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Outline

Linear programming and the simplex algorithm.

Related work and results.

The simplex algorithm for shortest paths.

Framework: Lower bounds for the simplex algorithm utilizing
shortest paths.

On the lower bound for RandomEdge.

(On the lower bound for RandomFacet.)

Open problems.
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Linear programming

Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

A linear program (LP) in standard form is an optimization
problem of the form:

min cT x
s.t. Ax = b

x ≥ 0

−c

The set of feasible solutions is a convex polytope.
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Basic feasible solutions

min cT x
s.t. Ax = b

x ≥ 0
−c

A basis is a subset B ⊆ {1, . . . , n} of m columns of A such
that the corresponding matrix AB ∈ Rm×m is invertible.

Every basis defines a basic feasible solution xB = A−1
B b by

setting non-basic variables, xi for i 6∈ B, to zero.

Vertices (or corners) are basic feasible solutions.
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The simplex algorithm, Dantzig (1947)

min cT x
s.t. Ax = b

x ≥ 0
−c

Pivoting: Exchange a basic and a non-basic variable in a
basis to move from one basic feasible solution to another.

A basic feasible solution is optimal if there are no
improving pivots w.r.t. its basis.

The simplex algorithm: Repeatedly perform improving
pivots.
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Pivoting rules

−c

Several improving pivots may be available for a given basis.
The edge is chosen by a pivoting rule.

I.e., a pivoting rule decides which basic and non-basic
variables to exchange.
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Deterministic pivoting rules

LargestCoefficient, Dantzig (1947)

The non-basic variable with most negative reduced cost
enters the basis.

Bland’s rule, Bland (1977)

Pick the available variable with the smallest index, both for
entering and leaving the basis.
This pivoting rule is guaranteed not to cycle.

Others:

LargestIncrease
SteepestEdge
ShadowVertex
LeastEntered
. . .
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Exponential lower bounds

Klee and Minty (1972): The LargestCoefficient pivoting
rule may require exponentially many steps; the Klee-Minty
cube.1

Essentially all known natural deterministic pivoting rules are
now known to be exponential:

LargestIncrease: Jeroslow
(1973).
SteepestEdge: Goldfarb and
Sit (1979).
Bland’s rule: Avis and Chvátal
(1978).
ShadowVertex: Murty (1980),
Goldfarb (1983).
See Amenta and Ziegler (1996)
for a unified view.

1Picture from Gärtner, Henk and Ziegler (1998)
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Randomized pivoting rules

RandomEdge

Perform uniformly random improving pivots.

RandomFacet, Kalai (1992) and Matoušek, Sharir and
Welzl (1992)

Pick a uniformly random facet that contains the current
vertex, and recursively find an optimal solution within that
facet. If possible, make an improving pivot leaving the facet
and repeat.

Expected subexponential time: 2O(
√
m log n) expected steps.

Randomized Bland’s rule

Randomly permute the variables and use Bland’s rule.

No subexponential upper bounds are known for
RandomEdge and Randomized Bland’s rule.

Prior to our work no superpolynomial lower bounds were
known for randomized pivoting rules.
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Results

We prove lower bounds for the expected number of pivoting steps:

RandomEdge: 2Ω(m1/4)

RandomFacet: 2Ω̃(m1/3)

Randomized Bland’s rule: 2Ω̃(m1/2)

where m is the number of equality constraints, and the number of
variables is n = Õ(m).

Note: In our SODA 2011 paper we studied a modified
RandomFacet pivoting rule and incorrectly claimed that
the expected running time was the same. We have repaired
the analysis, but with a worse bound.

Initially, we used Markov decision processes for the
constructions. We now use shortest paths for
RandomFacet and Randomized Bland’s rule.
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Techniques

Previous lower bounds were proved by studying linear
programs directly.

The new lower bounds are based on linear programs for
shortest paths and Markov decision processes (MDPs), for
which the behavior of the simplex algorithm can be more
easily understood.

MDPs can be viewed as stochastic shortest paths: edges can
result in stochastic transitions.

We prove lower bounds for corresponding PolicyIteration
algorithms for MDPs, which immediately translate to lower
bounds for the simplex algorithm.
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Related work

Friedmann (2009) and Fearnley (2010) gave a similar lower
bound construction for Howard’s PolicyIteration
algorithm for solving MDPs (and parity games).

Friedmann (2011) used the same technique to prove a lower
bound of subexponential form, 2Ω(

√
m), for Zadeh’s

LeastEntered pivoting rule (1980).

Superpolynomial lower bounds for RandomEdge and
RandomFacet were previously only known in an abstract setting
(Acyclic Unique Sink Orientations):

Matoušek (1994): 2Ω(
√
m) lower bound for RandomFacet.

Matoušek and Szabó (2006): 2Ω(m1/3) lower bound for
RandomEdge.
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Outline

Linear programming and the simplex algorithm.

