$$
\tilde{S}^{\log} := \mathbf{R} \times i(0, \infty) \supset \tilde{S}^* := \mathbf{R} \times i(0, \infty)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
S^{\log} \supset S^*
$$
\n
$$
\begin{array}{ccc}\n & & & \\
 \downarrow & & & \\
 S & & & \\
 S & & & & \\
 \end{array}
$$

The coordinate *u* of \tilde{S}^* extends over \tilde{S}^{\log} . $u_0 := 0 + i\infty \in \tilde{S}^{\log} \mapsto b := \overline{0} + i\infty \in S^{\log} \mapsto q = 0 \in S$ which corresponds to q_0 for A-model and p_0 for B-model.

(a) $H_{\mathbf{Z}} := \mathcal{H}_{\mathbf{Z}}^V$ for A-model and $\mathcal{H}_{\mathbf{Z}}^{V^{\circ}}$ $\sum_{\mathbf{Z}}^{V}$ for B-model over S^* with respective symplectic basis $s_0, s_1, -s^0, s^1$ extends over S^{\log} with extended symplectic basis.

Note that to fix a base point $u = u_0$ on \tilde{S}^{\log} is equivalent to fix a base point *b* on S^{\log} and also a branch of $(2\pi i)^{-1} \log q$.

(b) Regarding $H_0 := H_{\mathbf{Z},u_0} = H_{\mathbf{Z},b}$ as a constant sheaf on S^{\log} , we have an isomorphism \mathcal{O}_S^{\log} $\frac{\log S}{S} \otimes H_{\mathbf{Z}} \simeq \mathcal{O}_S^{\log} \otimes H_0$ of \mathcal{O}_S^{\log} S^{\log} -modules whose restriction induces $1 \otimes H_{\mathbf{Z},b} = 1 \otimes H_0$.

(c) $τ_*$ (\mathcal{O}_S^{\log} $\frac{S^{\text{log}}}{S} \otimes H_{\mathbf{Z}}$ yields Deligne canonical extension of $H_{\mathcal{O}_{S^*}}$ over *S*. T_0, T_1, T^1, T^0 and e_0, e_1, e^1, e^0 yield monodromy invariant bases of \mathcal{O}_{S^*} -modules respecting Hodge filtration for each case. These bases and hence Hodge filtrations extend over $q = 0$.

(c) follows from (1), (2), (3) below. $R := \mathcal{O}_{S,b}^{\log} = \mathbf{C}{q}[u].$

(1) T_j , T^j and e_j , e^j are *R*-linear combinations of respective s_j , s^j . (2) s_j , s^j are *R*-linear combinations of $s_j(b)$, $s^j(b) \in H_{\mathbf{Z},b} = H_0$. (3) Coefficients $h \in R$ of the composition of (1) and (2) are monodromy invariant holomorphic on S^* with $\lim_{q\to 0} qh = 0$. Hence, $q = 0$ is a removable singularity of h and value of h at $q = 0$ is determined.

Thus, PVHS $(H_{\mathbf{Z}}\langle ,\ \rangle,H_{\mathcal{O}})$ of type $(\Lambda,\Gamma(\sigma)^{\text{gp}})$ over S^* extends to pre-PLH of type $\Phi = (\Lambda, \sigma, \Gamma(\sigma)^{\text{gp}})$ over *S*, where $\sigma := \exp(\mathbf{R}_{\geq 0}N)$ with *N* from 0 (4). (Note that *N* here is $-N$ of *N* in Section 1.)

Admissibility is obvious in pure case.

Griffiths transversality follows from definitions of T_0, T_1, T^1, T^0 , e_0, e_1, e^1, e^0 , and ∇^{middle} , ∇^{GM} .

Positivity: We check for B-model. A-model is analogous.

 $F_y := \exp(iy(-N))F(u_0) \in D$.

 $v_3(y) := \exp(iy(-N))e_0(u_0)$ and $\exp(iy(-N))e_1(u_0)$ form basis of F_u^2 ²/_{*y*} respecting F_y^3 *y* .

Compute basis $v_2(y)$ of F_y^2 $F_y^2 \cap \overline{F_y^1} = F_y^2$ *y*² ∩ $(F_y^3)^{\perp}$ for *Q*.

Check that coefficients of highest terms in *y* of Hodge norms $i^3Q(v_3(y), \overline{v_3(y)})$ and $iQ(v_2(y), \overline{v_2(y)})$ are both positive.

The extension of the specific sections has already seen. \Box

4. Proof of (6) in Introduction

First announcement on Log Hodge Theory [KU99] was published in proceeding of CRM Summer School 1998, Banff.

We notice that we constructed complete fan Σ for classifying space *D* of polarized Hodge structure with $h^{p,q} = 1$ ($p + q = 3$, $p, q \ge 0$) as example in book [KU09], and also constructed weak fan which graphs any given admissible normal function over $\Gamma \backslash D_{\Sigma}$ in paper [KNU13p], appearing soon, in quite general setting.

In particular, Néron model J_{L_Q} in Intro (6) is already constructed.

In order to make monodromy of $\mathcal T$ around MUM point p_0 unipotent, we take double cover $z^{1/2}$.

