

Chiral extensionsof chiral polytopes

Gabe CunninghamDaniel Pellicer

Abstract polytope

Abstract polytopeC → combinatorial
/ex nolvtone generalization of convex polytope

Abstract polytope

Abstract polytope

POSET

- **POSET**
- **Unique maximal and minimal elements**

- **POSET**
- **Unique maximal and minimal elements**
- **Pank function**

- **POSET**
- **Unique maximal and minimal elements**
- **Rank function**
- **Strongly flag-connected**

- **POSET**
- **Unique maximal and minimal elements**
- **Rank function**
- **Strongly flag-connected**
- **•** Diamond condition

Abstract polytope

Every edge (¹-face) contains precisely twovertices (0-faces)

Every edge (¹-face) contains precisely twovertices (0-faces)

In a polygon (2-face), every vertex (0-face) belongs precisely to two edges (1-faces)

Every edge (¹-face) contains precisely twovertices (0-faces)

In a polygon (2-face), every vertex (0-face) belongs precisely to two edges (1-faces)

In ^a polyhedron (³-face), every edge (1-face)belongs precisely to two polygons (2-faces)

Every edge (¹-face) contains precisely twovertices (0-faces)

In a polygon (2-face), every vertex (0-face) belongs precisely to two edges (1-faces)

In ^a polyhedron (³-face), every edge (1-face)belongs precisely to two polygons (2-faces)

etc.

Flag

Automorphism

Automorphism −→ order preserving bijection

Automorphism −→ order preserving bijection

Regular polytope

- **Automorphism** −→ order preserving bijection
- **Regular polytope** $\mathbf{e} \longrightarrow$ automorphism group transitive on flags

Regular polytope $e \longrightarrow$ maximal symmetry by reflections

November, 2013 – p. 11

Regular polytope $e \longrightarrow$ maximal symmetry by reflections

Chiral polytopeC → maximal symmetry by
creflections rotation, but not by reflections

November, 2013 – p. 11

Coxeter, 1948 \longrightarrow chiral maps on the torus

- Coxeter, 1948 \longrightarrow chiral maps on the torus
- Sherk, 1962 → family of maps on surfaces with
higher genus higher genus
- Coxeter, 1948 \longrightarrow chiral maps on the torus
- Sherk, 1962 → family of maps on surfaces with
higher genus higher genus
- Garbe, 1969 \longrightarrow showed that there are no chiral
mans on surfaces with genus 2 6 maps on surfaces with genus $2 - 6$
- Coxeter, 1948 \longrightarrow chiral maps on the torus
- Sherk, 1962 → family of maps on surfaces with
higher genus higher genus
- Garbe, 1969 \longrightarrow showed that there are no chiral
mans on surfaces with genus 2 6 maps on surfaces with genus $2 - 6$
- M. Conder, P. Dobcsányi, I. Hubard, D. Lemmans, R. Nedela, J. E. Schulte, ŠiráňT. Tucker, $... \longrightarrow$ various aspects

Coxeter, 1970 → chiral 4-polytopes from
hyperbolic honeycombs hyperbolic honeycombs

- Coxeter, 1970 → chiral 4-polytopes from
hyperbolic honeycombs hyperbolic honeycombs
- Conder, Hubard, Pisanski, 2008 → computer
based search for chiral 4- and 5-polytones based search for chiral 4- and 5-polytopes

- Coxeter, 1970 → chiral 4-polytopes from
hyperbolic honeycombs hyperbolic honeycombs
- Conder, Hubard, Pisanski, 2008 → computer
based search for chiral 4- and 5-polytones based search for chiral 4- and 5-polytopes

DP, 2010 → recursive construction of chiral
∞-polytones n -polytopes

- Coxeter, 1970 → chiral 4-polytopes from
hyperbolic honeycombs hyperbolic honeycombs
- Conder, Hubard, Pisanski, 2008 → computer
based search for chiral 4- and 5-polytones based search for chiral 4- and 5-polytopes
- DP, 2010 → recursive construction of chiral
∞-polytones n -polytopes
- A. Breda, M. Conder, G. Cunningham, I. Hubard, E. O'Reilly, E. Schulte, A. Weiss → other
annroaches approaches

