Efficient use of semidefinite programming for the selection of rotamers in protein conformation

Forbes Burkowski, **Yuen-Lam Cheung** & Henry Wolkowicz

Retrospective Workshop on Discrete Geometry, Optimization and Symmetry

November 2013

[Side chain positioning](#page-38-0) 2013 1/25

つひつ

∢ ロ ▶ ∢ 御 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Outline

- Primer on protein conformation
- **Side chain positioning**: IP formulation
- SDP relaxation and minimal face
- Implementation: a cutting plane technique
- Quality measurement for integral solutions, and numerics

 $2Q$

イロト イ部 トイヨ トイヨ トーヨ

 \leftarrow \Box \rightarrow \rightarrow \Box

K 로)

 $2Q$

 \leftarrow \Box \rightarrow \rightarrow \Box

K 로)

 $2Q$

An amino acid has five components:

- alpha carbon
- hydrogen atom
- carboxyl group
- amino group
- side chain

A protein is a polymer formed from a chain of amino acids (with different side chains).

 $2Q$

 c — c

H

R

 \leftarrow \Box \rightarrow \rightarrow \Box

N

H

H

O

 \mathbb{R}^2 メ ヨ ト

O

H

 \leftarrow \Box \rightarrow \rightarrow \Box

K 로)

 $2Q$

[Motivation: a subproblem from protein conformation](#page-6-0)

Protein conformation: a primer

Forming a protein through condensation

A protein is a polymer formed from a chain of amino acids, bonded via a condensation process:

つくい

K ロ ト K 伊 ト K

 \mathbb{R}^2 メ ヨ ト [Motivation: a subproblem from protein conformation](#page-7-0)

Protein conformation: a primer

Forming a protein through condensation

A protein is a polymer formed from a chain of amino acids, bonded via a condensation process:

 \leftarrow \Box \rightarrow \rightarrow \Box

つくい

[Motivation: a subproblem from protein conformation](#page-8-0)

Protein conformation: a primer

Forming a protein through condensation

A protein is a polymer formed from a chain of amino acids, bonded via a condensation process:

Backbone and the side chain positioning

Protein conformation problem:

Given a 2D chain of residues of a protein, find the 3D positions of all the atoms so that

- the bond lengths and bond angles are respected, and
- the total energy of the resultant protein conformation is at global minimum.

つくい

←ロト ←伊ト ← ヨ

Backbone and the side chain positioning

Side chain positioning problem, a subproblem for protein conformation:

◦ Suppose we know the positions of the *backbone* atoms. Find the 3D positions of the atoms in the side chains so that

the total energy of the resultant conformation is at global min.

◦ Further assumption: each of the side chains can take one of finitely many possible positions, a.k.a. *rotamers*.

 090

Side chain positioning problem

Setup

Given a weighted complete *p*-partite graph with vertex set

$$
\mathcal{V} = \bigcup_{k=1}^p \mathcal{V}_k, \quad \text{where } \mathcal{V}_1 = 1 : m_1, \quad \mathcal{V}_k = \left(1 + \sum_{l=1}^{k-1} m_l\right) : \sum_{l=1}^k m_l, \ \forall \, k = 2, \ldots, p,
$$

(and $m \in \mathbb{Z}^p$ is a positive vector), with

edge weight
$$
E_{ij} = E_{ji}
$$
, \forall {*i*, *j*} \in (1 : *n*₀) \times (1 : *n*₀), where *n*₀ = $\sum_{k=1}^{p} m_j$.

 $2Q$

Side chain positioning

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition V_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Side chain positioning

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition V_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Side chain positioning

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition V_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

 \leftarrow \Box \rightarrow \rightarrow \Box

 $2Q$

Side chain positioning problem

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition V_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Complexity of sidechain positioning problem

- NP-hard [Akutsu, 1997; Pierce and Winfree, 2002]
- Special cases of the sidechain positioning problem:
	- MAX 3-SAT [Chazelle *et al.*, 2004]
		- \implies side chain positioning problem is "inapproximable"
	- maximum *k*-cut problem

つくい

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition V_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Integer quadratic programming formulation

$$
v_{\text{SCP}} = \min_{x} x^{\top} E x
$$

s.t.
$$
x = [v^{(1)}; v^{(2)}; \cdots; v^{(p)}] \in \{0, 1\}^{n_0},
$$

$$
\bar{e}^{\top} v^{(k)} = 1, \forall k = 1, ..., p.
$$

 $x \in \mathbb{R}^{n_0}$ is an incident vector for the choices of vertices in each partition.