Related work and results.

⇒ The simplex algorithm for shortest paths.

Framework: Lower bounds for the simplex algorithm utilizing
shortest paths (and Markov decision processes).

On the lower bound for RandomEdge.

(On the lower bound for RandomFacet.)

Summary of open problems.
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Single target shortest paths

t
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b1 = 1 b2 = 1 b3 = 1 bt = −6
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minimize
∑

(u,v)∈E

c(u,v)x(u,v)

s.t. ∀v ∈ V :
∑

w :(v,w)∈E

x(v,w) −
∑

u:(u,v)∈E

x(u,v) = bv

∀(u, v) ∈ E : x(u,v) ≥ 0
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Single target shortest paths
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Basic feasible solutions

minimize
∑

(u,v)∈E

c(u,v)x(u,v)

s.t. ∀v 6= t :
∑

w :(v,w)∈E

x(v,w) −
∑

u:(u,v)∈E

x(u,v) = 1

∀(u, v) ∈ E : x(u,v) ≥ 0

Flow conservation:

x1 = 1 x2 = 6

x3 = 4 x4 = 2

x1 + x2 = 1 + x3 + x4

The flow through every vertex is at least 1.

For a basic feasible solution, at most one edge leaving every
vertex has non-zero flow.

There is a one-to-one correspondence between basic feasible
solutions and shortest paths trees (or policies).
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Improving pivots

t

valπ(1) = 12 valπ(2) = 11 valπ(3) = 8

2 + 8 < 12
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For every policy π (shortest paths tree), let valπ(v) be the
length of the path from v to t in π:

∀(u, v) ∈ π : valπ(u) = c(u,v) + valπ(v)

An edge (u, v) is an improving pivot (or improving switch)
w.r.t. π if it improves the value of u:

c(u,v) + valπ(v) < valπ(u)
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PolicyIteration

Multiple improving switches can be performed in parallel,
which gives a more general class of algorithms:

Function PolicyIteration(π)

while ∃ improving switch w.r.t. π do

Update π by performing improving switches

return π

The simplex algorithm is the special case where only one
improving switch is performed in every iteration.

Friedmann, Hansen, and Zwick Lower bounds for the simplex algorithm Page 17/41



PolicyIteration

Multiple improving switches can be performed in parallel,
which gives a more general class of algorithms:

Function PolicyIteration(π)

while ∃ improving switch w.r.t. π do

Update π by performing improving switches

return π

The simplex algorithm is the special case where only one
improving switch is performed in every iteration.

Friedmann, Hansen, and Zwick Lower bounds for the simplex algorithm Page 17/41



Lower bound constructions: The first idea

To prove a lower bound for a given pivoting rule, we construct
a family of graphs (or MDPs) Gn such that the corresponding
PolicyIteration algorithm simulates an n-bit binary
counter.

We define a way to interpret a policy π as a configuration of
the binary counter:

bi

bi

⇒ biti(π) = 0

⇒ biti(π) = 1

We then show that (with high probability) a run of the
PolicyIteration algorithm generates all 2n counting
configurations.
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A simplified construction

wi ai ui

bi

wi+1 ui+1

0

22i

0

22i

0

22i+1

0 22i+1 + 1

The graph is acyclic, and every bit i is associated with a level
consisting of four vertices: bi , ai ,wi , ui .

wn+1 = un+1 = t.
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A simplified construction, n = 3

w1 a1 u1

b1

w2 a2 u2

b2

w3 a3 u3

b3

w4 u4t0 0

0

22

0

22

0

23

0 23 + 1

0

24

0

24

0

25

0 25 + 1

0

26

0

26

0

27

0 27 + 1
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Case: valπ(wi+1) = valπ(ui+1)

wi ai ui

bi

wi+1 ui+1

valπ(wi+1) = valπ(ui+1)

valπ(wi) = valπ(ui)

0

22i

0

22i

0

22i+1

0 22i+1 + 1

biti (π) = 0, stable.
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Case: valπ(wi+1) ≥ valπ(ui+1) + 22i+2

wi ai ui

bi

wi+1 ui+1

valπ(wi+1) ≥ valπ(ui+1) + 22i+2

valπ(wi) = valπ(ui)

0

22i

0

22i+1

0

22i

0 22i+1 + 1

biti (π) = 1, unstable, resetting.
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Case: valπ(wi+1) ≥ valπ(ui+1) + 22i+2

wi ai ui

bi

wi+1 ui+1

valπ(wi+1) ≥ valπ(ui+1) + 22i+2

valπ(wi) = valπ(ui) + 22i

0

22i

0

22i

0

22i+1

0 22i+1 + 1

biti (π) = 0, stable, lower bits are unstable: reset.

wi is updated when bit i + 1 stabilizes.
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Lower bound for Bland’s rule

Bland’s rule for shortest paths: Perform the first
improving switch according to a permutation of the edges.

