Workshop on modular forms around string theory Fields Institute, September 16th, 2013

Andreas Malmendier, Colby College (joint work with Dave Morrison and with Chuck Doran)

KORKA SERKER ORA

Overview

- **1** String duality: Heterotic theory/F-theory
- ² 'Quantum' compactifications of the heterotic string
- ³ Examples of K3's associated with Seiberg-Witten curves (period maps $=$ generalized hypergeometric functions)

KORKAR KERKER E VOOR

Heterotic/F-theory Duality

The heterotic string compactified on an $(n-1)$ -dimensional elliptically fibered Calabi-Yau $\pi_H : \mathbb{Z} \to \mathbb{B}$ is equivalent to F-theory compactified on an n-dimensional K3-fibered Calabi-Yau $\pi_F : \mathsf{X} \to \mathsf{B}$, which is also elliptically fibered with a section.

Eight-dimensional compactifications: $n = 2$ and $\mathbf{B} = \text{pt}$

- Heterotic CY: $Z = E$ elliptic curve w/ principal G-bundle, $G \subset (E_8 \times E_8) \rtimes \mathbb{Z}_2$ or $\text{Spin}(32)/\mathbb{Z}_2$.
- F-theoretic CY: elliptic K3-surface $X \to \mathbb{CP}^1$ w/ section.

 $\mathbf{\bar{X}}:\,\, \mathsf{Y}^2=4\,\mathsf{X}^3\!-\!g_2\,\mathsf{X}\!-\!g_3\,,\qquad g_2\in H^0(\mathcal{O}(8)),\,\, g_3\in H^0(\mathcal{O}(12)).$

Moduli spaces for both types are given by the Narain space

$$
\mathfrak{M}=\mathrm{SO}(2,18;\mathbb{Z})\bigg\backslash \mathrm{SO}(2,18)\Big/\Big(\mathrm{SO}(2)\times \mathrm{SO}(18)\Big)\,.
$$

F-theoretic description of type IIB string backgrounds

- Complex scalar τ with $\text{Im}\tau > 0$ is allowed to be multi-valued, and it is defined away from defects of codimension two.
- $SL(2, \mathbb{Z})$ acts by standard fractional linear action on τ .
- To describe the effective field theory one needs: 1) SL(2, \mathbb{Z})-invariant function $j(\tau)$ – functional invariant, 2) the precise $SL(2, \mathbb{Z})$ action on τ – homological invariant.

Description in Weierstrass model: $Y^2 = 4X^3 - g_2X - g_3$, coefficients: $g_2=\sum_{j=0}^8a_j\ t^j, g_3=\sum_{j=0}^{12}b_j\ t^j,\ [t:1]\in\mathbb{CP}^1$, number of moduli = $9 + 13 - 3 - 1 = 18$. discriminant: $\Delta = g_2^3 - 27 g_3^2$, functional invariant: $j = g_2^3/\Delta$, homological invariant: from vanishing order of g_2, g_3, Δ .

KORKAR KERKER EL VOLO

F-theoretic description of type IIB string backgrounds

Singular fiber where $\Delta=g_2^3-27\,g_3^2$ vanishes.

• Kodaira's classification of singular fibers:

Correspondence: string perspective \leftrightarrow monodromy $+$ $j = \frac{g_2^3}{\Delta}$ IIB + n D7-branes \leftrightarrow Kodaira type I_n , $i = \infty$, IIB + n D7-branes on O7-plane \leftrightarrow Kodaira type I_n^* , $j = \infty$, [I](#page-3-0)IB + exotic 7-branes \leftrightarrow Kodaira type $III^*, II^*, \ldots, |j| < \infty$ $III^*, II^*, \ldots, |j| < \infty$ [.](#page-35-0)

Heterotic string backgrounds

- Closed string theory on T^2 has two basic moduli:
	- 1) complex structure parameter $\rho \in \mathbb{H}$,
	- 2) complexified Kähler modulus $\sigma = B + i V \in \mathbb{H}$.
- **Geometric** compactifications:

 ρ varies over base, undergoes monodromies in $SL(2, \mathbb{Z})$. σ is constant up to shifts.

