On the Universal Rigidity of Tensegrity Frameworks

A.Y. Alfakih (joint work with Viet-Hang Nguyen)

Dept of Math and Statistics University of Windsor

Workshop on Discrete Geometry, Optimization and Symmetry Fields Institute, Nov 2013

A tensegrity graph is a simple undirected graph G where each edge is labeled as either a bar, a cable, or a strut.

Workshop on Discrete

A tensegrity graph is a simple undirected graph G where each edge is labeled as either a bar, a cable, or a strut.

Definition

A tensegrity framework in \mathbb{R}^r , denoted by (G, p), is a tensegrity graph where each node *i* is mapped to a point p^i in \mathbb{R}^r .

Workshop on Discrete

A tensegrity graph is a simple undirected graph G where each edge is labeled as either a bar, a cable, or a strut.

Definition

A tensegrity framework in \mathbb{R}^r , denoted by (G, p), is a tensegrity graph where each node *i* is mapped to a point p^i in \mathbb{R}^r .

If dim (affine hull of p^1, \ldots, p^n) = k, we say that tensegrity (G, p) is k-dimensional.

다. 그 같은 그 독신 가 통신이

A tensegrity graph is a simple undirected graph G where each edge is labeled as either a bar, a cable, or a strut.

Definition

A tensegrity framework in \mathbb{R}^r , denoted by (G, p), is a tensegrity graph where each node *i* is mapped to a point p^i in \mathbb{R}^r .

If dim (affine hull of p^1, \ldots, p^n) = k, we say that tensegrity (G, p) is k-dimensional.

A tensegrity framework has two aspects: a geometric one (p) and a combinatorial one (G).

「最近環路に見た」をある。

tensegrities have important applications in:

- Molecular conformation theory.
- **2** Wireless sensor network localization problem.
- Art.

Workshop on Discrete

Tensegrity as an Artwork

Kenneth Snelson needle tower sculpture in Washington D.C.

Tensegrity as an Artwork Cont'd

Kenneth Snelson Indexer II sculpture at the University of Michigan, Ann Arbor

Domination and Affine-Domination

Definition

Tensegrity (G, q) in \mathbb{R}^s is said to be dominated by tensegrity (G, p) in \mathbb{R}^r if

$$\begin{aligned} ||q^{i} - q^{j}|| &= ||p^{i} - p^{j}|| \text{ for all bar } \{i,j\}.\\ ||q^{i} - q^{j}|| &\leq ||p^{i} - p^{j}|| \text{ for all cable } \{i,j\}.\\ ||q^{i} - q^{j}|| &\geq ||p^{i} - p^{j}|| \text{ for all strut } \{i,j\}. \end{aligned}$$

Domination and Affine-Domination

Definition

Tensegrity (G, q) in \mathbb{R}^s is said to be dominated by tensegrity (G, p) in \mathbb{R}^r if

$$\begin{aligned} ||q' - q^{j}|| &= ||p' - p'|| \text{ for all bar } \{i,j\}.\\ ||q' - q^{j}|| &\leq ||p^{i} - p^{j}|| \text{ for all cable } \{i,j\}.\\ ||q^{i} - q^{j}|| &\geq ||p^{i} - p^{j}|| \text{ for all strut } \{i,j\}. \end{aligned}$$

Definition

Tensegrity (G, q) in \mathbb{R}^r is said to be affinely-dominated by tensegrity (G, p) in \mathbb{R}^r if (G, q) is dominated by (G, p) and

$$q^i = Ap^i + b$$
 for all $i = 1, \ldots, n$

for some $r \times r$ matrix A and an r-vector b.

Dimensional and Universal Rigidities

Definition

Tensegrity (G, q) in \mathbb{R}^r is said to be congruent to tensegrity (G, p) in \mathbb{R}^r if $||q^i - q^j|| = ||p^i - p^j||$ for every i = 1, ..., n.

Dimensional and Universal Rigidities

Definition

Tensegrity (G, q) in \mathbb{R}^r is said to be congruent to tensegrity (G, p) in \mathbb{R}^r if $||q^i - q^j|| = ||p^i - p^j||$ for every i = 1, ..., n.

Definition

An *r*-dimensional tensegrity (G, p) in \mathbb{R}^r is said to be dimensionally rigid if no *s*-dimensional tensegrity (G, q), for any $s \ge r + 1$, is dominated by (G, p).

Workshop on Distance

Dimensional and Universal Rigidities

Definition

Tensegrity (G, q) in \mathbb{R}^r is said to be congruent to tensegrity (G, p) in \mathbb{R}^r if $||q^i - q^j|| = ||p^i - p^j||$ for every i = 1, ..., n.

