Efficient use of semidefinite programming for the selection of rotamers in protein conformation

> Forbes Burkowski, **Yuen-Lam Cheung &** Henry Wolkowicz

Retrospective Workshop on Discrete Geometry, Optimization and Symmetry

November 2013

Y.-L. Cheung

Side chain positioning

2013 1/25

Outline

- Primer on protein conformation
- Side chain positioning: IP formulation
- SDP relaxation and minimal face
- Implementation: a cutting plane technique
- Quality measurement for integral solutions, and numerics

<ロ> (四) (四) (三) (三) (三) (三)

Protein conformation: a primer

Y.-L. Cheung

2013 3/25

500

< ロト < 同ト < 三ト</p>

Protein conformation: a primer

2.1	-	-			
Υ.		()	20	1117	0
1.0	- L.	<u> </u>	LC.	u	12
					۰.

2013 3/25

< □ > < @ > < 注

Protein conformation: a primer

An amino acid has five components:

- alpha carbon
- hydrogen atom
- carboxyl group
- amino group
- side chain

A protein is a polymer formed from a chain of amino acids (with different side chains).

37.7	0			
V _1	()	101	1177 (٣
11-		LC I		2
			- c	2

< ∃ >

500

Η

Η

R

< ロト < 同ト < 三ト</p>

Η

H

N

Protein conformation: a primer

31.7	-		
Y -1.	(hei	ino
	~		····6

イロト イヨト イヨト

Protein conformation: a primer

Forming a protein through condensation

A protein is a polymer formed from a chain of amino acids, bonded via a condensation process:

Protein conformation: a primer

Forming a protein through condensation

A protein is a polymer formed from a chain of amino acids, bonded via a condensation process:

Protein conformation: a primer

Forming a protein through condensation

A protein is a polymer formed from a chain of amino acids, bonded via a condensation process:

Protein conformation: a primer

Backbone and the side chain positioning

Protein conformation problem:

Given a 2D chain of residues of a protein, find the 3D positions of all the atoms so that

- the bond lengths and bond angles are respected, and
- the total energy of the resultant protein conformation is at global minimum.

37.7	0			
V _1	()	101	1177 (٣
11-		LC I		2
			- c	2

2013 5/25

Protein conformation: a primer

Backbone and the side chain positioning

Side chain positioning problem, a subproblem for protein conformation:

Suppose we know the positions of the *backbone* atoms.
Find the 3D positions of the atoms in the side chains so that

the total energy of the resultant conformation is at global min.

 Further assumption: each of the side chains can take one of finitely many possible positions, a.k.a. *rotamers*.

Side chain positioning problem

Setup

Given a weighted complete *p*-partite graph with vertex set

$$\mathcal{V} = \bigcup_{k=1}^{p} \mathcal{V}_{k}, \quad \text{where } \mathcal{V}_{1} = 1: m_{1}, \quad \mathcal{V}_{k} = \left(1 + \sum_{l=1}^{k-1} m_{l}\right): \sum_{l=1}^{k} m_{l}, \forall k = 2, \dots, p,$$

(and $m \in \mathbb{Z}^p$ is a positive vector), with

edge weight $E_{ij} = E_{ji}, \quad \forall \{i, j\} \in (1:n_0) \times (1:n_0), \text{ where } n_0 = \sum_{k=1}^p m_j.$

5900

Side chain positioning

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition \mathcal{V}_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

31.3		-		
V _ I		be	1111	\mathbf{n}
11	\	110	: ui	1g

イロト イロト イヨト

Side chain positioning

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition \mathcal{V}_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

31.3		-		
V _ I		be	1111	\mathbf{n}
11	\	110	: ui	1g

イロト イロト イヨト

Side chain positioning

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition \mathcal{V}_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

200

< ロト < 回 > < 回 > <</p>

Side chain positioning problem

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition \mathcal{V}_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Complexity of sidechain positioning problem

- NP-hard [Akutsu, 1997; Pierce and Winfree, 2002]
- Special cases of the sidechain positioning problem:
 - MAX 3-SAT [Chazelle et al., 2004]
 - \implies side chain positioning problem is "inapproximable"
 - maximum *k*-cut problem