つくい

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition V_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Integer quadratic programming formulation

$$
v_{\text{SCP}} = \min_{x} x^{\top} Ex
$$

s.t. $Ax = \overline{e} \in \mathbb{R}^p$,
 $x \in \{0, 1\}^{n_0}$,

where

$$
A = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} \vec{e}^{\top} & 0 & \cdots & 0 \\ 0 & \vec{e}^{\top} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \vec{e}^{\top} \end{bmatrix} \in \mathbb{R}^{p \times n_0}.
$$

 Ω

イロト イ押ト イミト イヨト

$$
v_{\text{SCP}} = \min_{x} x^{\top} Ex
$$

s.t. $Ax = \overline{e} \in \mathbb{R}^p$,

$$
x \in \{0, 1\}^{n_0}.
$$
 (SCP)

Valid constraints on *x* and $X := xx^{\top}$

- nonegativity, i.e., *X* > 0;
- all the diagonal blocks of *X* are diagonal, i.e., (*A* >*A* − *I*) *X* = 0;
- \circ the "arrow" constraint, i.e., diag(*X*) = *x*;
- $\|\mathbf{A}\mathbf{x} \mathbf{e}\|^2_2 = 0$, i.e., $\langle \mathbf{A}^\top \mathbf{A}, \mathbf{X} \rangle 2\mathbf{e}^\top \mathbf{x} + \mathbf{p} = 0$.

Indeed any $x \in \mathbb{R}^{n_0}$ together with $X = xx^\top$ satisfying the 3rd-4th constraints is feasible for (SCP).

 $2Q$

Valid constraints on *x* and $X := xx^\top$

- \circ nonegativity, i.e., $X \ge 0$;
- all the diagonal blocks of *X* are diagonal, i.e., (*A* >*A* − *I*) *X* = 0;
- \circ the "arrow" constraint, i.e., diag(*X*) = *x*;
- \circ $||Ax \overline{e}||_2^2 = 0$, i.e., $\langle A^\top A, X \rangle 2\overline{e}^\top x + p = 0$.

Indeed any $x \in \mathbb{R}^{n_0}$ together with $X = xx^\top$ satisfying the 3rd-4th constraints is feasible for (SCP).

Equivalent formulation of (SCP)

$$
v_{\text{SCP}} = \min_{x, X} \langle E, X \rangle
$$

s.t. $(A^{\top}A - I) \circ X = 0$,
 $\langle A^{\top}A, X \rangle - 2e^{\top}x + p = 0$,
diag(X) = x,
 $X = xx^{\top}$.

ヨリ

4 ロ ト 4 伊 ト 4

 $2Q$

SDP relaxation of (SCP)

$$
v_{\text{SCP}} \geq v_{\text{SCP(SDP)}} := \min_{x,X} \langle E, X \rangle
$$

s.t. diag(X) = x,

$$
\langle A^\top A, X \rangle - 2\overline{e}^\top x + p = 0,
$$

$$
(A^\top A - I) \circ X = 0,
$$

$$
X = x x^\top.
$$

 QQQ

イロト イ御 トイヨ トイヨ

SDP relaxation of (SCP)

$$
v_{\text{SCP}} \ge v_{\text{SCP(SDP)}} := \min_{x,X} \quad \langle E, X \rangle
$$

s.t. diag(X) = x,

$$
\langle A^{\top} A, X \rangle - 2\overline{e}^{\top} x + p = 0,
$$

$$
(A^{\top} A - I) \circ X = 0,
$$

$$
X \succeq x x^{\top} \text{ (i.e., } X - x x^{\top} \in \mathbb{S}_{+}^{n}).
$$

 QQQ

イロト イ御 トイヨ トイヨ

SDP relaxation of (SCP)

$$
v_{\text{SCP}} \ge v_{\text{SCP(SDP)}} := \min_{x, X} \langle E, X \rangle
$$

s.t. diag(X) = x,

$$
\langle A^\top A, X \rangle - 2\overline{e}^\top x + p = 0,
$$
(SCP-SDP)

$$
(A^\top A - I) \circ X = 0,
$$

$$
Y = \begin{bmatrix} 1 & x^\top \\ x & X \end{bmatrix} \succeq 0.
$$

 QQQ

イロト イ御 トイヨ トイヨ

SDP relaxation of (SCP) $v_{\text{SCP}} \geq v_{\text{SCP(SDP)}} \coloneq$ $\min_{x,X}$
s.t. $\langle E, X \rangle$ $diag(X) = x$, *| p* −*e*[⊤] $-\bar{e}$ $A^{\top}A$ $\bigg | \bigg |, Y \bigg \rangle = 0,$ $(A^{\top}A - I) \circ X = 0,$ $Y = \begin{bmatrix} 1 & x^\top \ x & X \end{bmatrix} \succeq 0.$ (SCP-SDP)