Definition

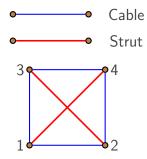
An *r*-dimensional tensegrity (G, p) in \mathbb{R}^r is said to be dimensionally rigid if no *s*-dimensional tensegrity (G, q), for any $s \ge r + 1$, is dominated by (G, p).

Definition

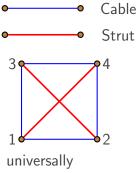
An *r*-dimensional tensegrity (G, p) in \mathbb{R}^r is said to be universally rigid if every *s*-dimensionl tensegrity (G, q), for any *s*, that is dominated by (G, p) is in fact congruent to (G, p).

Workshop on Dis

Example

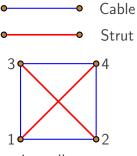


Workshop on Discrete Geometry Opt

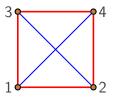


rigid.

Workshop on Discrete Geometry Opt

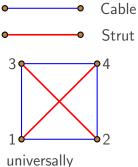


universally rigid.

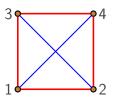


Workshop on

э.



universa rigid.



Not universally rigid. It folds on the diagonal.

Workshop

э

Theorem

An r-dimensional Tensegrity (G, p) in \mathbb{R}^r is universally rigid if and only if

• (G, p) is dimensionally rigid.

• There does not exist an r-dimensional tensegrity (G,q) in \mathbb{R}^r affinely-dominated by, but not congruent to, (G,p).

Condition 2 is known as the "no conic at infinity" condition.

Present the well-known sufficient condition for dimensional rigidity.

Workshop on Discrete

- Present the well-known sufficient condition for dimensional rigidity.
- Present conditions under which the "no conic at infinity" holds.

Stress Matrices

 A stress of a tensegrity (G, p) is a real-valued function ω on E(G) = B ∪ C ∪ S such that:

$$\sum_{j:\{i,j\}\in E(G)}\omega_{ij}(p^i-p^j)=0 \text{ for all } i=1,\ldots,n.$$

Stress Matrices

• A stress of a tensegrity (G, p) is a real-valued function ω on $E(G) = B \cup C \cup S$ such that:

$$\sum_{j:\{i,j\}\in E(G)}\omega_{ij}(p^i-p^j)=0 \text{ for all } i=1,\ldots,n.$$

• A stress ω is proper if $\omega_{ij} \ge 0$ for every $\{i, j\} \in C$ and $\omega_{ij} \le 0$ for very $\{i, j\} \in S$.

Stress Matrices

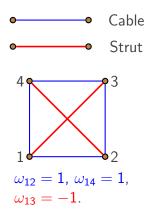
• A stress of a tensegrity (G, p) is a real-valued function ω on $E(G) = B \cup C \cup S$ such that:

$$\sum_{i:\{i,j\}\in E(G)}\omega_{ij}(p^i-p^j)=0 \text{ for all } i=1,\ldots,n.$$

- A stress ω is proper if $\omega_{ij} \ge 0$ for every $\{i, j\} \in C$ and $\omega_{ij} \le 0$ for very $\{i, j\} \in S$.
- The stress matrix associated with stress ω is the n × n symmetric matrix Ω where

$$\Omega_{ij} = \begin{cases} -\omega_{ij} & \text{if } (i,j) \in E(G), \\ 0 & \text{if } (i,j) \notin E(G), \\ \sum_{k:\{i,k\}\in E(G)} \omega_{ik} & \text{if } i = j. \end{cases}$$

Example



$$\Omega = \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

Workshop on Discr

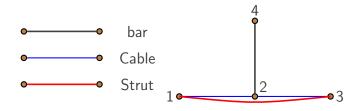
-≣->

 Ω is proper positive semidefinite of rank 1.

Sufficient Condition for Dimensional Rigidity

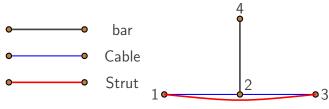
Theorem (Connelly '82)

An r-dimensional Tensegrity (G, p) on n nodes in \mathbb{R}^r $(r \le n-2)$ is dimensionally rigid if there exists a proper positive semidefinite stress matrix Ω of (G, p) of rank n - r - 1.



Workshop on Di

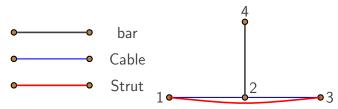
< ≣ →



A dimensionally but not universally rigid tensegrity.

