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Imbalance

The imbalance t(v) of a vertex v in a digraph equals its
outdegree minus the indegree.

The imbalance sequence of a digraph is formed by listing the
imbalances in nonincreasing order.

The imbalance set is simply the set of vertex imbalances of a
digraph.

A tournament is a complete simple digraph.

Figure : A tournament of order 4 with imbalance sequence 1, 1,−1,−1
and imbalance set {1,−1}
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Imbalance Sequences

Theorem (Mubayi, Will, West 2001)

A sequence [ti ]
n
1 of integers in nonincreasing order is the imbalance

sequence of a simple digraph if and only if

j∑
i=1

ti ≤ j(n − j), (1)

for 1 ≤ j ≤ n, with equality when j = n.

Theorem (Koh, Ree 2003)

A sequence [ti ]
n
1 of integers is the imbalance sequence of a

tournament if and only if conditions (1) are satisfied and
n − 1, t1, . . . , tn have the same parity.
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Imbalance Sets of Tournaments

Theorem (Pirzada 2008)

A set of integers is the imbalance set of a simple digraph if and
only if it is the set {0} or contains at least one positive and at
least one negative integer.

QUESTION

Which sets of integers are imbalance sets of tournaments?

Important due to its connection with Reid’s score set
theorem (any set of non-negative integers is the score set of
some tournament).

Generating tournaments with desired properties.

Connections with the NP-hard Equal Sum Sets Problem
and its variants.
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Necessary Conditions

The set {0} is the imbalance set of any regular tournament.

Theorem

If a finite nonempty set Z of integers is the imbalance set of a
tournament of order n then all the elements of Z have the same
parity as n − 1 and it either contains only a single element 0 or
contains at least one positive and at least one negative integer.
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Are the Necessary Conditions Sufficient?

NO!

Example

Let Z = {6,−10}. Then Z satisfies the necessary conditions.
However, any sequence with elements chosen from Z can sum to
zero only if it consists of an even number of elements (e.g., 6, 6, 6,
6, 6, −10, −10, −10). Thus the parity condition for tournament
imbalance sequences can never be satisfied.

Surprisingly, if Z consists of odd integers then the neccessary
conditions are also sufficient.
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Some Notations

Given a set Z of integers, let X = {x1, . . . , x`} be the set of
non-negative and Y = {−y1, . . . ,−ym} be the set of negative
integers in Z .

x1 > · · · > x`

−y1 > · · · > −ym

L =
∑̀
i=1

xi

M =
m∑
i=1

yi

n = `M + mL

Let x (p) denote that x is appearing in p consecutive terms of a
sequence.
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Odd Imbalance Sets

Theorem

Let Z = X ∪ Y be a set of odd integers, then there exists a
tournament of order n with imbalance set Z if and only if X and Y
are nonempty.

Proof. (Sketch) Form the sequence

[ti ]
n
1 = x1

(M), . . . , x`
(M),−y1(L), . . . ,−ym(L),

then the terms of [ti ]
n
1 have the same parity as n − 1. Verify

inequality (1) for

j = M, 2M, . . . , `M, `M + L, `M + 2L, . . . , `M + mL(= n).

Show that if some j0 6= M, . . . , `M, `M + L, . . . , n violates (1),
then j0 + 1 violates (1). �
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The Case of Even Imbalances

Recall, {0} is the imbalance set of any regular tournament.

What about other sets of even integers?

The sequence

[ti ]
n
1 = x1

(M), . . . , x`
(M),−y1(L), . . . ,−ym(L),

gives a digraph but not a tournament.

If we cannot guarantee a complete digraph, how close can we get?

Lemma (Mubayi, Will, West 2000)

Let D be a simple digraph with maximum number of arcs realizing
the imbalance sequence [ti ]

n
1. Then any vertex in D has at most

one non-neighbour and the number of arcs in D equals∑n
i=1

⌊
n−1+ti

2

⌋
.
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The Case of Even Imbalances

Since all the imbalances ti are even while n − 1 is odd,

n∑
i=1

⌊
n − 1 + ti

2

⌋
=

n∑
i=1

n − 2 + ti
2

=
n(n − 2)

2
,

which is n
2 less than the number of arcs of a tournament of order

n. Therefore, every vertex of D has exactly one non-neighbour.
We say that D is a near tournament.�� ��Let us call the O(n2) algorithm that generates D, Max Arcs.

Theorem

Let Z 6= {0} be a set of even integers and Z = X ∪ Y , with X and
Y being nonempty. Then there exists a near tournament of order n
with imbalance set Z .
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Sufficient Conditions for Even Imbalance Sets

Theorem

Let X , Y , `, m, L, M and n be as before. The set X ∪ Y is the
imbalance set of a tournament if any one of the following
conditions is satisfied:

(I) 0 ∈ X ∪ Y ,

(II) there exist an odd number of (not necessarily distinct)
xp1 , . . . , xp2r+1 ∈ X and an even number of (not necessarily

distinct) −yq1 , . . . ,−yq2s ∈ Y such that
∑2r+1

j=1 xpj =
∑2s

j=1 yqj ,

(III) there exist an odd number of (not necessarily distinct)
−yp1 , . . . ,−yp2r+1 ∈ Y and an even number of (not necessarily

distinct) xq1 , . . . , xq2s ∈ X such that
∑2r+1

j=1 ypj =
∑2s

j=1 xqj .