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition \mathcal{V}_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Integer quadratic programming formulation

$$v_{\text{SCP}} = \min_{x} \quad x^{\top} E x$$

s.t. $x = [v^{(1)}; v^{(2)}; \cdots; v^{(p)}] \in \{0, 1\}^{n_0}$
 $\bar{e}^{\top} v^{(k)} = 1, \ \forall k = 1, \dots, p.$

 $x \in \mathbb{R}^{n_0}$ is an incident vector for the choices of vertices in each partition.

Statement of the sidechain positioning problem

Pick exactly one vertex from each partition \mathcal{V}_k ($\forall k = 1, 2, ..., p$) s.t.

the total edge weight of the induced subgraph is minimized.

Integer quadratic programming formulation

$$egin{aligned} & \mathcal{P}_{\mathrm{SCP}} = & \min_x \quad x^ op Ex \ & \mathrm{s.t.} \quad Ax = ar{e} \in \mathbb{R}^p, \ & x \in \{0,1\}^{n_0}, \end{aligned}$$

where

$$A = \begin{bmatrix} m_1 & m_2 & & m_p \\ \bar{e}^\top & 0 & \cdots & 0 \\ 1 & \bar{e}^\top & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & \bar{e}^\top \end{bmatrix} \in \mathbb{R}^{p \times n_0}.$$

Y.-L. Cheung

500

イロト 不得 とくほとくほう

$$v_{\text{SCP}} = \min_{x} \quad x^{\top} E x$$

s.t. $Ax = \bar{e} \in \mathbb{R}^{p},$ (SCP)
 $x \in \{0, 1\}^{n_{0}}.$

Valid constraints on *x* and *X* := xx^{\top}

- nonegativity, i.e., $X \ge 0$;
- all the diagonal blocks of X are diagonal, i.e., $(A^{\top}A I) \circ X = 0$;
- the "arrow" constraint, i.e., diag(X) = x;
- $\circ \ \|Ax \overline{e}\|_2^2 = 0, \text{ i.e., } \langle A^\top A, X \rangle 2\overline{e}^\top x + p = 0.$

Indeed any $x \in \mathbb{R}^{n_0}$ together with $X = xx^{\top}$ satisfying the 3rd-4th constraints is feasible for (SCP).

5900

Valid constraints on *x* and $X := xx^{\top}$

- nonegativity, i.e., $X \ge 0$;
- all the diagonal blocks of *X* are diagonal, i.e., $(A^{\top}A I) \circ X = 0$;
- the "arrow" constraint, i.e., diag(X) = x;
- $\circ \ \|Ax-\bar{e}\|_2^2=0, \text{ i.e., } \ \langle A^\top A, X\rangle-2\bar{e}^\top x+p=0.$

Indeed any $x \in \mathbb{R}^{n_0}$ together with $X = xx^{\top}$ satisfying the 3rd-4th constraints is feasible for (SCP).

Equivalent formulation of (SCP)

$$v_{\text{SCP}} = \min_{\substack{x,X \\ \text{s.t.}}} \langle E, X \rangle$$

s.t. $(A^{\top}A - I) \circ X = 0,$
 $\langle A^{\top}A, X \rangle - 2\bar{e}^{\top}x + p = 0,$
 $\operatorname{diag}(X) = x,$
 $X = xx^{\top}.$

Y.-L. Cheung

2013 11/25

イロト イロト イヨト

SDP relaxation of (SCP)

$$v_{\text{SCP}} \ge v_{\text{SCP(SDP)}} := \min_{\substack{x,X \\ x,X}} \langle E, X \rangle$$

s.t. diag(X) = x,
 $\langle A^{\top}A, X \rangle - 2\bar{e}^{\top}x + p = 0,$
 $(A^{\top}A - I) \circ X = 0,$
 $X = xx^{\top}.$

Y.-L. Cheung

2013 12/25

5900

SDP relaxation of (SCP)

$$v_{\text{SCP}} \ge v_{\text{SCP(SDP)}} := \min_{\substack{x,X \\ x,X}} \langle E, X \rangle$$

s.t. diag(X) = x,
 $\langle A^{\top}A, X \rangle - 2\bar{e}^{\top}x + p = 0,$
 $(A^{\top}A - I) \circ X = 0,$
 $X \succeq xx^{\top}$ (i.e., $X - xx^{\top} \in \mathbb{S}^{n}_{+}$).