Workshop on I

э



A dimensionally but not universally rigid tensegrity. The "No Conic at Infinity" Condition does not hold. In the sequel we concentrate on this condition.

A configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r is generic if the coordinates of p^1, \ldots, p^n are algebraically independent over the rationals, i.e., the coordinates of p^1, \ldots, p^n do not satisfy any nonzero polynomial with rational coefficients.

A configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^r is generic if the coordinates of p^1, \ldots, p^n are algebraically independent over the rationals, i.e., the coordinates of p^1, \ldots, p^n do not satisfy any nonzero polynomial with rational coefficients.

Lemma (Connelly '05)

Let (G, p) be an r-dimensional tensegerity. If configuration p is generic and every node of G has degree at least r, then the "no conic at infinity" condition holds. Consequently, dimensional rigidity implies universal rigidity.

다. 그 같은 그 독신 가 통신이

Configurations in General Position

Definition

A configuration $p = (p^1, ..., p^n)$ in \mathbb{R}^r is in general position if every subset of $\{p^1, ..., p^n\}$ of cardinality r + 1 is affinely independent.

Workshop on Discrete C

Configurations in General Position

Definition

A configuration $p = (p^1, ..., p^n)$ in \mathbb{R}^r is in general position if every subset of $\{p^1, ..., p^n\}$ of cardinality r + 1 is affinely independent.

Definition

A bar framework (G, p) is a tensegrity framework where all the edges are bars, i.e., E(G) = B and $C = S = \emptyset$.

Workshop on Distance

Configurations in General Position

Definition

A configuration $p = (p^1, ..., p^n)$ in \mathbb{R}^r is in general position if every subset of $\{p^1, ..., p^n\}$ of cardinality r + 1 is affinely independent.

Definition

A bar framework (G, p) is a tensegrity framework where all the edges are bars, i.e., E(G) = B and $C = S = \emptyset$.

Lemma (A. and Ye '13)

Let (G, p) be an r-dimensional bar framework. If (G, p) admits a stress matrix Ω of rank n - r - 1 and configuration p is in general position, then the "no conic at infinity" condition holds. Consequently, dimensional rigidity implies universal rigidity.

Workshop on Discrete Ge

Let C^* and S^* be the sets of stressed cables and stressed struts respectively, i.e,

 $C^* = \{\{i, j\} \in C : \omega_{ij} \neq 0\} \text{ and } S^* = \{\{i, j\} \in S : \omega_{ij} \neq 0\}.$

Let C^* and S^* be the sets of stressed cables and stressed struts respectively, i.e,

 $C^* = \{\{i, j\} \in C : \omega_{ij} \neq 0\} \text{ and } S^* = \{\{i, j\} \in S : \omega_{ij} \neq 0\}.$

Theorem (A. and V-T Nguyen '13)

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r . If the following conditions hold:

- there exists a proper stress matrix Ω of (G, p) of rank n r 1.
- for each node *i*, the set {*pⁱ*} ∪ {*p^j* : {*i*, *j*} ∈ *B* ∪ *C*^{*} ∪ *S*^{*}}
 affinely span ℝ^r.

Then the "no conic at infinity "condition holds. Consequently, dimensional rigidity implies universal rigidity.

Corollary (A. and V-T Nguyen '13)

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r . If the following conditions hold:

- there exists a proper stress matrix Ω of (G, p) of rank n r 1.
- for each node i, the set {pⁱ} ∪ {p^j : {i,j} ∈ B ∪ C* ∪ S*} is in general position in ℝ^r.

Then the "no conic at infinity " condition holds. Consequently, dimensional rigidity implies universal rigidity.

Theorem (A. and V-T Nguyen '13)

Let (G, p) be an r-dimensional bar framework in \mathbb{R}^r . If the following conditions hold:

- there exists a stress matrix Ω of (G, p) of rank n r 1.
- ② for each node *i*, the set $\{p^i\} \cup \{p^j : \{i, j\} \in E(G)\}$ affinely span ℝ^r.

Then the "no conic at infinity " condition holds. Consequently, dimensional rigidity implies universal rigidity.

The Idea Behind the Proof

 We use Gram matrices to represent configuration p = (p¹,..., pⁿ).

Workshop on Discrete C

The Idea Behind the Proof

- We use Gram matrices to represent configuration p = (p¹,..., pⁿ).
- Let $P^T = [p^1 \cdots p^n]$. *P* is called the configuration matrix. Then the Gram matrix is PP^T .