No natural family \mathcal{P}_n of chiral n -polytopes

- No natural family \mathcal{P}_n of chiral n -polytopes
- No chiral convex polytopes

- No natural family \mathcal{P}_n of chiral n -polytopes
- No chiral convex polytopes
- No toroidal n -polytopes for $\, n \,$ $\neq 3$

- No natural family \mathcal{P}_n of chiral n -polytopes
- No chiral convex polytopes
- No toroidal n -polytopes for $\, n \,$ $\neq 3$
- For rank $n\geq 6$, chiral n -polytopes seem to be BIG

From ^a group theoretical perspective,

From ^a group theoretical perspective,

Conder, Hartley, Hubard, Leemans, Schulte → finite almost simple groups

From ^a group theoretical perspective,

- Conder, Hartley, Hubard, Leemans, Schulte → finite almost simple groups
- Conder, Hubard, O'Reilly, Pellicer \longrightarrow construction of chiral $n\text{-}\mathsf{polytopes}$ with symmetric or alternating automorphism groups

Chiral n -polytopes from $(n-\,$ -1)-polytopes

- Chiral n -polytopes from $(n-\,$ -1)-polytopes
- The facets of ^a chiral polytope may be eitherregular or chiral
- Chiral n -polytopes from $(n-\,$ -1)-polytopes
- The facets of ^a chiral polytope may be eitherregular or chiral
- The facets of the facets of ^a chiral polytope areregular

- Chiral n -polytopes from $(n-\,$ -1)-polytopes
- The facets of ^a chiral polytope may be eitherregular or chiral
- The facets of the facets of ^a chiral polytope areregular
- If a chiral $n\text{-}\mathsf{polytope}$ has chiral facets, it is not the facet of an $(n \,$ $n + 1)$ -chiral polytope

Chiral n -polytopes from $(n-\,$ -1)-polytopes

- Chiral n -polytopes from $(n-\,$ -1)-polytopes
- Schulte, Weiss, 1995 \longrightarrow every chiral d -polytope
with requilar facets is the facet of an infinite chiral with regular facets is the facet of an infinite chiral $(d+1)$ -polytope

- Chiral n -polytopes from $(n-\,$ -1)-polytopes
- Schulte, Weiss, 1995 \longrightarrow every chiral d -polytope
with requilar facets is the facet of an infinite chiral with regular facets is the facet of an infinite chiral $(d+1)$ -polytope
- Is every finite $d\text{-}\mathsf{polytope}$ with regular facets the facet of ^aFINITE chiral $(d+1)$ -polytope?

$$
\Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle
$$

$$
\Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle
$$

 $(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2$ = $=Id$

$$
\Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle
$$

$$
(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = Id
$$

▶ Intersection condition

Theorem Given a group $\Gamma = \langle \sigma_1, \ldots, \sigma_{d-1} \rangle$
satisfying $(\sigma_1, \ldots, \sigma_d)^2 - Id$ and the satisfying $(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = Id$ and intersection condition, it is the automorphism = I_d and the group of a unique regular or chiral $n\text{-}\mathsf{polytope}$

Theorem Given a group $\Gamma = \langle \sigma_1, \ldots, \sigma_{d-1} \rangle$
satisfying $(\sigma_1, \ldots, \sigma_d)^2 - Id$ and the satisfying $(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = Id$ and intersection condition, it is the automorphism = I_d and the group of a unique regular or chiral $n\text{-}\mathsf{polytope}$

 \blacktriangleright $\mathcal P$ is regular if and only if there is an automorphism

$$
\begin{array}{rcl}\n\sigma_1 & \mapsto & \sigma_1^{-1} \\
\sigma_2 & \mapsto & \sigma_1^2 \sigma_2 \\
\sigma_k & \mapsto & \sigma_k & k \ge 3\n\end{array}
$$

\blacktriangleright PR \longrightarrow Permutation representation

PR graphs

• Vertex set $\longrightarrow \{1,\ldots,n\}$

- Vertex set $\longrightarrow \{1,\ldots,n\}$
- **Generators** S $\sigma_1, \ldots, \sigma_{d-1}$

- Vertex set $\longrightarrow \{1,\ldots,n\}$
- **Generators** S $\sigma_1, \ldots, \sigma_{d-1}$
- Arrows labeled i indicate the action of σ_i