- Quantum compactifications: ρ and σ vary over base, $\sigma \rightarrow -1/\sigma$ possible, inherently quantum.
- Moduli of heterotic string compactified on T^2 near boundary:

[String duality and K3 surfaces from Seiberg-Witten curves](#page-0-0) [2\) Hodge theory](#page-6-0)

Matching the moduli: F-theory \leftrightarrow heterotic string

• Understand duality on low-dimensional subspaces of $\mathfrak M$

$$
\Gamma \Big\backslash {\rm SO}(2,r) \Big/ \Big({\rm SO}(2) \times {\rm SO}(r) \Big) \subset \mathfrak{M} \, .
$$

$$
\Rightarrow \quad \left\{ \begin{array}{ll} r = 2: & (\mathrm{SL}(2,\mathbb{Z}) \times \mathrm{SL}(2,\mathbb{Z})) \rtimes \mathbb{Z}_2 \backslash (\mathbb{H} \times \mathbb{H}) \\ r = 3: & \mathrm{Sp}(4,\mathbb{Z}) \backslash \mathbb{H}_2 \end{array} \right.
$$

- \bullet On heterotic side: gauge group G of high rank, i.e., compactifications w/ very few Wilson lines.
- $r = 2$: No Wilson lines. $G = (E_8 \times E_8) \rtimes \mathbb{Z}_2$ or $G = \text{Spin}(32)/\mathbb{Z}_2$. $r = 3$: One Wilson line. $G = E_8 \times E_7$ or $G = \text{Spin}(28) \times \text{SU}(2)/\mathbb{Z}_2$.
- On F-theory side: families of Jacobian K3 surfaces represent r-dimensional moduli spaces of lattice-polarized K3 surfaces.
- Use Shioda-Inose correspondence as the duality map between polarized K3 surface and principally polarized Abelian surface.

[String duality and K3 surfaces from Seiberg-Witten curves](#page-0-0) [2\) Hodge theory](#page-7-0)

Matching the moduli: F-theory \leftrightarrow heterotic string

• Understand duality on low-dimensional subspaces of $\mathfrak M$

$$
\Gamma \Big\backslash {\rm SO}(2,r) \Big/ \Big({\rm SO}(2) \times {\rm SO}(r) \Big) \subset \mathfrak{M} \, .
$$

$$
\Rightarrow \quad \left\{ \begin{array}{ll} r = 2: & (\mathrm{SL}(2,\mathbb{Z}) \times \mathrm{SL}(2,\mathbb{Z})) \rtimes \mathbb{Z}_2 \backslash (\mathbb{H} \times \mathbb{H}) \\ r = 3: & \mathrm{Sp}(4,\mathbb{Z}) \backslash \mathbb{H}_2 \end{array} \right.
$$

- \bullet On heterotic side: gauge group G of high rank, i.e., compactifications w/ very few Wilson lines.
- $r = 2$: No Wilson lines. $G = (E_8 \times E_8) \rtimes \mathbb{Z}_2$ or $G = \text{Spin}(32)/\mathbb{Z}_2$. $r = 3$: One Wilson line. $G = E_8 \times E_7$ or $G = \text{Spin}(28) \times \text{SU}(2)/\mathbb{Z}_2$.
- On F-theory side: families of Jacobian K3 surfaces represent r-dimensional moduli spaces of lattice-polarized K3 surfaces
- Use Shioda-Inose correspondence as the duality map between F-theory and heterotic string vacua.

Weierstrass fibrations \rightarrow lattice polarized K3's

(based on Morrison-Vafa '96; Clingher-Doran '07, '10; A. Kumar '08)

$$
\mathbf{\bar{X}} \rightarrow \mathbb{CP}^1: \begin{pmatrix} Y^2 & = & 4X^3 + \left(a\,t^4\right)X \\ & + & \left(t^7 + b\,t^6 + d\,t^5\right) \end{pmatrix}
$$

KORKA SERKER ORA

No Wilson lines. Gauge group $G = (E_8 \times E_8) \rtimes \mathbb{Z}_2$. sing. fibers of $\bar{\mathbf{X}}$: 2 II * \oplus 4 I₁, $NS(X)$ = $H \oplus E_8 \oplus E_8$, signature: (1, 17), T **x** $=$ H^2 , signature: (2, 2).

Weierstrass fibrations \rightarrow lattice polarized K3's

(based on Morrison-Vafa '96; Clingher-Doran '07, '10; A. Kumar '08)

$$
\mathbf{\bar{X}} \rightarrow \mathbb{CP}^1: \begin{pmatrix} Y^2 & = & 4X^3 + \left(a\,t^4 + c\,t^3\right)X \\ & + & \left(t^7 + b\,t^6 + d\,t^5\right) \end{pmatrix}
$$

 $c = 0$: No Wilson lines. Gauge group $G = (E_8 \times E_8) \rtimes \mathbb{Z}_2$. sing. fibers of \bar{X} : 2 $II^* \oplus 4 I_1$. $NS(X)$ = $H \oplus E_8 \oplus E_8$, signature: (1, 17), T_{X} = H^2 signature: $(2, 2)$.

