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Mixed Integer Programming (MIP):

min cT x
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x ∈ Z
p × R
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Mixed Integer Programming (MIP):

min cT x
s.t. Ax ≤ b

π1x ≤ π1
o

π2x ≤ π2
o

π3x ≤ π3
o

Valid inequalities/
Cutting planes/
Cuts

−cT x

Want “strongest possible” valid inequalities (facet-defining): Get the convex hull of
feasible solutions

Typically hard: Relax the problem and get facet-defining inequalities for the relaxation
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Most important cuts

Most important cutting planes used by commercial solvers:

The Gomory mixed-integer cut (GMI).

The Mixed Integer Rounding cut (MIR).

Knapsack Cover and Lifted Knapsack Cover cuts.

Bixby et. al (1999), “Closing the GAP”: three most important cuts

Solution time increases by a factor of 2.52 without GMI cuts.
Solution time increases by a factor of 1.83 without MIR cuts.
Solution time increases by a factor of 1.4 without knapsack covers.

(geometric averages after comparing the relative performance of 9 different cutting
planes on 106 problems with CPLEX 8.0)
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Multiple-row cutting planes

Assume that we have the optimal tableau of an LP relaxation of a MIP

min c̄TN xN
s.t. xB − ĀNxN = b̄

x ≥ 0
x ∈ Z

p × R
n−p

(1)

Now one can, in addition do the following relaxations:

1 Pick a subset of rows associated with basic integer variables

2 Relax the nonnegativity of the basic variables

min c̄TN xN
s.t. xi −

∑

j∈N āijxj = b̄i ,∀i ∈ B ′ ⊆ B

xN ≥ 0
x ∈ Z

p × R
n−p

(2)

(Gomory ’69)
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Corner polyhedron

Intuitively, what we are doing is relaxing all constraints that are not tight at the current
optimal LP solution.

−cT x

x∗
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Corner polyhedron

Intuitively, what we are doing is relaxing all constraints that are not tight at the current
optimal LP solution.

−cT x

x∗

Still allows us to derive cutting planes for x∗, but much simpler to analyze.
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x ≥ 0
x ∈ Z

p × R
n−p

(3)

Now one can, in addition do the following relaxations:

1 Pick a subset of rows associated with basic integer variables

2 Relax the nonnegativity of the basic variables

3 Relax the integrality of the non-basic variables.
(Andersen, Louveaux, Weismantel, Wolsey ’07)

min c̄TN xN
s.t. xi −

∑

j∈N
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This motivates the study of the following relaxation:

Rq
f (r

1, . . . , r k ) = conv

{

(x , s) ∈ Z
q × R

k
+ : x = f +

k
∑

j=1

r j sj

}

Lattice-free cuts Nov 28, 2013 7 / 37



Multiple-row cutting planes

Rq

f (r
1, . . . , r k ) = conv

{

(x , s) ∈ Z
q × R

k
+ : x = f +

k
∑

j=1

r j sj

}

Lattice-free cuts Nov 28, 2013 8 / 37



Multiple-row cutting planes

Rq

f (r
1, . . . , r k ) = conv

{

(x , s) ∈ Z
q × R

k
+ : x = f +

k
∑

j=1

r j sj

}

Remark: If we have a basic feasible solution, we are at the point (x , s) = (f , 0).

Lattice-free cuts Nov 28, 2013 8 / 37



Multiple-row cutting planes

Rq

f (r
1, . . . , r k ) = conv

{

(x , s) ∈ Z
q × R

k
+ : x = f +

k
∑

j=1

r j sj

}

Remark: If we have a basic feasible solution, we are at the point (x , s) = (f , 0).
If f ∈ Z

q, then we are done, since we are at an integer feasible solution (and hence there
is no cut to generate).
So we may assume f /∈ Z

q.
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Intersection Cut

A Z
m-free convex set B is a convex set with

f ∈ int(B) and int(B) ∩ Z
m = ∅. Call it

lattice-free

x1

x2

f

Figure: Picture of the x-space (m = 2)
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∑

j=1

ψB(r
j )sj ≥ 1 is valid for Rf (r

1, . . . , r k)

It is immediately violated for our current LP
solution, since s = 0.