 QQQ

SDP relaxation of (SCP) $v_{\text{SCP}} \geq v_{\text{SCP(SDP)}} := \min_{x,X} \langle E, X \rangle$ s.t. diag(X) = x , *| p* −*e*[⊤] $-\bar{e}$ $A^{\top}A$ $\bigg |$, $Y\bigg \rangle = 0$, $(A^{\top}A - I) \circ X = 0,$ $Y = \begin{bmatrix} 1 & x^\top \ x & X \end{bmatrix} \succeq 0.$ (SCP-SDP)

Failure of the Slater condition

 \circ But $\left[\begin{array}{cc} p & -\bar{e}^{\top} \\ \bar{e} & A^{\top} A \end{array} \right]$ $-\bar{e}$ $A^{\top}A$ $\Big] \geq 0 \Rightarrow$ Slater condition fails for (SCP-SDP), i.e., (SCP-SDP) does not have a feas. solution *Y* that is positive definite

 $2Q$

Failure of the Slater condition

$$
\circ \left[\begin{matrix} p & -\bar{e}^{\top} \\ -\bar{e} & A^{\top}A \end{matrix}\right] \succeq 0 \implies
$$
 Slater condition fails for (SCP-SDP).

- *Y* feasible \implies *Y* = *WXW*^T for some *X* ∈ $\mathbb{S}^{n_0-p+1}_+$ (*W*: full col. rank).
- $W \mathbb{S}^{n_0-p+1}_+ W^\top$ is a proper face of \mathbb{S}^n_+ .
- In fact, *W* S *n*0−*p*+1 ⁺ *W*> is the minimal face of (SCP-SDP).

 $2Q$

イロト イ部 トイヨ トイヨ トーヨ

Facial reduction

 $\text{Using the minimal face } W\textbf{S}_+^{n_0-p+1}W^\top$, i.e., the substitution $Y = W\hat{Y}W^{\top}$,

$$
v_{\text{SCP(SDP)}} = \min_{x, X} \langle E, X \rangle
$$

s.t. diag(X) = x,

$$
(A^{\top}A - I) \circ X = 0,
$$

(i.e., the diagonal blocks are diagonal matrices)
$$
\left\langle \begin{bmatrix} p & -\bar{e}^{\top} \\ -\bar{e} & A^{\top}A \end{bmatrix}, Y \right\rangle = 0,
$$

$$
Y = \begin{bmatrix} 1 & x^{\top} \\ x & X \end{bmatrix} \succeq 0.
$$

 $2Q$

イロト イ押ト イヨト イヨト

Facial reduction

Using the minimal face $W\mathbb{S}^{n_0-p+1}_+W^\top$, i.e., the substitution $Y = W\hat{Y}W^{\top}$,

$$
v_{\text{SCP(SDP)}} = \min_{x,X} \langle E, X \rangle
$$

s.t. diag(X) = x,

$$
(A^{\top}A - I) \circ X = 0,
$$

(i.e., the diagonal blocks are diagonal matrices)

$$
Y = W\hat{Y}W^{\top}
$$

$$
Y = \begin{bmatrix} 1 & x^{\top} \\ x & X \end{bmatrix} \succeq 0.
$$

 $2Q$

イロト イ押ト イヨト イヨト

Facial reduction

 $\text{Using the minimal face } W\textbf{S}_+^{n_0-p+1}W^\top$, i.e., the substitution $Y = W\hat{Y}W^{\top}$,

$$
v_{\text{SCP(SDP)}} = \min_{\hat{x}, \hat{X}} \left\langle W^{\top} \begin{bmatrix} 0 & 0 \\ 0 & E \end{bmatrix} W, \begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \right\rangle
$$

s.t. diag(\hat{X}) = \hat{x} ,
($A^{\top}A - I$) $\circ \hat{X} = 0$,
(i.e., the diagonal blocks are diagonal matrices)

$$
\begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \in \mathbb{S}_{+}^{n_{0}-p+1}.
$$