 $c \neq 0$: One Wilson line. Gauge group $G = E_8 \times E_7$. sing. fibers of \bar{X} : $II^* \oplus III^* \oplus 5 I_1$, $NS(X)$ = $H \oplus E_8 \oplus E_7$, signature: (1, 16), T_{X} = $H^2\oplus \langle -2\rangle\,,$ signature: $(2,3)$.

[String duality and K3 surfaces from Seiberg-Witten curves](#page-0-0) [2\) Hodge theory](#page-10-0)

Weierstrass fibrations \rightarrow lattice polarized K3's

(based on Morrison-Vafa '96; Clingher-Doran '07, '10; A. Kumar '08)

$$
\mathbf{\bar{X}} \rightarrow \mathbb{CP}^1: \begin{pmatrix} Y^2 & = & 4X^3 + \left(a\,t^4 + c\,t^3\right)X \\ & + & \left(t^7 + b\,t^6 + d\,t^5\right) \end{pmatrix}
$$

 $c = 0$: No Wilson lines. Gauge group $G = (E_8 \times E_8) \rtimes \mathbb{Z}_2$. sing. fibers of $\bar{\mathbf{X}}$: 2 $II^* \oplus 4 I_1$, $\text{NS}(\mathsf{X})$ = $H \oplus E_8 \oplus E_8$, signature: (1, 17), T **x** $=$ H^2 , signature: (2, 2). $c \neq 0$: One Wilson line. Gauge group $G = E_8 \times E_7$. sing. fibers of \bar{X} : $II^* \oplus III^* \oplus 5 I_1$, $NS(X)$ = $H \oplus E_8 \oplus E_7$, signature: (1, 16), T **x** $= H^2 \oplus \langle -2 \rangle$, signature: $(2, 3)$.

For $G = \text{Spin}(32)/\mathbb{Z}_2$ and $G = \text{Spin}(28) \times \text{SU}(2)/\mathbb{Z}_2$: $\overline{X} \dashrightarrow \overline{X}_{\text{alt}}$

Shioda-Inose correspondence

Def.: A Nikulin involution on a K3 surface **X** is an analytic automorphism $\beta : \mathsf{X} \to \mathsf{X}$ of order two such that $\beta^* \eta = \eta$.

 \Rightarrow β has eight fixpoints, **Y** = **X**/ β is K3 surface, $\exists\, {\rm p}:{\bm X}\dashrightarrow {\bm {\sf Y}}$ degree-two rational map, ${\rm p}_*: H^2({\bm X},\mathbb{Z})\rightarrow H^2_{\bm {\sf Y}};$

KORKAR KERKER EL VOLO

Shioda-Inose correspondence

Def.: A Nikulin involution on a K3 surface **X** is an analytic automorphism $\beta : \mathsf{X} \to \mathsf{X}$ of order two such that $\beta^* \eta = \eta$.

 \Rightarrow β has eight fixpoints, **Y** = **X**/ β is K3 surface, $\exists\, {\rm p}:{\bm X}\dashrightarrow {\bm {\sf Y}}$ degree-two rational map, ${\rm p}_*: H^2({\bm X},\mathbb{Z})\rightarrow H^2_{\bm {\sf Y}};$

Def.: A Nikulin involution is a Shioda-Inose structure if there is an Abelian surface **A** such that $Y = \text{Kum}(\mathbf{A}) = \mathbf{A}/\{\pm 1\}$ and $p_* : T_{\mathbf{X}}(2) \to T_{\mathbf{Y}}$ is Hodge isometry.

Morrison '84: An algebraic K3 surface **X** has a Shioda-Inose structure if there exists **A** and Hodge isometry $T_{\textbf{X}} \cong T_{\textbf{A}}$.

Resulting picture for heterotic/F-theory duality

(based on Clingher-Doran '07, '10; A. Kumar '08)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Calabi-Yau threefolds and 6d compactifications

$$
E \rightarrow \bar{X}
$$
\n
$$
\downarrow \qquad \qquad Y^2 = 4X^3 + (a(u) t^4 + c(u) t^3) X
$$
\n
$$
[t:1] \in \mathbb{CP}^1 \rightarrow \mathbb{F}_{12}
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathbb{CP}^1 \ni [u:1]
$$
\n
$$
a \in H^0(\mathcal{O}(8)), b \in H^0(\mathcal{O}(12)), \text{ etc.}
$$

M.-Morrison '13: Construction of smooth Calabi-Yau threefolds $X \rightarrow F_{12}$ from pencils of genus-2 curves confirms existence heterotic quantum vacua and shows gauge group enhancement of \mathbf{X}_u when family intersects $H_1 + H_4$.