All nontrivial facet-defining inequalities for
Rf (r

1, . . . , r k ) can be obtained in this way
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Intersection Cut

ψB′(r) = 1

ψB(r) =
1
2

So B ⊇ B ′ implies ψB(r) ≤ ψB′ (r): Larger set
gives better coefficients

We are only interested in Maximal lattice-free
convex sets

Borozan and Cornuéjols ’09, Basu, Conforti,
Cornuéjols, Zambelli ’10: Minimal inequalities
for a semi-infinite relaxation come from maximal
lattice-free convex sets.

x1

x2

f B ′

B
r

Figure: Picture of the x-space (m = 2)
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Maximal lattice-free convex sets

Theorem (Lovasz ’89)

A set K ⊆ R
q is a maximal Zq-free convex set if and only if

Either K is a polyhedron of the form K = P + L, where P is a polytope, L is a
rational linear space, dim(P) + dim(L) = q, K does not contain any point of Zq in
its interior and there is a point of Zq in the relative interior of each facet of K

or K is an irrational hyperplane

Corollary

Maximal lattice-free convex sets in R
q are polyhedra with at most 2q facets. (Also

follows from Doignon ’73, Bell ’77, Scarf ’77)

Proof.

Suppose that there are more than 2q facets, then there are two facets with points x1, x2

in their respective relative interior such that they have the same parity. But then,
(x1 + x2)/2 is a lattice point in the interior.
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Why is Rq
f (r

1
, . . . , rk) a good relaxation?

Consider the case where q = 1:

R1
f (r

1, . . . , r k ) = conv{(x , s) ∈ Z× R
k
+ : x = f +

k
∑

j=1

r j sj}

In this case, lattice free convex sets are simply intervals. Consider then the lattice free
interval B = [⌊f ⌋, ⌈f ⌉].

x
f

B

r

ψB(r
j ) =

{

r j

1−f̂
, if r j > 0

−r j

f̂
, if r j ≤ 0

In terms of the original constraint:

x +
k

∑

j=1

aj sj = f

ψB(a
j ) =

{

−aj

1−f̂
, if aj < 0

aj

f̂
, if aj ≥ 0

Lattice-free cuts Nov 28, 2013 12 / 37



Why is Rf (r
1
, . . . , rk) a good relaxation?

ψB(a
j ) =

{

−aj

1−f̂
, if aj < 0

aj

f̂
, if aj ≥ 0

If our original relaxation was:

{(x , s) ∈ Z× Z
p
+ × R

k−p
+ : x +

k
∑

j=1

ajsj = f }

We can “lift” the nonbasic integer variables and get the following inequality:

∑

j=1,...,p:âj≤f̂

âj

f̂
+

∑

j=1,...,p:âj>f̂

1− âj

1− f̂
+

∑

j=p+1,...,k:aj≥0

aj

f̂
−

∑

j=p+1,...,k:aj<0

aj

1− f̂
≥ 1

we get exactly the Gomory Mixed-Integer (GMI) cut.
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âj

f̂
+

∑

j=1,...,p:âj>f̂
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f̂
−

∑

j=p+1,...,k:aj<0
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1− f̂
≥ 1

we get exactly the Gomory Mixed-Integer (GMI) cut.

So this is a way to generalize GMI cuts to multiple rows.
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Generating stronger cuts

Assume that we have the optimal tableau of an LP relaxation of a MIP

min c̄TN xN
s.t. xB − ĀNxN = b̄

x ≥ 0
x ∈ Z

p × R
n−p

(5)

Now one can, in addition do the following relaxations:

1 Pick a subset of rows associated with basic integer variables

2 Relax the integrality of the non-basic variables

3 Relax the nonnegativity of the basic variables

min c̄TN xN
s.t. xi −

∑

j∈N
āijxj = b̄i ,∀i ∈ B ′ ⊆ B

xN ≥ 0
xi ∈ Z,∀i ∈ B ′ ⊆ B

(6)
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A motivating example

Example

Let r1, r1, r2, r3, r4, r5, f ∈ R
2 be as in the

picture to the right, and consider the
following set,

X =
{

(x , s) ∈ Z
2 × R

5
+ : x = f +

5
∑

j=1

rj sj
}

Cornuejóls and Margot (2009) and Andersen
et al. (2007):

s1 + s2 + s3 + s4 + s5 ≥ 1

is valid and facet-defining for X .
However, using the non-negativity of the x
variables in X+ = X ∩ R

+
7 , it is possible to

show that the following stronger inequality:

s1 + s2 + s3 − s5 ≥ 1

is valid (and facet defining) for X+.

x1

x2

f

r1

r2 r3
r4r5

Figure:
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Cuts based on S-free sets

In general, we are interested now on:

conv

{

(x , s) ∈ S × R
k
+ : x = f +

k
∑

j=1

r j sj

}

where S = P ∩ Z
q for some rational polyhedron P.
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Cuts based on S-free sets

In general, we are interested now on:

conv

{

(x , s) ∈ S × R
k
+ : x = f +

k
∑

j=1

r j sj

}

where S = P ∩ Z
q for some rational polyhedron P.