Y.-L. Cheung

2013 12/25

5900

SDP relaxation of (SCP)

$$v_{\text{SCP}} \ge v_{\text{SCP(SDP)}} := \min_{\substack{x,X \\ x,X}} \langle E, X \rangle$$

s.t. diag(X) = x,
 $\langle A^{\top}A, X \rangle - 2\bar{e}^{\top}x + p = 0,$ (SCP-SDP)
 $(A^{\top}A - I) \circ X = 0,$
 $Y = \begin{bmatrix} 1 & x^{\top} \\ x & X \end{bmatrix} \succeq 0.$

Y.-L. Cheung

2013 12/25

5900

SDP relaxation of (SCP) $v_{SCP} \ge v_{SCP(SDP)} := \min_{\substack{x,X \\ x,X}} \langle E, X \rangle$ s.t. diag(X) = x, $\left\langle \begin{bmatrix} p & -\overline{e}^{\top} \\ -\overline{e} & A^{\top}A \end{bmatrix}, Y \right\rangle = 0, \quad (SCP-SDP)$ $(A^{\top}A - I) \circ X = 0,$ $Y = \begin{bmatrix} 1 & x^{\top} \\ x & X \end{bmatrix} \succeq 0.$

Y.-L. Cheung

2013 12 / 25

200

SDP relaxation of (SCP) $v_{SCP} \ge v_{SCP(SDP)} := \min_{\substack{x,X \\ x,X \\ s.t.}} \langle E, X \rangle$ s.t. diag(X) = x, $\left\langle \begin{bmatrix} p & -\overline{e}^{\mathsf{T}} \\ -\overline{e} & A^{\mathsf{T}}A \end{bmatrix}, Y \right\rangle = 0, \quad \text{(SCP-SDP)}$ $(A^{\mathsf{T}}A - I) \circ X = 0,$ $Y = \begin{bmatrix} 1 & x^{\mathsf{T}} \\ x & X \end{bmatrix} \succeq 0.$

Failure of the Slater condition

• But $\begin{bmatrix} p & -\bar{e}^{\top} \\ -\bar{e} & A^{\top}A \end{bmatrix} \succeq 0 \implies$ Slater condition fails for (SCP-SDP), i.e., (SCP-SDP) does not have a feas. solution *Y* that is positive definite

2013 12/25

SQA

Failure of the Slater condition

$$\circ \begin{bmatrix} p & -\overline{e}^{\dagger} \\ -\overline{e} & A^{\top}A \end{bmatrix} \succeq 0 \implies \text{Slater condition fails for (SCP-SDP)}.$$

• Y feasible
$$\implies$$
 Y = WXW^T for some X $\in \mathbb{S}^{n_0-p+1}_+$
(W: full col. rank).

•
$$W \mathbb{S}^{n_0 - p + 1}_+ W^\top$$
 is a proper face of \mathbb{S}^n_+ .

• In fact, $W S_{+}^{n_0-p+1} W^{\top}$ is the minimal face of (SCP-SDP).

200

<ロ> (四) (四) (三) (三) (三) (三)

Facial reduction

Using the minimal face $W \mathbb{S}^{n_0-p+1}_+ W^\top$, i.e., the substitution $Y = W \hat{Y} W^\top$,

$$v_{\text{SCP(SDP)}} = \min_{\substack{x,X \\ x,X}} \langle E, X \rangle$$

s.t. diag(X) = x,
(A^TA - I) $\circ X = 0$,
(i.e., the diagonal blocks are diagonal matrices)
 $\left\langle \begin{bmatrix} p & -\overline{e}^T \\ -\overline{e} & A^T A \end{bmatrix}, Y \right\rangle = 0$,
 $Y = \begin{bmatrix} 1 & x^T \\ x & X \end{bmatrix} \succeq 0$.