Proof. (Sketch) (I) Add a vertex v to T in such a way that for
every pair of non-adjacent vertices vi and v ′i insert the arcs (vi , v

′
i ),

(v ′i , v) and (v , vi ).
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Sufficient Conditions for Even Imbalance Sets

(II) Consider
∑2r+1

j=1 xpj
2 pairs of non-adjacent vertices.
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Sufficient Conditions for Even Imbalance Sets

(II) For the remaining
n−

∑2r+1
j=1 xpj
2 pairs of non-adjacent vertices.

�� ��Let us call this procedure Add Arcs.
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Sufficient Conditions are Necessary

Theorem

Let Z = X ∪ Y be a finite nonempty set of even integers. Then Z
is the imbalance set of a tournament if and only if either Z = {0}
or both X and Y are nonempty and satisfy one of the conditions
(I), (II) or (III).

Proof. (Sketch) Let 0 /∈ X ∪ Y and X ∪ Y be the imbalance set
of a tournament of order k. We can form a sequence [ti ]

k
1

consisting of an odd number of not necessarily distinct terms from
the elements of X ∪ Y that sums to zero. Since k is odd, either
the number of terms from X is odd or the number of terms from
Y is odd, but not both. �
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Algorithmic Aspects

Imbalance Set Problem (Decision Version)

Given a set of integers, decide whether it is the imbalance set of
some tournament.

Imbalance Set Problem (Search Version)

Given a tournament imbalance set, construct a tournament
realizing that imbalance set.
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An Algorithm for ISP

Procedure: Imbalance

1 If Z contains both odd and even integers, return ‘No’.

2 If X = ∅ or Y = ∅, return ‘No’.

3 Form the sequence
[ti ]

n
1 = x1

(M), . . . , x`
(M),−y1(L), . . . ,−ym(L).

4 Call Max Arcs to to realize [ti ]
n
1 as a simple digraph D with

maximum number of arcs.

5 If Z consists of odd integers, D is a tournament. Return D.

6 If Z consists of even integers, search for sequences [x ]a1 and
[−y ]b1, where a and b have different parity and

∑
x =

∑
y . If

no such sequences exist, return ‘No’.

7 Call Add Arcs to add a + b vertices and arcs to D to form a
tournament T . Return T .
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Equal Sum Sequences

Equal Sum Sets (ESS) Problem

Given two sets of non-negative integers, find their subsets with
equal sum.

Dynamic programming algorithm by Bazgan, Santha and
Tuza (2002).

O(|Input| × Sum2) running time (pseudopolynomial).

ESS is weakly NP-hard.

However, for step 6 we want to find equal sum sequences.

Equal Sum Sequences (ESSeq) Problem

Given sets X and Y of non-negative integers and a positive integer
k , find nonempty finite sequences [x ] and [y ] of elements from X
and Y , with each element allowed to repeat at the most k times,
such that

∑
x =

∑
y .
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The Bounding Theorem

The ESS algorithm can be adapted to solve ESSeq (use the
multisets X (k) and Y (k) as input, with each element repeated k
times).

�� ��Let us call the resulting algorithm Equal Seq.

We can call Equal Seq to find equal sum sequences in step 6 of
Imbalance. provided we can determine a bound on k that works.

Theorem

Let X , Y , `, m, L, M and n be as defined before. If k = p + q is
the minimum odd number such that there exists a p-term sequence
from X and a q-term sequence from Y having the same sum, then
k < n.
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ISP Algorithm Revisited

Procedure: Imbalance

1 If Z contains both odd and even integers, return ’No’.

2 If X = ∅ or Y = ∅, return ’No’.

3 Form the sequence
[ti ]

n
1 = x1

(M), . . . , x`
(M),−y1(L), . . . ,−ym(L).

4 Call Max Arcs to to realize [ti ]
n
1 as a simple digraph D with

maximum number of arcs.

5 If Z consists of odd integers, D is a tournament. Return D.

6 Call Equal Seq with the input (X (n),Y (n), n) to find
sequences [x ]a1 and [−y ]b1, with a and b having different parity
and

∑
x =

∑
y . If no such sequences exist, return ’No’.

7 Call Add Arcs to add a + b vertices and arcs to D to form a
tournament T . Return T .
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Figure : A tournament with imbalance set {4, 2,−2}.
• Max Arcs gives a digraph D (black vertices and solid arcs) with
imbalance sequence [4(2), 2(2),−2(6)].
• Equal Seq gives 4 from X , −2,−2 from Y with 4 = 2 + 2.
• Add Arcs inserts white vertices with imbalances 4,−2,−2 and dashed
arcs to form a tournament with imbalance sequence [4(3), 2(2),−2(8)].
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Complexity of ISP

Theorem

The ISP decision problem is NP-complete and can be solved in
O(n3(` + m)(L + M)2) time.

Proof. (Sketch) The NP-completeness follows by reduction from
Equal Sum Sets Problem. The running time of the algorithm
Imbalance is dominated by step 6 which takes
O(|Input| × Sum2) time. �
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Minimal Order of the ISP Output

Theorem

Let Z be a tournament imbalance set and ord(Z ) denote the
minimum order of a tournament realizing Z .

(a) If Z consists of odd integers then

ord(Z ) ≤ n.

(b) If Z consists of even integers and 0 ∈ Z then

ord(Z ) ≤ n + 1.

(c) If Z consists of even integers and 0 /∈ Z then

ord(Z ) < 2n.
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Open Problems

1 Given a set Z of integers, construct a tournament of minimal
order realizing Z as its imbalance set. Can we express this
minimal order as a function of elements of Z and its
cardinality?

2 Investigate the Equal Sum Sequences problem and its variants
in more detail.

3 Use the constructions given here to obtain a constructive
proof of Reid’s theorem.

4 Generalization to hypertournaments.
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