$\mathcal{N}=2$ String Compactification

- 4d string compactifications arise in two ways (that are dual)
	- **1** from F-theory on *n*-dimensional K3-fibered Calabi-Yau,
	- 2 from heterotic strings on $(n 1)$ -dimensional elliptically fibered Calabi-Yau.
- Four-dimensional string compactifications: include Donaldson theory/Seiberg-Witten theory of M^4
- **•** Effective field theory for 4d $\mathcal{N} = 2$ supersymmetic Yang-Mills theory can be described in terms of auxiliary family of elliptic $curves, called SW-curve (=rational elliptic surface).$

$\mathcal{N}=2$ String Compactification

- **Sen ['95]** studied F-theory over a K3-surface in the special point where K3 is the \mathbb{Z}_2 -orbifold of torus \mathcal{T}^4 .
- Sen provided an embedding in F-theory of SW-curve.
- In isotrivial case: SW-curve is rational elliptic surface with $2 \, l_0^*$, the embedding was given by quadratic twist K3 with $4 \, l_0^*$ (doesn't change j-invariant)
- Masses of BPS states were computed in F-theory in terms of period integrals of the holomorphic 2-form on the K3 surface.
- \bullet Goal: what Weierstrass elliptic K3 surfaces ($=$ F-theory vacua) are obtained when generalizing construction to rational elliptic surfaces? what are the corresponding heterotic vacua?

Rational surfaces

Rational Weierstrass elliptic surfaces S over $\mathbb{C}\mathrm{P}^1$:

$$
\bar{\mathbf{S}}: y^2 = 4x^3 - g_2x - g_3, \quad \begin{array}{l} g_2 \in H^0(\mathcal{O}(4)), \\ g_3 \in H^0(\mathcal{O}(6)), \end{array} [t:1] \in \mathbb{C}P^1.
$$

Consider rational elliptic surfaces with at most 3 singular fibers, $(\text{\#sings}, \text{rk}(MW)) = (2, 0), (3, 0), (3, 1), (3, 2).$

Examples:

- SW-curve S for pure $SU(2)$ -gauge theory: Legendre family over the t -line, t Hauptmodul for Γ(2), $y^2 = x(x-1)(x-t)$
- \bullet Pencil related by 2-isogeny

$$
\begin{array}{c|cc}\nE_{\text{sing}} & I_2 & I_2 & I_2^*(-D_6) \\
\hline\nt & 0 & 1 & \infty \\
E_{\text{sing}} & I_1 & I_1 & I_4^*(-D_8) \\
\hline\nt & 0 & 1 & \infty\n\end{array}
$$

Rational surfaces

Examples (cont'd):

- Hesse pencil in $\mathbb{P}(1,1,1)$ over the *t*-line, t^3 Hauptmodul for $\Gamma_0(3)$, $x_1^3 + x_2^3 + x_3^3 + t^{-1/3} x_1 x_2 x_3 = 0$ $\frac{E_{\text{sing}}}{t} \frac{I_1 I_3 I_1 V^* (= E_6)}{I_1 V^*}$ t 0 $\frac{1}{27}$ ∞
- Hypersurfaces in $\mathbb{P}(1,1,2)$ over the *t*-line, $t⁴$ Hauptmodul for $\Gamma_0(2)$, $x_1^4 + x_2^4 + x_3^2 + t^{-1/4} x_1 x_2 x_3 = 0$ $\frac{E_{\text{sing}}}{t} \left| \frac{I_1}{0} \right| \frac{I_2}{1} \frac{III^* (= E_7)}{\infty}$ t 0 $\frac{1}{64}$ ∞
- Hypersurfaces in $\mathbb{P}(1, 2, 3)$ over the *t*-line,

$$
x_1^6 + x_2^3 + x_3^2 + t^{-1/6} x_1 x_2 x_3 = 0 \frac{E_{sing} \mid l_1 \quad l_1 \quad l l^* (= E_8)}{t \mid 0 \quad \frac{1}{432} \quad \infty}
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Rational surfaces and their periods

• Rational Weierstrass elliptic surfaces S ($\# \text{sings} \leq 3$)

$$
\bar{\textsf{S}}:\; y^2=4\, x^3-g_2\, x-g_3\,,\quad \ \, \mathop{g_2}\limits_{\mathcal{B}3}\in H^0(\mathcal{O}(4)),\;\; [t:1]\in\mathbb{C}\mathrm{P}^1.
$$

Rational surfaces (up to ∗-transfer):

KORKA SERKER ORA

Rational surfaces and their periods

• Rational Weierstrass elliptic surfaces S ($\#sings \leq 3$)

$$
\bar{\mathbf{S}}: y^2 = 4x^3 - g_2x - g_3, \quad g_2 \in H^0(\mathcal{O}(4)), \quad [t:1] \in \mathbb{C}\mathrm{P}^1.
$$

