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Introduction

The simplex method and our results

The simplex method for LP was originally
developed by G. Dantzig in 1947.

The simplex method needs an exponential number
(2n/2 − 1) of iterations for Klee-Minty’s LP.

We get new bounds for the number of distinct
solutions generated by the simplex method with
Dantzig’s rule and with any rule.

KITAHARA & MIZUNO (TIT) Number of Solutions by Simplex Method November 25–29, 2013 4 / 48



Introduction

A simple example of LP on a cube

min −(x1 + x2 + x3), subject to 0 ≤ x1, x2, x3 ≤ 1

The initial point is x 0 = (0, 0, 0)T and the optimal
solution is x ∗ = (1, 1, 1)T .
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Introduction

The shortest path

The length (number of edges) of the shortest path from
x 0 to x ∗ is equal to the dimension m = 3.
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Introduction

The longest path

The length of the shortest path is m = 3.
The length of the longest path is 2m − 1 = 7.
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Introduction

The simplex method on the cube

m ≤ the number of vertices (or BFS) generated by the
simplex method ≤ 2m − 1.
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Introduction

Klee-Minty’s LP

Klee and Minty showed that the simplex method
generates an exponential number (2m − 1) of vertices
for a special LP on a perturbed cube, where n = 2m .
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Introduction

Klee-Minty’s LP (image)
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78
Number of vertices (or BFS) generated is 2m − 1 = 7.
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Introduction

The simplex method on the cube (2)

The length of any monotone path (objective value is
strictly decreasing) between x 0 and x ∗ is at most m .
Hence the number of iterations of the primal simplex
method is at most m .
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Introduction

Motivation of our research
Although

the simplex method for an LP on a perturbed cube
may generates exponential number 2m − 1 of
vertices,

if

the feasible region is the cube without perturbation

then

the number of vertices (BFS) generated is
bounded by m .

Question: Is it possible to get a good upper bound for
general LP, which is small for LP on the cube
(but must be big for Klee-Minty’s LP)?
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Introduction

Standard form of LP
The standard form of LP is

min c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn = b1,
...
am1x1 + am2x2 + · · ·+ amn xn = bm ,
(x1, x2, · · · , xn)T ≥ 0.

or
min cTx ,
subject to Ax = b , x ≥ 0

by using vectors and a matrix.
· n is the number of variables.
· m is the number of equality constraints.
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Introduction

Upper Bound 1
· The number of distinct BFSs (basic feasible solutions)
generated by the simplex method with Dantzig’s rule

(the most negative pivoting rule) is bounded by

nm
γ

δ
log (m

γ

δ
),

where δ and γ are the minimum and the maximum
values of all the positive elements of primal BFSs.
·When the primal problem is nondegenerate, it

becomes a bound for the number of iterations.
· The bound is almost tight in the sense that there

exists an LP instance for which the number of iterations
is γ
δ

where γ
δ
= 2m − 1.
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Introduction

Ye’s result for MDP

· Our work is influenced by Ye (2010), in which he
shows that the simplex method is strongly polynomial
for the Markov Decision Problem (MDP).
·We extend his analysis for MDP to general LPs.
· Our results include his result for MDP.
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Introduction

Upper Bound 2
· The number of distinct BFSs (basic feasible solutions)
generated by the primal simplex method with
any pivoting rule is bounded by

m
γγ′

D

δδ′
D

where δ′
D

and γ′
D

are the minimum and the maximum
absolute values of all the negative elements of dual
BFSs for primal feasible bases.
· The bound is tight in the sense that there exists an LP

instance for which the number of iterations is m
γγ′

D

δδ′
D

.
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Introduction

The bounds are small for special LPs

We can show that the upper bounds are small for
some special LPs, including network problems, LP
with a totally unimodular matrix, MDP, and LP on
the cube.

When A is totally unimodular and b and c are
integral, the upper bounds become

nm∥b∥1 log (m∥b∥1) (Dantzig’s rule),
m∥b∥1 ∥c∥1 (any pivoting rule).
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LP and the simplex method

LP and its dual

The standard form of LP is

min cTx ,
subject to Ax = b , x ≥ 0.

The dual problem is

max b Ty ,
subject to A Ty + s = c , s ≥ 0.
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LP and the simplex method

Assumptions and notations

Assume only that

rank(A ) = m ,

the primal problem has an optimal solution,

an initial BFS x 0 is available.