- We use Gram matrices to represent configuration $p = (p^1, \dots, p^n)$.
- 2 Let $P^T = [p^1 \cdots p^n]$. *P* is called the configuration matrix. Then the Gram matrix is PP^T .
- Thus the universal rigidity problem becomes amenable to semi-definite programming.

- We use Gram matrices to represent configuration $p = (p^1, \dots, p^n)$.
- 2 Let $P^T = [p^1 \cdots p^n]$. *P* is called the configuration matrix. Then the Gram matrix is PP^T .
- Thus the universal rigidity problem becomes amenable to semi-definite programming.

Theorem (A. and V-T Nguyen '13)

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r and let Ω be a proper positive semidefinite stress matrix of (G, p). Then Ω is a proper stress matrix for all tensegrities (G, p') dominated by (G, p).

Workshine Alexander

• A Gale matrix of *r*-dimensional tensegrity (G, p) in \mathbb{R}^r is any $n \times (n - r - 1)$ matrix *Z* such that the columns of *Z* form a basis of the null space of : $\begin{bmatrix} p^1 & p^2 & \cdots & p^n \\ 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} P^T \\ e^T \end{bmatrix}.$

- A Gale matrix of *r*-dimensional tensegrity (G, p) in \mathbb{R}^r is any $n \times (n r 1)$ matrix *Z* such that the columns of *Z* form a basis of the null space of : $\begin{bmatrix} p^1 & p^2 & \cdots & p^n \\ 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} P^T \\ e^T \end{bmatrix}.$
- In Polytope theory, the rows of Z (z¹,..., zⁿ in R^{n-r-1}) are called Gale transforms of p¹,..., pⁿ.

- A Gale matrix of *r*-dimensional tensegrity (G, p) in \mathbb{R}^r is any $n \times (n r 1)$ matrix *Z* such that the columns of *Z* form a basis of the null space of : $\begin{bmatrix} p^1 & p^2 & \cdots & p^n \\ 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} P^T \\ e^T \end{bmatrix}.$
- In Polytope theory, the rows of Z (z¹,..., zⁿ in R^{n-r-1}) are called Gale transforms of p¹,..., pⁿ.
- The Gale matrix Z encodes the affine dependencies among the points p^1, \ldots, p^n .

Theorem (A '07)

Let Ω and Z be, respectively, a stress matrix and a Gale matrix of (G, p). Then

 $\Omega = Z \Psi Z^T$ for some symmetric matrix Ψ .

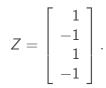
On the other hand, let Ψ' be any symmetric matrix such that

 $z^{i^{T}}\Psi'z^{j} = 0$ for all $\{i, j\} \notin E$,

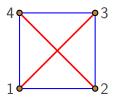
where z^i is the *i*th row of Z. Then $Z\Psi'Z^T$ is a stress matrix of (G, p).

Example

Gale matrix is



and stress matrix $\Omega = ZZ^T$.



Workshop on Discrete Geometry Opt

Lemma

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r and let z^1, \ldots, z^n be, respectively, Gale transforms of p^1, \ldots, p^n . Let $J \subseteq \{1, \ldots, n\}$ and assume that the set of vectors $\{p^i : i \in J\}$ affinely span \mathbb{R}^r . Then the set $\{z^i : i \in \overline{J}\}$ is linearly independent, where $\overline{J} = \{1, \ldots, n\} \setminus J$.

Let $F^{ij} = (e^i - e^j)(e^i - e^j)^T$, e^i is the *i*th standard unit vector in \mathbb{R}^n . Recall that the configuration matrix $P^T = [p^1 \cdots p^n]$.

Workshop on Discrete Coor

Let $F^{ij} = (e^i - e^j)(e^i - e^j)^T$, e^i is the *i*th standard unit vector in \mathbb{R}^n . Recall that the configuration matrix $P^T = [p^1 \cdots p^n]$.

Lemma

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r . Then the "no conic at infinity" holds iff there does not exist a nonzero symmetric matrix Φ such that:

trace(
$$F^{ij}(P\Phi P^T)$$
)= 0 for all $\{i, j\} \in B$.
trace($F^{ij}(P\Phi P^T)$) ≤ 0 for all $\{i, j\} \in C$.
trace($F^{ij}(P\Phi P^T)$) ≥ 0 for all $\{i, j\} \in S$.

 E^{ij} is the matrix with 1s in the *ij*th and *ji*th entries and 0's elsewhere.

Workshop on Discrete G

 E^{ij} is the matrix with 1s in the *ij*th and *ji*th entries and 0's elsewhere.