- Vertex set $\longrightarrow \{1,\ldots,n\}$
- **Generators** S $\sigma_1, \ldots, \sigma_{d-1}$
- Arrows labeled i indicate the action of σ_i

Involutionss $\tau_{i,i+1}:=\sigma_i\sigma_{i+1}$ may replace σ_i or σ_{i+1}

PR graphs

PR graphs

PR graphs

PR graphs

PR graphs

PR graphs

PR graphs

PR graphs

PR graphs

It was known that if ^a directed graph witharrows/edges labelled in $\{1,\ldots,n\}$ satisfies that

It was known that if ^a directed graph witharrows/edges labelled in $\{1,\ldots,n\}$ satisfies that

Restricted to arrows labelled $1, \ldots, n-1$ is
the Caylov PP araph of a requier er obirol. the Cayley PR graph of ^a regular or chiral n -polytope,

It was known that if ^a directed graph witharrows/edges labelled in $\{1,\ldots,n\}$ satisfies that

- Restricted to arrows labelled $1, \ldots, n-1$ is
the Caylov PP araph of a requier er obirol. the Cayley PR graph of ^a regular or chiral n -polytope,
- The edges labelledd n form squares with all arrows labelled $1, \ldots, n-2$,

Construction

• The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,

- **•** The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,
- For every $k \in \{2, \ldots, n-1\}$ there is a connected companent with labels connected component with labels $\{1, \ldots, n-1\}$ that intersects a connected
companent with labels (L_1, \ldots, L_n) in a component with labels $\{k,\ldots,n\}$ in a connected component with labels $\{k,\ldots,n-1\},\$
- **•** The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,
- For every $k \in \{2, \ldots, n-1\}$ there is a connected companent with labels connected component with labels $\{1, \ldots, n-1\}$ that intersects a connected
companent with labels (L_1, \ldots, L_n) in a component with labels $\{k,\ldots,n\}$ in a connected component with labels $\{k,\ldots,n-1\},\$
- then it is the PR graph of ^a chiral or regular $(n+1)$ -polytope
It was known that if ^a directed graph witharrows/edges labelled in $\{1,\ldots,n\}$ satisfies that

- Restricted to arrows labelled $1, \ldots, n-1$ is
the Caylov PP araph of a requier er obirol. the Cayley PR graph of ^a regular or chiral n -polytope,
- The edges labelledd n form squares with all arrows labelled $1, \ldots, n-2$,
- **•** The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,
- For every $k \in \{2, \ldots, n-1\}$ there is a connected companent with labels connected component with labels $\{1, \ldots, n-1\}$ that intersects a connected
companent with labels (L_1, \ldots, L_n) in a component with labels $\{k,\ldots,n\}$ in a connected component with labels $\{k,\ldots,n-1\},\$
- then it is the PR graph of ^a chiral or regular $(n+1)$ -polytope

If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then

Results

- If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then
- **•** the last entry of the Schläfli type is $2(a^2 + b^2) - 2$

Results

- If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then
- **•** the last entry of the Schläfli type is $2(a^2 + b^2) - 2$
- the automorphism group is isomorphic to $(A_{a^2+b^2} \times A_{a^2+b^2}) \rtimes D_4$

Results

- If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then
- **•** the last entry of the Schläfli type is $2(a^2 + b^2) - 2$
- the automorphism group is isomorphic to $(A_{a^2+b^2} \times A_{a^2+b^2}) \rtimes D_4$

• Are there natural families of chiral polytopes with one polytope of each rank?

- **•** Are there natural families of chiral polytopes with one polytope of each rank?
- Are there "small" chiral n -polytopes?

- **•** Are there natural families of chiral polytopes with one polytope of each rank?
- Are there "small" chiral n -polytopes?
- What is the smallest $n\text{-}\mathsf{polytope}$ for a given n ?

- **•** Are there natural families of chiral polytopes with one polytope of each rank?
- Are there "small" chiral n -polytopes?
- What is the smallest $n\text{-}\mathsf{polytope}$ for a given n ?
- **•** Are all orientably regular polytopes the facet of ^a chiral polytope?

... E N D ...