Rational surfaces (up to ∗-transfer):

KORKA SERKER ORA

 $G \subset SL(2,\mathbb{Z})$ generated monodromy group, $r = \text{rk}(\text{MW}^0)$

Rational surfaces and their periods

• Rational Weierstrass elliptic surfaces $\sf S$ ($\#sings \leq 3$)

$$
\bar{\textsf{S}}:\; y^2 = 4\, x^3 - g_2\, x - g_3\,,\qquad \begin{aligned} g_2 &\in H^0(\mathcal{O}(4)),\\ g_3 &\in H^0(\mathcal{O}(6)), \end{aligned}\;\; [t:1] \in \mathbb{C}\mathrm{P}^1.
$$

 $Γ_0(4) | 0$

 $\Gamma(2)$ 0 $\Gamma_0(3)$ | 0 $\Gamma_0(2)$ | 0

2 1

Rational surfaces (up to ∗-transfer):

Write down Picard-Fuchs first order linear system satisfied by periods of $\frac{dx}{y}$ and $\frac{x dx}{y}$ over cycles on the fibers: $\vec{u}^t = \begin{pmatrix} 0 \\ \omega = \int_{A_t} \end{pmatrix}$ $\frac{dx}{y}$ dx x dx $\frac{dx}{y}$, $a = \int_{A_t}$ $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$ [3\) Examples from rational surfaces](#page-22-0)

Rational surfaces and their periods

• Rational Weierstrass elliptic surfaces S ($\# \text{sings} \leq 3$)

$$
\bar{\textsf{S}}:\; y^2 = 4\,x^3 - g_2\,x - g_3\,,\qquad \begin{matrix} g_2 \in H^0({\mathcal{O}}(4)),\\ g_3 \in H^0({\mathcal{O}}(6)), \end{matrix}\;\; [t:1] \in {\mathbb{C}}{\rm{P}}^1.
$$

Rational surfaces (up to ∗-transfer):

 \bullet Defines a rank-two Fuchsian system with flat (=integrable) meromorphic connection over base:

$$
\frac{d}{dt}\vec{u} = \mathbf{A}(t)\vec{u}, \quad \mathbf{A}(t) = \frac{\mathbf{B}_0(t)}{t} + \frac{\mathbf{B}_1(t)}{t-1}, \quad \sum_{t \in [t-1]}\mathbf{B}_i(t) = 0.
$$

Rational surfaces and their periods

• Rational Weierstrass elliptic surfaces S ($\#sings \leq 3$)

$$
\bar{\textsf{S}}:\; y^2 = 4\, x^3 - g_2\, x - g_3\,,\qquad \begin{matrix} g_2 \in H^0({\mathcal{O}}(4)),\\ g_3 \in H^0({\mathcal{O}}(6)), \end{matrix}\;\; [t:1] \in {\mathbb{C}}{\rm{P}}^1.
$$

Rational surfaces (up to ∗-transfer):

Solutions to Picard-Fuchs rank-2 first order linear system: $\omega = t^{\mp 3\kappa\mu/2} \; {}_1F_0(\pm \mu; |t) \qquad \omega = t^{-\kappa/2} \; {}_2F_1(\mu, 1-\mu-\kappa; 1-\kappa|t)$

[3\) Examples from rational surfaces](#page-24-0)

One-parameter families of K3 surfaces

• Construction 1: quadratic twist with polynomial h

$$
\bar{\mathbf{X}}_1 = \bar{\mathbf{S}}_h: Y^2 = 4X^3 - h^2 g_2 X - h^3 g_3
$$

$$
\downarrow
$$

$$
\bar{\mathbf{S}}: y^2 = 4x^3 - g_2 x - g_3.
$$

- Twist around $t = \infty$ introduces fibers of type I_0^*
- Parameter defines position of additional I_0^* , $h = t(t A)$
- 1-parameter families of lattice-polarized K3 surfaces, isotrivial/modular case: Picard rank 18/19
- Example: $\mathrm{T}_{\mathbf{X}} = \langle 2 \rangle^{\oplus 2} \oplus \langle -2 \rangle$, $A \not\in \{0, 1\}$:

• For $A = 1$ we obtain all Weierstrass elliptic K3 surfaces with 3 singular fibers.**KORKA SERKER ORA**

[3\) Examples from rational surfaces](#page-25-0)