 \implies a "smaller" and equiv. SDP relaxation of (SCP)

メロトメ 倒 トメ ミトメ ミト

 $2Q$

Cutting plane technique

Nonnegativity constraint $Y \geq 0$

- *Y* being doubly nonnegative is a valid constraint.
- But the constraint

$$
\begin{bmatrix} 0 & 0 \\ 0 & A^\top A - I \end{bmatrix} \circ Y = 0
$$

and $Y \in \mathbb{S}^n_+$ implies that enforcing $Y \geq 0$ in the SDP relaxation necessarily lead to the failure of the Slater condition.

◦ It is still too expensive to enforce *Yij* > 0 for all (*i*, *j*) ∈ B.

 QQ

Cutting plane technique

Cutting plane technique

Initial cuts: $\mathbb{I} \subseteq \mathbb{B}$; **repeat** the following:

◦ Solve

$$
v_{\text{SCP(SDP)}}(J) = \min_{\hat{x}, \hat{X}} \left\langle W^{\top} \begin{bmatrix} 0 & 0 \\ 0 & E \end{bmatrix} W, \begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \right\rangle
$$

s.t. diag(\hat{X}) = \hat{x} , ($A^{\top}A - I$) $\circ \hat{X} = 0$,
 $\hat{Y} = \begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \in \mathbb{S}_{+}^{n_{0}-p+1}$,

$$
(W\hat{Y}W^{\top})_{ij} \geq 0, \forall (i,j) \in J.
$$
 (SDP(J))

for solution \hat{Y}^* .

◦ If *WY*ˆ [∗]*W*> > 0 or if *Y*ˆ [∗] is "good enough", then stop; else, find a group J' of indices $(i, j) \in \mathcal{B}$ s.t.

$$
(W\hat{Y}^*W^\top)_{ij} << 0, \quad E_{i-1,j-1} >> 0.
$$

◦ Update: I ← I ∪ I 0 .

 QQ

Existing rounding technique

The typical rounding techniques; also in Chazelle *et al.*, 2004

- Projection rounding: use the diagonal of *WY*ˆ [∗]*W*>;
- Perron Frobenius rounding: use the principal eigenvector of *WY*ˆ [∗]*W*>, which empirically is nonnegative.

The fractional vector *u* from either of the rounding method satisfies

$$
\bar{e}^{\top}u^{(k)} = 1 \ \forall k \in 1 : p, \quad u = [u^{(1)}; u^{(2)}; \dots; u^{(p)}].
$$

If $u \geqslant 0$, then we can use $u^{(1)}$, $u^{(2)}$, ..., $u^{(p)}$ as vectors of probability distributions:

$$
v^{(k)} = e_j \in \mathbb{R}^{m_k} \text{ with prob. } u_j^{(k)}, \ \forall j \in 1 : m_k, \ k \in 1 : p.
$$

 $2Q$

Quality measurement for integral solutions

Measuring the quality of integral solutions

- Let *x* be a feasible integral solution of (SCP).
- ∘ Bound: t^* ≤ v_{SCP} (s_{DP}) ≤ v_{SCP} ≤ $x^{\top} E x$, where *t* ∗ is the opt. value of the dual of the SDP relaxation.
- Relative difference:

 x ^{\top} $Ex - t^*$ $\frac{1}{2}|x^{\top}Ex + t^*|$

 QQQ

Results on small proteins

 $2Q$

メロトメ部 トメミトメミト

Results on medium-sized proteins

 299

E

メロトメ部 トメミトメミト

Results on large proteins

 299

F.

メロトメ部 トメミトメミト

Individual speedup contribution

ti,*j* := run time for getting the final solution of IQP for instance *i* by method *j*, *ti*,*j* $\overline{\min\left\{t_{i,j}: j=1,2,3,4\right\}}'$ $r_{i,j}$:= $\rho_i(\tau) :=$ number of instance *i* such that $r_{i,j} \leq \tau$ **←ロト ← 伊** $\leftarrow \equiv$ QQQ

An illustration in protein conformation

Yellow : reconstruction of the protein 1AAC

Blue : crystallized form of 1AAC from the Protein Data Bank

 $2Q$

K ロト K 伊 ト K

Thank you!

一番

 $\mathcal{O}\subseteq\mathcal{O}$

イロト (個) (注) (注)