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Regular polytopes

Flag −→ maximal totally ordered subset

Automorphism −→ order preserving bijection

Regular polytope −→ automorphism group
transitive on flags
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Regular polytope −→ maximal symmetry by
reflections

Chiral polytope −→ maximal symmetry by
rotation, but not by reflections
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Chiral 3-polytopes

Coxeter, 1948 −→ chiral maps on the torus

Sherk, 1962 −→ family of maps on surfaces with
higher genus

Garbe, 1969 −→ showed that there are no chiral
maps on surfaces with genus 2 – 6

M. Conder, P. Dobcsányi, I. Hubard, D.
Lemmans, R. Nedela, J. E. Schulte, ŠiráňT.
Tucker, ... −→ various aspects
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Coxeter, 1970 −→ chiral 4-polytopes from
hyperbolic honeycombs

Conder, Hubard, Pisanski, 2008 −→ computer
based search for chiral 4- and 5-polytopes

DP, 2010 −→ recursive construction of chiral
n-polytopes

A. Breda, M. Conder, G. Cunningham, I. Hubard,
E. O’Reilly, E. Schulte, A. Weiss −→ other
approaches
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No natural family Pn of chiral n-polytopes

No chiral convex polytopes

No toroidal n-polytopes for n 6= 3

For rank n ≥ 6, chiral n-polytopes seem to be
BIG
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Higher rank chiral polytopes

From a group theoretical perspective,

Conder, Hartley, Hubard, Leemans, Schulte −→
finite almost simple groups

Conder, Hubard, O’Reilly, Pellicer −→
construction of chiral n-polytopes with symmetric
or alternating automorphism groups
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Chiral n-polytopes from (n− 1)-polytopes

The facets of a chiral polytope may be either
regular or chiral

The facets of the facets of a chiral polytope are
regular

If a chiral n-polytope has chiral facets, it is not
the facet of an (n+ 1)-chiral polytope
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Higher rank chiral polytopes

Chiral n-polytopes from (n− 1)-polytopes

Schulte, Weiss, 1995 −→ every chiral d-polytope
with regular facets is the facet of an infinite chiral
(d+ 1)-polytope

Is every finite d-polytope with
regular facets the facet of a
FINITE chiral (d + 1)-polytope?
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Automorphism groups

Theorem Given a group Γ = 〈σ1, . . . , σd−1〉
satisfying (σiσi+1 · · ·σj)

2 = Id and the
intersection condition, it is the automorphism
group of a unique regular or chiral n-polytope

◮ P is regular if and only if there is an
automorphism

σ1 7→ σ−1
1

σ2 7→ σ2
1σ2

σk 7→ σk k ≥ 3
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◮ PR −→ Permutation representation
Embedding ε : Γ(P) → Sn

Vertex set −→ {1, . . . , n}

Generators σ1, . . . , σd−1

Arrows labeled i indicate the action of σi

Involutions τi,i+1 := σiσi+1 may replace σi or σi+1
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Open questions

Are there natural families of chiral polytopes
with one polytope of each rank?

Are there “small” chiral n-polytopes?

What is the smallest n-polytope for a given n?

Are all orientably regular polytopes the facet
of a chiral polytope?
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