This model has been studied by Glover ’74, Balas ’72, Johnson ’81, Dey and Wolsey ’09,
F. and Günlük ’09 and Basu, Conforti, Cornuéjols and Zambelli ’10

This last paper in particular generalizes Lovász’ results and the Borozan and Cornuéjols
theorem.
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Maximal lattice-free convex sets in R
2

Lovasz (89): Maximal lattice-free convex sets in R
2 are either irrational lines or

x1

x2

Figure: Split

x1

x2

Figure: Triangle

x1

x2

Figure: Quadrilateral

All with at least one integer point in the relative interior of each edge.
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Maximal lattice-free convex sets in R
2

Lovasz (89): Maximal lattice-free convex sets in R
2 are either irrational lines or

x1

x2

Figure: Split

x1

x2

Figure: Triangle

x1

x2

Figure: Quadrilateral

All with at least one integer point in the relative interior of each edge.
Problem: There is an infinite number of them. How do we generate all possible
inequalities?

Lattice-free cuts Nov 28, 2013 17 / 37



Facet-defining inequalities

Maximal lattice-free convex sets give rise to minimal inequalities. However, may not be
facet-defining.

x1

x2

f

r1

r2 r3

x1

x2

f

r1

r2 r3

x1

x2

f

r1

r2 r3
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Facet-defining inequalities

Maximal lattice-free convex sets give rise to minimal inequalities. However, may not be
facet-defining.

x1

x2

f

r1

r2 r3

x1

x2

f

r1

r2 r3

x1

x2

f

r1

r2 r3

The inequality obtained from the first triangle is not facet-defining, since it can be
obtained as a convex combination of the other two inequalities.
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The inequality obtained from the first triangle is not facet-defining, since it can be
obtained as a convex combination of the other two inequalities.
We are interested only in the maximal lattice-free sets that generate facet-defining
inequalities.
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Triangles

Dey and Wolsey (08), three types of triangles (up to unimodular transformation):

Each type of lattice-free set (split, triangle, quadrilateral) gives rise to a class of
inequalities.
Want to be able to generate all facet-defining cuts in a given class of inequalities.
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Cornuéjols and Margot (09)

Question

Which maximal lattice-free convex sets give rise to facet-defining inequalities for
R2

f (r
1, . . . , r k)?

Definition

We say a maximal lattice-free convex set is compatible if its “corner” lies in the half line
f + αr i for some i ∈ {1, . . . , k}, α ≥ 0.
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Figure: Compatible Split
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Figure: Compatible Triangle
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Figure: Compatible
Quadrilateral
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Cornuéjols and Margot (09)

Theorem (Cornuéjols and Margot (09))

All nontrivial facet-defining inequalities of R2
f (r

1, . . . , r k ) are intersection cuts generated
by:

Compatible splits

Compatible triangles

Compatible quadrilaterals

Splits that satisfy a certain Ray condition

Triangles that satisfy a certain Ray condition
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How do we get these cuts?

Cornuéjols and Margot give a way to identify, given a maximal lattice-free convex set B,
if the associated intersection cut defines a facet of Rf (r

1, . . . , r k ).

Question

Given Rf (r
1, . . . , r k), how can we construct the associated maximal lattice-free convex

sets that give facet-defining inequalities?

(Chen, Cook, F., Steffy)
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Compatible splits
For each i = 1, . . . , k , check if the line f + αr i contains an integer point. If not, we can
generate a compatible split.

Let ax1 + bx2 = c be the equation of the line f + αr i , with a, b ∈ Z relative prime.

f + αr i contains an integer point if and only if c /∈ Z.

The associated compatible split is:

⌊c⌋ ≤ ax1 + bx2 ≤ ⌈c⌉
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Compatible triangles

For every triple {i , j , l} ⊆ {1, . . . , k}, generate a compatible triangle. How?

Every edge of a maximal lattice-free set must contain an integer point in its relative
interior.

Consider an edge e with corners in the half-lines generated by r1, r2.

For every triple of possible points in the integer hull, try to find a compatible triangle.
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Compatible triangles

For every triple {i , j , l} ⊆ {1, . . . , k}, generate a compatible triangle. How?

Every edge of a maximal lattice-free set must contain an integer point in its relative
interior.

Consider an edge e with corners in the half-lines generated by r1, r2.

Then e must contain an extreme point of the convex hull of integer points in
f + cone(r1, r2) in its relative interior.

For every triple of possible points in the integer hull, try to find a compatible triangle.

Lattice-free cuts Nov 28, 2013 24 / 37



Compatible triangles

Triangle compatible with r1, r2, r3:

Compute integer hull of f + cone(r1, r2), f + cone(r2, r3), f + cone(r1, r3), call
them T1,T2,T3 respectively.