Let

x ∗: an optimal BFS of the primal problem,

(y ∗, s∗): an optimal solution of the dual problem,

z∗: the optimal value.
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LP and the simplex method

δ and γ

· Let δ and γ be the minimum and the maximum values
of all the positive elements of BFSs, i. e., we have

δ ≤ x̂ j ≤ γ if x̂ j , 0

for any BFS x̂ and any j ∈ {1, 2, . . . , n}.
· The values of δ and γ depend only on A and b

(feasible region), but not on c (objective function).
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Figure of δ, γ, and BFSs (vertices)
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LP and the simplex method

Pivoting

· At k -th iterate (BFS) x k of the simplex method, if all
the reduced costs are nonnegative (c̄N ≥ 0), x k is
optimal.
· Otherwise we conduct a pivot. We always choose a

nonbasic variable x j whose reduced cost c̄ j is negative.
· Under Dantzig’s rule, we choose a nonbasic variable

x j whose reduced cost is minimum, i.e.,

j = arg min
j∈N

c̄ j .
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Upper Bounds

Constant reduction rate of the gap (1)
· Let {x k } be a sequence of BFSs generated by the

simplex method.
· If there exists a λ > 0 such that

cTx k+1 − z∗ ≤ (1 − 1

λ
)(cTx k − z∗)

whenever x k+1 , x k , the number of distinct BFSs
generated by the simplex method is bounded by

λ log
cTx 0 − z∗

cT x̄ − z∗
or simply λL

where x̄ is the second optimal solution, z∗ is the
optimal value, and L is the size of LP.
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Upper Bounds

Constant reduction rate of the gap (2)

·When we use Dantzig’s rule, we have

cTx k+1 − z∗ ≤ (1 − 1

λ
)(cTx k − z∗)

for λ = m γ

δ
whenever x k+1 , x k . Hence the number of

distinct BFSs is bounded by

m
γ

δ
log

cTx 0 − z∗

cT x̄ − z∗
.

· Note that the upper bound depends on c (the
objective function).
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Upper Bounds

Reduction of a variable
· If x p is not optimal, there exists a (current basic)

variable x j such that x p

j
> 0 and

x k
j
≤ mγ

cTx k − z∗

cTx p − z∗

for any (basic) feasible solution x k .
· Suppose that we use Dantzig’s rule. The value of

variable x j becomes 0 and stays 0 if we generate more
than

M = m
γ

δ
log (m

γ

δ
)

distinct BFSs after p -th iterate.
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Upper Bounds

Number of BFSs (Dantzig’s rule)

The number of distinct BFSs generated by the simplex
method with Dantzig’s rule is bounded by

nM = nm
γ

δ
log (m

γ

δ
).
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Upper Bounds

Constant reduction of the objective
function (1)
· Let {x k } be a sequence of BFSs generated by the

simplex method.
· If there exists a constant K > 0 such that

cTx k − cTx k+1 ≥ K

whenever x k+1 , x k , the number of distinct BFSs
generated by the simplex method is bounded by

cTx 0 − z∗

K
.
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Upper Bounds

Number of BFSs (any rule)
· For any pivoting rule, we have that

cTx k − cTx k+1 ≥ δδ′
D

whenever x k+1 , x k . We also see that

cTx 0 − z∗ ≤ mγγ′
D
.

(Here δ′
D

and γ′
D

are the minimum and the maximum absolute

values of all the negative elements of dual BFSs for primal feasible

bases. )

· Hence the number of distinct BFSs is bounded by

m
γγ′

D

δδ′
D

.
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Application to special LPs

0-1 vertices

Assume that all the elements of BFSs (such as an
assignment problem) is 0 or 1, that is, δ = γ = 1.
Then the number of distinct BFSs generated by the
simplex method with Dantzig’s rule is bounded by

nm log m .
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Application to special LPs

Shortest path problem

min
∑

(i ,j)∈E c ij x ij ,

s.t.
∑

j :(i ,j)∈E x ij −
∑

j :(j ,i)∈E x ij =

{
|V | − 1 for source
−1 other nodes

x ≥ 0.

Since the shortest path problem is nondegenerate,
n = |E|, m = |V |, γ ≤ |V | − 1, and δ ≥ 1, the number
of iterations of the simplex method with Dantzig’s rule is
bounded by

|E||V |2 log |V |2.
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Application to special LPs

Minimum cost flow problem

min
∑

(i ,j)∈E c ij x ij ,
s.t.

∑
j :(i ,j)∈E x ij −

∑
j :(j ,i)∈E x ij = b i for i ∈ V

0 ≤ x ≤ u.

Assume that the capacities u ij and the supplies b i are
integral. Since n = |E|, m = |V |,
γ ≤ U = max (i ,j)∈E u ij , and δ ≥ 1, the number of
distinct solutions generated by the simplex method with
Dantzig’s rule is bounded by

|E|2U log |E|U.
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Application to special LPs

Minimum cost flow problem (continue)

It is known that if we perturb the minimum cost flow
problem by adding −(|V | − 1)/|V | to b i for the root
node and 1/|V | for the other nodes, then the problem is
nondegenerate and we can solve the original problem
by solving this perturbed problem. Hence the number
of iterations of the simplex method with Dantzig’s rule
for solving a minimum cost flow problem is bounded by

|E|2|V |U log |E||V |U.
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Application to special LPs

LP with a totally unimodular matrix

When a constraint matrix A is totally unimodular and
constant vectors b and c are integral, the number of
distinct solutions generated by the simplex method is at
most

nm∥b∥1 log (m∥b∥1)
for Dantzig’s rule and

m∥b∥1 ∥c∥1

for any pivoting rule.
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Application to special LPs

MDP

· The Markov Decision Problem (MDP):

min cT
1

x1 + cT
2

x2,

subject to (I − θP1)x1 + (I − θP2)x2 = e,
x1, x2 ≥ 0.