One-parameter families of K3 surfaces

• Construction 1: quadratic twist with polynomial h

$$
\begin{array}{rcl}\n\bar{\mathbf{X}}_1 = \bar{\mathbf{S}}_h: Y^2 & = & 4X^3 - h^2 g_2 X - h^3 g_3 \\
& \downarrow \\
\bar{\mathbf{S}}: y^2 & = & 4x^3 - g_2 x - g_3 \,.\n\end{array}
$$

- 2 l_0^{**} 's, *h*=t(t-A), 2-form: $dt \wedge \frac{dX}{Y} = \frac{1}{\sqrt{h}}$ $\frac{1}{h(t)}$ dt $\wedge \frac{dx}{y}$ y
- Represent K3-periods as Euler transforms $\int_{\gamma_i} dt \wedge \frac{dX}{Y} = \int_{0^*}^{t_i^*} dt \frac{1}{\sqrt{h}}$ $rac{1}{h(t)}$ ω
- K3-periods solve a rank-4/rank-3 linear system in ∂_A

Solutions to the rank-4/rank-3 integrable linear system of K3 periods:

$$
\omega = \begin{array}{c} 2F_1\left(\frac{1}{2}, \mu + \frac{\kappa}{2}; 1 + \frac{\kappa}{2} | A\right) \\ \oplus \\ 2F_1\left(\frac{1}{2}, -\mu - \frac{\kappa}{2}; 1 - \frac{\kappa}{2} | A\right) \end{array} \qquad \omega = A^{-\kappa/2} 3F_2\left(\begin{array}{c} \mu, \frac{1-\kappa}{2}, 1 - \mu - \kappa \\ 1 - \frac{\kappa}{2}, 1 - \kappa \end{array} | A\right)
$$

[3\) Examples from rational surfaces](#page-26-0)

One-parameter families of K3 surfaces

Proposition (M.-Doran)

• The periods of the seven (modular) families of Weierstrass elliptic K3 surfaces of Picard rank 19 satisfy Clausen's identity:

$$
A^{-\kappa/2} 3F_2 \left(\begin{array}{c} \mu, \frac{1-\kappa}{2}, 1-\mu-\kappa \\ 1-\frac{\kappa}{2}, 1-\kappa \end{array} \bigg| A \right) = \left(A^{-\kappa/4} 2F_1 \left(\frac{\mu}{2}, \frac{1-\mu-\kappa}{2}; 1-\frac{\kappa}{2} \bigg| A \right) \right)^2
$$

• There is a fundamental set of solutions $\{x_1, x_2, x_3\}$ such that

[3\) Examples from rational surfaces](#page-27-0)

One-parameter families of K3 surfaces

• Construction 2: double cover branched at $t = 0$ and $t = A$:

$$
\bar{\mathbf{X}}_2 = \bar{\mathbf{S}}_{[0,A]}: Y^2 = 4X^3 - s^4 g_2(t(s))X - s^6 g_3(t(s))
$$

$$
\bar{\mathbf{S}}: Y^2 = 4X^3 - g_2(t)X - g_3(t).
$$

• with
$$
t = \frac{(s + A/4)^2}{s}
$$
 we have $ds \wedge \frac{dX}{Y} = \frac{1}{\sqrt{t(t-A)}} dt \wedge \frac{dx}{Y}$

Example of 1-param. family of lattice-polarized K3 surface of Picard rank 19, $T_X = H \oplus \langle -2 \rangle$, $A \notin \{0, 1\}$:

• for $\mu = 1/6, 1/4, 1/3, 1/2, \kappa = 0$ and $\mu = 1/12, \kappa = 1/3$ we obtain one-parameter families with $M_n = H \oplus E_8 \oplus E_8 \oplus \langle -2n \rangle$ lattice polarizatio[n](#page-26-0)for $n = 1, 2, 3, 4$ $n = 1, 2, 3, 4$ $n = 1, 2, 3, 4$ and $n = 6$ $n = 6$ [.](#page-27-0)

[3\) Examples from rational surfaces](#page-28-0)

One-parameter families of K3 surfaces

Proposition (M.-Doran)

- The two constructions give rise to degree-two rational maps $X_2 \rightarrow X_1$ (for all 13 cases) that leave the holomorphic two-form invariant.
- \bullet The Picard-Fuchs differential equations of each pair X_2, X_1 coincide.

Remarks:

- \bullet The periods of the families with M_n lattice polarization for $n = 1, 2, 3, 4$ and $n = 6(?)$ agree with the results of Lian, Yau ['96], Dolgachev ['96], Verrill, Yui['00], Doran ['00], and Beukers, Peters ['84] (?).
- • Constructions generalize to two-parameter families of lattice-polarized Weierstrass elliptic K3 surfaces: isotrivial/modular case for $\kappa = 0$: Picard rank 16/18.