It is easy to define a permutation of the edges, σ, such that
we get the described behavior, giving an exponential lower
bound:

(bi ,wi+1) edges are placed last, and σ(bi ,wi+1) < σ(bj ,wj+1)
for i < j .
(ai , bi ) edges are placed next, and σ(ai , bi ) < σ(aj , bj) for
i < j .
The remaining edges are placed first in arbitrary order.

To implement a lower bound for RandomEdge we need a
gadget to delay improving switches like (bi ,wi+1) and (ai , bi ).
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The simplex algorithm for shortest paths.

Framework: Lower bounds for the simplex algorithm utilizing
shortest paths (and Markov decision processes).

⇒ On the lower bound for RandomEdge.

(On the lower bound for RandomFacet.)

Summary of open problems.
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Delaying events

3

bi ≡

bi,1

bi,2

bi,3

0

0

c

0

0

0

0

c

c+ ε

c+ 2ε

By replacing a vertex by a chain of vertices, a specific
sequence of improving switches has to be performed to get
the same effect as performing one improving switch originally.

At any time there is only one edge for which it is improving to
move into the chain.
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Competing chains

Suppose a short chain of length `i is competing with
a longer chain of length `i+1.

There is exactly one improving switch in both chains,
and RandomEdge performs either one of them with
equal probability.

Let X be the number of heads observed in `i + `i+1

coin tosses, then by a Chernoff bound:

Pr [X ≤ `i ] ≤ e
(`i+1−`i )

2

2(`i+1+`i )

Setting `k = Θ(k2n), the probability of failure,
X < `i , is at most e−n.

With n such chains this results in N = O(n4) vertices,

giving a lower bound of 2Ω(N1/4) expected pivoting
steps for RandomEdge.
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Fast resetting

3

bi ≡

bi,1

bi,2

bi,3

0

0

c

0

0

0

0

c

c+ ε

c+ 2ε

Moving in the other directions happens much faster since all
edges are improving switches simultaneously.
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Problem

We need to reset the progress made in chains at higher bits in
order for the analysis to work.

The graph should not be acyclic: higher bits must have access
to lower bits.

No vertex in a chain should get the benefit of setting a bit
before this event occurs.

RandomEdge solves shortest paths in O(NM) expected
iterations, where N is the number of vertices and M is the
number of edges.

Use the power of MDPs: Introduce stochastic transitions.

To reset bi -chains we need additional ci -chains, resulting in
alternating behavior.
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Construction for RandomEdge

wi ai ui

bi

wi+1 ui+1

0

22i

0

22i

0

22i+1

0 22i+1 + 1
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Construction for RandomEdge
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`i
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u1
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Setting a bit

g
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w1 valπ(w1) = valπ(u1)

biti(π) = 0
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Setting a bit

g

h

`i

wi ai ui

bi

wi+1 ui+1

u1

ci

w1 valπ(w1) = valπ(u1) + 22i

biti(π) = 1

0

22i

0

22i

0

22i+1

0

22i+1 + 2

0

22i+1 + 1

ε

1− ε

Friedmann, Hansen, and Zwick Lower bounds for the simplex algorithm Page 30/41



Setting a bit

g

h

`i

wi ai ui

bi

wi+1 ui+1

u1

ci

w1 valπ(w1) = valπ(u1) + 22i

biti(π) = 1

0

22i

0

22i

0

22i+1

0

22i+1 + 2

0

22i+1 + 1

ε

1− ε

Friedmann, Hansen, and Zwick Lower bounds for the simplex algorithm Page 30/41



Setting a bit

g

h

`i

wi ai ui

bi

wi+1 ui+1

u1

ci

w1 valπ(w1) = valπ(u1)

biti(π) = 1

0

22i

0

22i

0

22i+1

0

22i+1 + 2

0

22i+1 + 1

ε

1− ε

Friedmann, Hansen, and Zwick Lower bounds for the simplex algorithm Page 30/41



RandomEdge lower bound

Theorem (Friedmann, Hansen, and Zwick (2011))

The worst-case expected number of pivoting steps performed by
RandomEdge on linear programs with m equalities and n = 2m
non-negative variables is 2Ω(m1/4).
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Outline

Linear programming and the simplex algorithm.

Related work and results.

The simplex algorithm for shortest paths.

Framework: Lower bounds for the simplex algorithm utilizing
shortest paths (and Markov decision processes).

On the lower bound for RandomEdge.

⇒ (On the lower bound for RandomFacet.)

Summary of open problems.
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The RandomFacet pivoting rule

RandomFacet, Kalai (1992):
1 Pick a uniformly random facet f that contains the current

basic feasible solution x .
2 Recursively find the optimal solution x ′ within the picked facet

f .
3 If possible, make an improving pivot from x ′, leaving the facet

f , and repeat from (1). Otherwise return x ′.