Lemma

Let (G, p) be an r-dimensional tensegrity in \mathbb{R}^r and let Z be a Gale matrix of (G, p). Then the "no conic at infinity" holds iff there does not exist a nonzero $y = (y_{ij}) \in \mathbb{R}^{|\bar{E}|+|C|+|S|}$ and $\xi = (\xi_i) \in \mathbb{R}^{n-r-1}$ where $y_{ij} \ge 0$ for all $\{i, j\} \in C$ and $y_{ij} \le 0$ for all $\{i, j\} \in S$ such that:

$$\mathcal{E}(\mathbf{y})Z = \mathbf{e}\xi^{T}$$

where
$$\mathcal{E}(y) = \sum_{\{i,j\}\in \overline{E}\cup C\cup S} y_{ij} E^{ij}$$
.

막힌 소란을 한 특징 한 특징을

Affine-Domination when a proper Ω is Known

The following are equivalent:

- the 'no conic at infinity" holds.
- (Whiteley unpublished) $\not\exists$ symmetric $\Phi \neq 0$ such that:

trace $(F^{ij}(P\Phi P^T))=0$ for all $\{i, j\} \in B \cup C^* \cup S^*$. trace $(F^{ij}(P\Phi P^T))\leq 0$ for all $\{i, j\} \in C^0$. trace $(F^{ij}(P\Phi P^T))\geq 0$ for all $\{i, j\} \in S^0$.

③ $\exists y = (y_{ij}) \neq 0 \in \mathbb{R}^{|\bar{E}| + |C^0| + |S^0|}$ and $\xi = (\xi_i) \in \mathbb{R}^{n-r-1}$ where $y_{ij} \geq 0 \forall \{i, j\} \in C^0$ and $y_{ij} \leq 0 \forall \{i, j\} \in S^0$ such that:

$$\mathcal{E}^0(y)Z=e\xi^{\mathsf{T}},$$

where $\mathcal{E}^{0}(y) = \sum_{\{i,j\}\in \overline{E}\cup C^{0}\cup S^{0}} y_{ij}E^{ij}$.

Lemma

Assume that $\Omega = Z\Psi Z^T$ is a proper stress matrix of (G, p) of rank n - r - 1. Then the following are equivalent:

- the "no conic at infinity" holds
- ② $\exists y = (y_{ij}) \neq 0 \in \mathbb{R}^{|\bar{E}| + |C^0| + |S^0|}$ and $\xi = (\xi_i) \in \mathbb{R}^{n-r-1}$ where $y_{ij} \geq 0$ for all $\{i, j\} \in C^0$ and $y_{ij} \leq 0$ for all $\{i, j\} \in S^0$ such that:

$$\mathcal{E}^0(y)Z=0,$$

where $\mathcal{E}^{0}(y) = \sum_{\{i,j\}\in \overline{E}\cup C^{0}\cup S^{0}} y_{ij}E^{ij}$.

Outline of the Proof of the main Theorem

It suffices to prove that under the theorem assumptions, the only solution of

$$\mathcal{E}^0(y)Z = 0 \tag{1}$$

is the trivial solution y = 0. Hence, the "no conic at infinity" condition holds.

Outline of the Proof of the main Theorem

It suffices to prove that under the theorem assumptions, the only solution of

$$\mathcal{E}^0(y)Z = 0 \tag{1}$$

is the trivial solution y = 0. Hence, the "no conic at infinity" condition holds. Equation (1) can be written as

$$\sum_{j=1}^{n} (\mathcal{E}^{0}(y))_{ij} z^{i} = 0 \text{ for all } i = 1, \ldots, n.$$

which reduces to

$$\sum_{j:\{i,j\}\in \overline{E}\cup C^0\cup S^0} (\mathcal{E}^0(y))_{ij} z^i = 0.$$

Outline of the Proof of the main Theorem

It suffices to prove that under the theorem assumptions, the only solution of

$$\mathcal{E}^0(y)Z = 0 \tag{1}$$

is the trivial solution y = 0. Hence, the "no conic at infinity" condition holds. Equation (1) can be written as

$$\sum_{j=1}^n (\mathcal{E}^0(y))_{ij} z^i = 0 \text{ for all } i = 1, \ldots, n.$$

which reduces to

$$\sum_{i:\{i,j\}\in\overline{E}\cup C^0\cup S^0} (\mathcal{E}^0(y))_{ij} z^i = 0.$$

Thus the result follows from the linear independence of $\{z^i : \{i, j\} \in \overline{E} \cup C^0 \cup S^0\}.$

Thank You