Let $\mathcal{H} := \mathcal{H}^{\mathcal{V}^{\circ}}$. We are looking for extension *H*

$$
0\to{\cal H}\to H\to{\bf Z}\to 0
$$

of LMH with liftings 1_Z and 1_F of $1 \in \mathbb{Z}$ respecting lattice and Hodge filtration, respectively.

Truncated normal function should be *T* , i.e.,

$$
Q(1_F - 1_Z, \Omega) = \int_{C_{-}}^{C_{+}} \Omega = \mathcal{T},
$$

where Q is polarization of H .

To find such LMH, we use basis e_0, e_1, e^1, e^0 respecting Deligne decomp. of (M, F) from 3.6 (2B), ∇ -flat integral basis s_0, s_1, s^1, s^0 from 3.6 (4B). We also use integral periods from 3.3 as $\eta_j := (2\pi i)^{-j} y_j$ for $j = 0, 1$ and $\eta_j := 5(2\pi i)^{-j}y_j$ for $j = 2, 3$.

First, translate trivial extension $(\text{gr}^W)_{\mathbf{Q}} = \mathbf{Q} \oplus \mathcal{H}_{\mathbf{Q}}$ by $\mathcal{T}e^0$ and define $1_Z := 1 + Te^0$ to make local system L_Q .

To find 1_F , write $1_F - 1_Z = ae_0 + be_1 + ce_1 - Te^0$ with $a, b, c \in \mathcal{O}^{\log}$. Griffiths transversality condition on $1_F - 1_Z$ is understood as vanishing of coefficient of e^0 in $\nabla(1_F - 1_Z)$. Using 6 (3B), we have

$$
\nabla_{\delta}(1_F - 1_{\mathbf{Z}}) = (\delta a)e_0 + (a + \delta b)e_1 + \left(b\frac{1}{(2\pi i)^3}\frac{d^3\Phi}{du^3} + \delta c\right)e^1 + (c - \delta \mathcal{T})e^0.
$$

Hence, above condition is equivalent to $c = \delta \mathcal{T}$ and a, b arbitrary. Using relation modulo F^2 , we can take $a = b = 0$. Thus

$$
1_F = 1_Z + (\delta \mathcal{T})e^1 - \mathcal{T}e^0.
$$

 $(1_{\mathbf{Z}}, 1_F)$ is desired element in $\mathcal{E}xt_{\text{LMH}}^1(\mathbf{Z}, \mathcal{H})$, and hence $1_F - 1_{\mathbf{Z}}$ is desired admissible normal function.

 (6.1) and (6.2) are proved.

Next, we find splitting of weight filtration *W* of local system L_Q .

Since mondromy of *T* around $p_0: z^{1/2} = 0$, is $T^2_{\infty}(\mathcal{T}) = \mathcal{T} - \eta_0$ ([W07]), we flat it by $\mathcal{T}+\frac{1}{2}$ $\frac{1}{2}\eta_1$, which is written as $(\mathcal{T} + \frac{1}{2})$ $(\frac{1}{2}\eta_1)s^0$ in \mathcal{H} , because $T_{\infty}^{2}(\eta_{1}) = \eta_{0}.$

But then, $\frac{1}{2}\eta_1$ is added to truncated normal function. To solve this, using $e^1 = s^1 + us^0$ $(s^0 = e^0, u = \eta_1/\eta_0)$, we modify it as

$$
\frac{1}{2}\eta_0 s^1 + (T + \frac{1}{2}\eta_1)s^0 = \frac{1}{2}\eta_0 e^1 + Te^0.
$$

This is desired splitting of *W* of local system L_Q , and we define

$$
1_{\mathbf{Z}}^{\mathrm{spl}}:=1+\frac{1}{2}\eta_0s^1+(\mathcal{T}+\frac{1}{2}\eta_1)s^0=1+\frac{1}{2}\eta_0e^1+\mathcal{T}e^0.
$$

Lifting 1_F^{spl} for 1_Z^{spl} is computed as before, and we get

$$
1_F^{\text{spl}} = 1_{\mathbf{Z}}^{\text{spl}} + (\delta \mathcal{T})e^1 - \mathcal{T}e^0.
$$

 $(1^{\text{spl}}_{\mathbf{Z}}, 1^{\text{spl}}_{F}$ $\mathcal{E}_{F}^{\text{spl}}$) is desired split element in $\mathcal{E}xt_{\text{LMH}}^{1}(\mathbf{Z}, \mathcal{H})$. Note that $1_F^{\text{spl}} - 1_{\mathbf{Z}}^{\text{spl}}$ $Z^{\text{spl}} = 1_F - 1_Q = (\delta T)e^1 - Te^0.$

For (6.3), recall that weight of A-model is reversed from degree of cohomology. Then it follows from

$$
1\mathbf{z} - 1\mathbf{z}^{\mathrm{pl}} = -\frac{1}{2}(\eta_0 s^1 + \eta_1 s^0) = -\frac{1}{2}\eta_0 e^1.
$$

(6.4) follow from definition of $1\mathbf{z}$ (or equivalently definition of $1\mathbf{z}$ ^b). In fact, from that we have $1z - 1 = \frac{1}{2}\eta_0 s^1 + (T + \frac{1}{2})$ $(\frac{1}{2}\eta_1)s^0$ and hence $L(1_{\mathbf{Z}}-1) = \frac{15}{16\pi^2}z^{1/2}s_0.$