For each triple of extreme points p1, p2, p3 of T1,T2,T3, impose that we must have
a triangle compatible with r1, r2, r3 and with p1, p2, p3 in each respective edge.

◮ This can be done by solving a system of 6 nonlinear equations with 6 variables. Solved
a priori using Gröbner basis and obtained a closed form solution.
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Compatible triangles

Triangle compatible with r1, r2, r3:

Compute integer hull of f + cone(r1, r2), f + cone(r2, r3), f + cone(r1, r3), call
them T1,T2,T3 respectively.

For each triple of extreme points p1, p2, p3 of T1,T2,T3, impose that we must have
a triangle compatible with r1, r2, r3 and with p1, p2, p3 in each respective edge.

◮ This can be done by solving a system of 6 nonlinear equations with 6 variables. Solved
a priori using Gröbner basis and obtained a closed form solution.

Check that it is lattice-free
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Compatible triangles

Lemma (Chen, Cook, F., Steffy)

For a given set of rays r1, r2, r3, if there exists a compatible maximal lattice-free triangle,
then it is unique.

So it suffices to do as proposed until we get a compatible maximal lattice-free triangle.
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Compatible quadrilaterals

A similar approach to triangles.
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The ray condition: Non-compatible splits

For every pair r i , r j , compute the integer hull of f + cone(r i , r j ) and use the edges to
generate splits:
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The ray condition: Non-compatible triangles

Lemma (Chen, Cook, F., Steffy)

Let T be a noncompatible maximal lattice-free triangle satisfying the ray condition for
Rf (r

1, . . . , r k ). Then, under some mild conditions, T is not of type 3. Moreover, there is
a maximal lattice-free triangle T ′ that generates the same inequality and has two rays r i

and r j pointing to distinct corners of it.
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The ray condition: Non-compatible triangles

For every edge in each of the integer hulls, use it to determine three possible triangles:
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All facet-defining inequalities

Lemma (Chen, Cook, F., Steffy)

Assuming cone(r1, . . . , r k) = R
2, the procedures described generate all facet-defining

inequalities for Rf (r
1, . . . , r k )
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Lifting the nonbasic integer variables
Recall that we did the following relaxations:

1 Pick a subset of rows associated with basic integer variables
2 Relax the nonnegativity of the basic variables
3 Relax the integrality of the non-basic variables.

Rq

f (r
1, . . . , r k ) = conv

{

(x , s) ∈ Z
q × R

k
+ : x = f +

k
∑

j=1

r j sj

}

What if we do not relax the integrality of non-basic variables?

conv

{

(x , s) ∈ Z
q × R

k
+ : x = f + r1s1 +

k
∑

j=2

r j sj , s1 ∈ Z

}

What is the possible coefficient φB(r
1) for s1?

Note that we may rewrite our set as:

conv

{

(x , s) ∈ Z
q × R

k
+ : x + ts1 = f + (r1 + t)s1 +

k
∑

j=2

r j sj , s1 ∈ Z

}

for any t ∈ Z
q.

Hence, one possible coefficient for s1 will be φB(r
1) = inft∈Zq ψB(r

1 + t) ≤ ψB(r
1).

(Trivial lifting. This is the coefficient obtained for integer variables in the GMI cut)
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+ : x = f + r1s1 +

k
∑
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}

What is the possible coefficient φB(r
1) for s1?

Note that we may rewrite our set as:

conv

{

(x , s) ∈ Z
q × R

k
+ : x + ts1 = f + (r1 + t)s1 +

k
∑

j=2

r j sj , s1 ∈ Z

}

for any t ∈ Z
q.

Hence, one possible coefficient for s1 will be φB(r
1) = inft∈Zq ψB(r

1 + t) ≤ ψB(r
1).

(Trivial lifting. This is the coefficient obtained for integer variables in the GMI cut)
Question: When is this coefficient the smallest possible?
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Lifting in R
2

Are there regions for which the trivial lifting is the smallest one?

For t = 0. For any t
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Lifting

See:

Dey and Wolsey ’10

Basu, Campelo, Conforti, Cornuéjols, Zambelli ’10

Basu, Cornuéjols, Köppe ’11

Conforti, Cornuéjols, Zambelli ’11
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Conclusion

Multi-row cutting planes are an important area of MIP that has nice connections to
geometry

Nice theoretical results and properties

Other interesting results exist (e.g. what is the split/MIR rank of cuts, what
different disjunctions can lead to these cuts)

Some open problems:
◮ Is there a characterization of lattice-free polyhedra in R

q for q > 2?
◮ How do some of the results in 2D generalize?
◮ Computationally, how do we choose the q rows that will give us relaxations?
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