Y.-L. Cheung

2013 14/25

500

Facial reduction

Using the minimal face $W \mathbf{S}_{+}^{n_0-p+1} W^{\top}$, i.e., the substitution $Y = W \hat{Y} W^{\top}$,

$$v_{\text{SCP(SDP)}} = \min_{\substack{x,X \\ x,X}} \langle E, X \rangle$$

s.t. diag(X) = x,
(A^TA - I) \circ X = 0,
(i.e., the diagonal blocks are diagonal matrices)
 $Y = W \hat{Y} W^T$
 $Y = \begin{bmatrix} 1 & x^T \\ x & X \end{bmatrix} \succeq 0.$

5900

Facial reduction

Using the minimal face $W \mathbf{S}_{+}^{n_0-p+1} W^{\top}$, i.e., the substitution $Y = W \hat{Y} W^{\top}$,

$$v_{\text{SCP(SDP)}} = \min_{\hat{x}, \hat{X}} \left\langle W^{\top} \begin{bmatrix} 0 & 0 \\ 0 & E \end{bmatrix} W, \begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \right\rangle$$

s.t. diag $(\hat{X}) = \hat{x}$,
 $(A^{\top}A - I) \circ \hat{X} = 0$,
(i.e., the diagonal blocks are diagonal matrices)
 $\begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \in \mathbf{S}_{+}^{n_{0}-p+1}$.

 \implies a "smaller" and equiv. SDP relaxation of (SCP)

SQA

Cutting plane technique

Nonnegativity constraint $Y \ge 0$

- Y being doubly nonnegative is a valid constraint.
- But the constraint

$$\begin{bmatrix} 0 & 0 \\ 0 & A^{\top}A - I \end{bmatrix} \circ Y = 0$$

and $Y \in \mathbb{S}^{n}_{+}$ implies that enforcing $Y \ge 0$ in the SDP relaxation necessarily lead to the failure of the Slater condition.

 \circ Only need $\mathcal{B} :=$

• It is still too expensive to enforce $Y_{ij} \ge 0$ for all $(i, j) \in \mathcal{B}$.

Y.-L. Cheung

2013 16 / 25

Cutting plane technique

Cutting plane technique

Initial cuts: $\mathfrak{I} \subseteq \mathfrak{B}$; repeat the following:

• Solve

$$v_{\text{SCP(SDP)}}(\mathcal{I}) = \min_{\hat{x}, \hat{X}} \left\langle W^{\top} \begin{bmatrix} 0 & 0 \\ 0 & E \end{bmatrix} W, \begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \right\rangle$$

s.t. diag $(\hat{X}) = \hat{x}, (A^{\top}A - I) \circ \hat{X} = 0,$
 $\hat{Y} = \begin{bmatrix} 1 & \hat{x}^{\top} \\ \hat{x} & \hat{X} \end{bmatrix} \in \mathbb{S}^{n_0 - p + 1}_+,$
 $(W\hat{Y}W^{\top})_{ii} \ge 0, \forall (i, j) \in \mathcal{I}.$ (SDP(\mathcal{I}))

for solution \hat{Y}^* .

• If $W\hat{Y}^*W^\top \ge 0$ or if \hat{Y}^* is "good enough", then stop; else, find a group J' of indices $(i, j) \in \mathcal{B}$ s.t.

$$(W\hat{Y}^*W^{\top})_{ij} << 0, \quad E_{i-1,j-1} >> 0.$$

• **Update**: $\mathcal{I} \leftarrow \mathcal{I} \cup \mathcal{I}'$.

Existing rounding technique

The typical rounding techniques; also in Chazelle et al., 2004

- Projection rounding: use the diagonal of $W\hat{Y}^*W^{\top}$;
- Perron Frobenius rounding: use the principal eigenvector of $W\hat{Y}^*W^{\top}$, which empirically is nonnegative.