[3\) Examples from rational surfaces](#page-29-0)

Two-parameter families of K3 surfaces

Set
$$
h(t) = (t - A)(t - B)
$$
 in \mathbf{X}_1 and $t = \frac{16 s^2 + 8 (A+B)s + (A-B)^2}{16 s}$ in \mathbf{X}_2 s.t.

$$
ds \wedge \frac{dX}{Y} = \frac{1}{\sqrt{h(t)}} dt \wedge \frac{dx}{y}
$$

Proposition (M.-Doran)

- The two constructions give rise to degree-two rational maps $X_2 \longrightarrow X_1$ (for all cases with $\kappa = 0$) that leave the holomorphic two-form invariant.
- The Picard-Fuchs linear systems for each pair X_2, X_1 coincide.
- \bullet K3-periods solve a flat rank-6/rank-4 linear system in $\partial_{A}, \partial_{B}$ in the isotrivial/modular cases.

[3\) Examples from rational surfaces](#page-30-0)

Two-parameter families of K3 surfaces

Proposition (M.-Doran)

- The two constructions give rise to degree-two rational maps $X_2 \rightarrow X_1$ (for all cases with $\kappa = 0$) that leave the holomorphic two-form invariant.
- \bullet K3-periods solve a flat rank-6/rank-4 linear system in $\partial_{A}, \partial_{B}$ in the isotrivial/modular cases.
- *Isotrivial cases* $(\mu \neq \frac{1}{2}, \kappa = 0)$ *:*

$$
\mathcal{F}_1\left(\mu; \frac{1}{2}, \frac{1}{2}; 1 | A, B\right) \oplus \mathcal{F}_1\left(-\mu; \frac{1}{2}, \frac{1}{2}; 1 | A, B\right)
$$

• Modular cases $(\kappa = 0)$:

$$
\Omega_{\mu}(A, B) = \frac{1}{B^{\mu}} F_2\left(\mu; \frac{1}{2}, \mu; 1, 2\mu | 1 - \frac{A}{B}, \frac{1}{B}\right)
$$

Þ

イロン イ伊ン イヨン イヨン

Two-parameter families of K3 surfaces

Remarks:

- $\mathcal{F}_1(\alpha;\beta,\beta';\gamma)$ and $\mathcal{F}_2(\alpha;\beta,\beta';\gamma,\gamma')$ are the Appell hypergeometric functions in two variables.
- They satisfy equations of a linear system of rank 4 or 3: $A(1-A) \, F_{AA} + p_i(A,B) \, F_{AB} + \Big(\gamma \quad - (\alpha + \beta \; +1) \, A \Big) \, F_A - \beta \; \; B \, F_B - \alpha \, \beta \; F = 0 \, ,$ $B(1-B) \, F_{BB} + p_i(B,A) \, F_{AB} + \left(\gamma^{(')} - (\alpha+\beta'+1) \, B \right) F_B - \beta' \, A \, F_A - \alpha \, \beta' \, F = 0 \, .$
- Example $(\mu = 1/6)$: $M = H \oplus E_8 \oplus E_8$ -polarized case,

KORK ERKER ADE YOUR

• Examples realize elliptic fibrations $\mathfrak{J}_3, \mathfrak{J}_4, \mathfrak{J}_6, \mathfrak{J}_7, \mathfrak{J}_{11}$ on $Kum(E_1 \times E_2)$ from **Oguiso** ['88].

Two-parameter families of K3 surfaces

Remarks:

- \bullet F_2 satisfies Quadratic Condition (cf. Sasaski, Yoshida ['88]): fundamental solutions (x_1, x_2, x_3, x_4) are quadrically related, solution surfaces $\mathcal{S} \subset \mathbb{P}^3$ reduces to $\mathbb{P}^1 \times \mathbb{P}^1.$
- Clausen-type equation:

 $\frac{1}{B^{\mu}}$ F_2 $(\mu;\frac{1}{2}$ $\frac{1}{2}$, μ ; 1, 2 μ $\left| 1 - \frac{A}{B} \right|$ $\frac{A}{B}, \frac{1}{B}$ $\frac{1}{B}$) = $\frac{1}{(1-A^{-1})}$ $\frac{1}{(1-A-B)^{\mu}}$. $\displaystyle _2F_1\Big(\frac{\mu}{2}$ $\frac{\mu}{2}$, $\frac{\mu+1}{2}$ $\frac{+1}{2}$; 1 \mathbf{x} $\displaystyle _2F_1\Big(\frac{\mu}{2}$ $\frac{\mu}{2}, \frac{\mu+1}{2}$ $\frac{+1}{2}$; $\mu + \frac{1}{2}$ $\frac{1}{2}|y\rangle$ where $x(1-y)=\Big(\frac{A-B}{1-A-y}\Big)$ $\frac{A-B}{1-A-B}$ $\bigg)^2$, $y(1-x) = \left(\frac{1}{1-A-B}\right)^2$.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