A dual variant of the RandomFacet pivoting rule was
discovered independently by Matoušek, Sharir, and Welzl
(1992).
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The RandomFacet pivoting rule

x

P

f1

f2

f3

Pick a uniformly random facet fi that contains the current
basic feasible solution x .
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The RandomFacet pivoting rule

x

P

f1

f2

f3

x′

Recursively find the optimal solution x ′ within the picked
facet fi .
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The RandomFacet pivoting rule

x

P

f1

f2

f3

x′

x′′

If possible, make an improving pivot from x ′, leaving the facet
fi , and repeat from the beginning. Otherwise return x ′.
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The RandomFacet pivoting rule

x

P

f1

f2

f3

x′

x′′

Note that if the facets f1, . . . , fd containing x are ordered
according to their optimal value, then from x ′′ we never visit
f1, . . . , fi again.
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The RandomFacet pivoting rule

The number of pivoting steps for a linear program with
dimension d and n inequalities is at most:

f (d , n) ≤ f (d − 1, n − 1) + 1 +
1

d

d∑
i=1

f (d , n − i)

with f (d , n) = 0 for n ≤ d .

Solving the corresponding recurrence gives:

f (d , n) ≤ 2O(
√

(n−d) log n)
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Interpretation for shortest paths

minimize
∑

(u,v)∈E

c(u,v)x(u,v)

s.t. ∀v 6= t :
∑

w :(v ,w)∈E

x(v ,w) −
∑

u:(u,v)∈E

x(u,v) = 1

∀(u, v) ∈ E : x(u,v) ≥ 0

Staying within a facet means that the corresponding
inequality is tight, meaning that a variable is fixed to zero.
This corresponds to removing the edge.

The RandomFacet pivoting rule removes random unused
edges and solves the corresponding problem recursively.

Note that delaying a switch, as for Bland’s rule, can also
be viewed as removing the edge.
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Different challenges

When constructing lower bounds for RandomFacet, the
challenge is to make sure that certain edges are not removed
before certain other edges.

Suppose an edge e must not be removed before another edge
e ′.

To achieve this with high probability we make use of
redundancy: Let e and e ′ be copied k times, in such a way
that we only require that at least one copy of e ′ is removed
before all copies of e are removed.

The probability of failure, i.e. removing all k copies of e
before one copy of e ′, is then:

k∏
i=1

i

i + k
=

(k!)2

(2k)!
≤ 1

2k
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Lower bound construction

wi

wi+1

ui

ui+1

ai,1,1

ai,1,2

...

ai,1,s

ai,2,1

ai,2,2

...

ai,2,s

· · ·

ai,r,1

ai,r,2

...

ai,r,s

bi,1

bi,2

...

bi,rs

rs



s



︸ ︷︷ ︸
r

22i

22i

0 0 0

0 0 0

0 0 0

0

0

22i+1

22i+1 + ε

22i+1 + (s− 1)ε

22i+1 + 1

22i+1 + 1 + ε

22i+1 + 1 + (rs− 1)ε

0
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Analysis: simulate a “randomized bitcounter”

Start with n bits with value 0: 00000

Pick a random bit i and fix it: 00000

Count recursively with the remaining n − 1 bits: 11011

Increment the i ’th bit: 11111

Reset the i − 1 lower bits: 11100

Count recursively with the i − 1 lower bits: 11100

Expected number of increments:

f (0) = 0

f (n) = f (n − 1) + 1 +
1

n

n−1∑
i=0

f (i) for n > 0

Solving the recurrence gives: f (n) = 2Θ(
√
n)
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Open problems

Subexponential upper bounds for RandomEdge and
Randomized Bland’s rule?

Close the gap between the 2Ω̃(m1/3) and 2O(
√
m log n) bounds

for RandomFacet for linear programs.

The polynomial Hirsch conjecture: A polynomial upper bound
for the diameter of polytopes?

Strongly polynomial time algorithm for linear programming?
A variant of the simplex algorithm?

This question remains open already for Markov decision
processes.
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The end

Thank you for listening!
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On the diameter of polytopes

The diameter of a polytope P is the maximum distance
between any two vertices in the edge graph of P.

The diameter gives a lower bound for any pivoting rule for the
simplex algorithm.

Hirsch conjecture (1957): The diameter of any n-facet convex
polytope in d-dimensional Euclidean space is at most n − d .

Kalai and Kleitman (1992): O(nlog n) upper bound on the
diameter.

Counter-example by Santos (2010): Existence of polytopes
with diameter (1 + ε)(n − d).

It remains open whether the diameter is polynomial, or even
linear, in n and d .

Our results are unrelated to the diameter: The constructed
polytopes have low diameter.
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