The fractional vector *u* from either of the rounding method satisfies

$$\bar{e}^{\top}u^{(k)} = 1 \ \forall k \in 1: p, \quad u = [u^{(1)}; u^{(2)}; \dots; u^{(p)}].$$

If $u \ge 0$, then we can use $u^{(1)}$, $u^{(2)}$, ..., $u^{(p)}$ as vectors of probability distributions:

$$v^{(k)} = e_j \in \mathbb{R}^{m_k}$$
 with prob. $u_i^{(k)}, \forall j \in 1 : m_k, k \in 1 : p$.

2013 18/25

200

イロト イボト イヨト イヨト 二日

Quality measurement for integral solutions

Measuring the quality of integral solutions

- Let *x* be a feasible integral solution of (SCP).
- Bound: $t^* \leq v_{\text{SCP(SDP)}} \leq v_{\text{SCP}} \leq x^\top Ex$, where t^* is the opt. value of the dual of the SDP relaxation.
- Relative difference:

 $\frac{x^\top E x - t^*}{\frac{1}{2}|x^\top E x + t^*|}$

200

Results on small proteins

Protoin	no	n	run tiı	run time (sec)		ve diff
Tiotem			SCPCP	orig	SCPCP	orig
1AAC	117	85	6.58	296.06	5.75E-11	1.72E-05
1AHO	108	54	7.97	364.73	8.44E-11	4.95E-05
1BRF	130	45	14.96	977.08	3.92E-11	2.27E-05
1CC7	160	66	28.60	1059.06	1.13E-11	2.01
1CKU	115	60	5.46	815.18	7.17E-11	4.79E-05
1CRN	65	37	12.76	46.42	1.64E-12	3.05E-05
1CTJ	153	61	16.15	777.31	2.98E-11	2.00
1D4T	188	89	41.32	2775.34	3.88E-11	2.00
1IGD	82	50	5.51	189.04	4.79E-10	2.74E-06
1PLC	129	82	14.32	1766.03	1.28E-11	7.28E-04
1VFY	134	63	23.49	1765.36	1.67E-11	-1.11E-05
4RXN	98	48	18.44	366.48	1.48E-11	2.62E-05

Э

▲ロト ▲圖ト ▲注ト ▲注ト

Results on medium-sized proteins

Protein	na	n	run time (min)		relative diff	
i iotem n ₀	P	SCPCP	orig	SCPCP	orig	
1B9O	265	112	0.64	254.85	1.19E-11	2.14
1C5E	200	71	2.59	70.63	4.93E-11	2.01
1C9O	207	53	2.15	66.50	3.35E-12	2.00
1CZP	237	83	1.90	143.95	8.30E-11	2.24
1MFM	216	118	0.19	102.11	2.01E-11	2.00
1QQ4	365	143	5.70	-	6.49E-11	-
1QTN	302	134	5.04	-	2.24E-11	-
1QU9	287	101	7.55	-	1.80E-11	-

990

3

Results on large proteins

Protein	n ₀	р	run time	rel. diff	numcut	# iter	Final
			(hr)				# cuts
1CEX	435	146	0.08	1.26E-11	40	9	485
1CZ9	615	111	3.96	2.98E-13	60	25	1997
1QJ4	545	221	0.15	5.31E-12	60	14	1027
1RCF	581	142	0.85	3.71E-12	60	17	1305
2PTH	930	151	29.65	8.69E-09	120	34	7247
5P21	464	144	0.31	1.39E-12	40	16	822

990

臣

(日)

Individual speedup contribution

 $t_{i,j} := \text{run time for getting the final solution of IQP for instance$ *i*by method*j*, $<math>r_{i,j} := \frac{t_{i,j}}{\min\{t_{i,j} : j = 1, 2, 3, 4\}},$ $\rho_i(\tau) := \text{number of instance$ *i* $such that <math>r_{i,j} \leq \tau$

500

An illustration in protein conformation

Yellow : reconstruction of the protein 1AAC

Blue : crystallized form of 1AAC from the Protein Data Bank

5900

Thank you!

500