· (Y. Ye) The simplex method with Dantzig’s rule for
solving MDP finds an optimal solution in at most

n
m2

1 − θ
log

m2

1 − θ
iterations, where n = 2m .
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Lowr Bounds

Outline of this section

Klee-Minty’s LP requires an exponential number of
iterations (2m − 1) by Dantzig’s simplex method.
Therefore the ratio γ/δ for Klee-Minty’s LP must be
big. In fact, it is about 100m .

We construct a variant of Klee-Minty’s LP, for which
the number of iterations (Dantzig’s rule) is equal to
γ

δ
where γ

δ
= 2m − 1.

We also present a simple LP on a cube for which
the number of iterations (any rule) is equal to

m
γγ′

D

δδ′
D

.
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Lowr Bounds

A variant of Klee-Minty’s LP
· The variant of Klee-Minty’s LP is represented as

max
∑m

i=1
x i ,

s. t. 2
∑k−1

i=1
x i + xk ≤ 2k − 1 (k = 1, 2, · · · ,m),

x ≥ 0.

(Only b has exponential size).
· The standard form is

max
∑m

i=1
x i ,

s. t. 2
∑k−1

i=1
x i + xk + yk = 2k − 1 (k = 1, 2, · · · ,m),

x ≥ 0, y ≥ 0.
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Lowr Bounds

Properties of the variant

The variant has the following properties

for each i ∈ {1, 2, · · · ,m} at any BFS, exactly one
of x i and y i is a basic variable,

the problem has 2m BFSs,

each component of any BFS is an integer,

the problem is nondegenerate,

The optimal BFS is x ∗ = (0, 0, · · · , 0, 2m − 1)T ,
y ∗ = (1, 22 − 1, · · · , 2m−1 − 1, 0)T , and the optimal
value is (2m − 1).
δ = 1 and γ = (2m − 1).
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Lowr Bounds

Properties of the variant (2)
When we generate a sequence of BFSs by Dantzig’s
simplex method for the variant from an initial BFS
where x = 0,

any reduced cost of every dictionary is 1 or −1,
which implies δ′

D
= 1 and γ′

D
= 1,

the number of iterations is (2m − 1), which is equal

to γ
δ

and
γγ′

D

δδ′
D

,

the objective function value increases by 1 at each
iteration, so there exists exactly one BFS whose
objective function value is k for each integer
k ∈ [0, 2m − 1].
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Vertices generated by Dantzig’s simplex
method (m = 3)
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Lowr Bounds

An LP on a cube
· The standard form of LP on a cube

max
∑m

i=1
x i ,

s. t. xk + yk = 1, xk ≥ 0, yk ≥ 0 (k = 1, 2, · · · ,m).

·We see that

δ = γ = 1 and δ′
D
= γ′

D
= 1.

·When the initial solution is x = 0, the number of
iterations is exactly m , which is equal to

m
γγ′

D

δδ′
D

.
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Conclusion

Problems, Pivoting, and Assumptions

· Problems:

The standard form of LP and its dual.

· Pivoting:

Dantzig’s rule

Any rule which chooses a nonbasic variable whose
reduced cost is negative.

· Assumptions:

rank(A ) = m .

The primal problem has an optimal solution.

An initial BFS is available.
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Results
...1 The number of BFSs is bounded by

nm
γ

δ
log (m

γ

δ
) or m

γγ′
D

δδ′
D

.

...2 Totally unimodular case:

nm∥b∥1 log (m∥b∥1) or m∥b∥1∥c∥1.
...3 There exists an LP (a variant of Klee-Minty’s LP)

for which the number of iterations is γ
δ

and
γγ′

D

δδ′
D

where γ
δ
= 2m − 1 and

γ′
D

δ′
D

= 1.
...4 There exists an LP (on a cube) for which the

number of iterations is m γ

δ
and m

γγ′
D

δδ′
D

.
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Conclusion

Announcement

ICCOPT V 2016 TOKYO
(The 5th International Conference on Continuous
Optimization of the Mathematical Optimization Society)

Place: Roppongi, Tokyo, JAPAN
Dates: Aug. 6 (Sat) - 11 (Thu), 2016
Venue: National Graduate Institute for

Policy Studies (GRIPS)
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