 \bullet F_2 satisfies linear and quadratic transformations (symmetries) (generalizing transformations for $_2F_1$): linear: $\Omega_{\mu}(A, B) = \Omega_{\mu}(B, A)$

[3\) Examples from rational surfaces](#page-33-0)

Two-parameter families of K3 surfaces

Remarks:

 \bullet F_2 satisfies linear and quadratic transformations (symmetries) (generalizing transformations for ${}_{2}F_{1}$):

quadratic: $\Omega_{1/2}(\overline{A},\overline{B})=\bigg(\frac{2\,\overline{B}}{1-A}\bigg)$ $1 - A - B$ \setminus ^{1/2} $\Omega_{1/4}(\tilde{\mathsf{A}},\tilde{\mathsf{B}})$ with $\tilde{A} = \begin{pmatrix} \frac{A-B+1}{A+B-1} \end{pmatrix}$ $\left(\frac{A-B+1}{A+B-1}\right)^2$, $\tilde{B}=\left(\frac{A-B-1}{A+B-1}\right)$ $\frac{A-B-1}{A+B-1}$ ².

If we specialize $A = (\lambda/4)^2$, $B = 1 + A$ then we obtain

$$
\Omega_{1/2}(A, B) = \Omega_{1/4} \left(0, \left(\frac{4}{\lambda} \right)^4 \right) = 3F_2 \left(\begin{array}{c} \frac{1}{4}, \frac{2}{4}, \frac{3}{4} \\ 1, 1 \end{array} \Big| \left(\frac{4}{\lambda} \right)^4 \right)
$$

for the period of the sub-family $\mu=\frac{1}{2}$ $\frac{1}{2}, \kappa = 0$ (agrees with Narumiya, Shiga ['01]) which is birational to

$$
\mathcal{F} = \left\{ xyz(x+y+z+\lambda) + 1 = 0 \right\} \subset \mathbb{P}^3, \qquad \qquad \mathbb{P}^3 \to \mathbb{P}^3, \qquad \qquad \mathbb{P}^3 \to \mathbb{P}^3, \qquad \qquad \mathbb{P}^3 \to \mathbb{P}^3
$$

Periods of 3-parameter families of K3 surfaces

- There is only one family where the construction of X_1 can be turned into a 3-parameter family of K3 surfaces with lattice polarization of Picard-Rank 17: $\mu = \frac{1}{2}$ $\frac{1}{2}, \kappa = 0.$
- Use $h(t) = (t A)(t B)(t C)$ to obtain linear system of rank 5 in A, B, C for the K3-periods on X_1 $=$ specialization of Aomoto-Gel'fand HGF of type (3,6)

$$
E(3,6)\left(\alpha_i=\frac{1}{2}\big|u,v,0,w\right)
$$

where $u = \left(\frac{C-A}{B-A}\right)$ $\frac{C-A}{B-A}$) $\frac{B}{C}$ $\frac{B}{C}$, $v = \frac{B}{C}$ $\frac{B}{C}$, $w = B$.

• Linear system specialization of the one in **Matsumoto et. al** ['93] for a family of K3 surfaces of Picard rank 16 associated with six lines in the complex plane, no three of which are concurrent.**KORKAR KERKER EL VOLO**

Kummer surfaces from SU(2)-Seiberg-Witten curve

Proposition (M.-Doran)

- The family $X_1 = S_h \to \mathbb{CP}^1$ $(\mu = 1/2, \kappa = 0)$ is a family of Jacobian K3 surfaces with $\mathrm{N}\text{-}$ polarization and $\mathrm{N}^{\perp} = H^2(2) \oplus \langle -2 \rangle$.
- There is a family $\mathbf{X}_2 \to \mathbb{CP}^1$ obtained from the covering map $t = (C s^2 - B)/(s^2 - 1), g_i(t) \mapsto g_i(t(s)) h^i(t(s)) ((s^2 - 1)^2/s)^{2i}.$

$$
\bullet\ \bm{X}_2=\operatorname{Kum}(\bm{A})\ \textit{where}
$$

Mayr, Stieberger ['95], Kokorelis ['99]: moduli space of genus-two curves with level-two structure $=$ moduli space of $\mathcal{N}=2$ heterotic string theories compactified on $\mathcal{K}3\times\mathcal{T}^2$ with one Wilson line.