

Chiral extensions of chiral polytopes

Gabe Cunningham Daniel Pellicer

Abstract polytope \longrightarrow combinatorial generalization of convex polytope

Abstract polytope \longrightarrow combinatorial generalization of convex polytope

Abstract polytope \longrightarrow combinatorial generalization of convex polytope

.

Abstract polytope \longrightarrow combinatorial generalization of convex polytope

Abstract polytope \longrightarrow combinatorial generalization of convex polytope

Abstract polytope \longrightarrow combinatorial generalization of convex polytope

Abstract polytope

POSET

- POSET
- Unique maximal and minimal elements

- POSET
- Unique maximal and minimal elements
- Rank function

- POSET
- Unique maximal and minimal elements
- Rank function
- Strongly flag-connected

- POSET
- Unique maximal and minimal elements
- Rank function
- Strongly flag-connected
- Diamond condition

Abstract polytope

Every edge (1-face) contains precisely two vertices (0-faces)

Every edge (1-face) contains precisely two vertices (0-faces)

In a polygon (2-face), every vertex (0-face) belongs precisely to two edges (1-faces)

Every edge (1-face) contains precisely two vertices (0-faces)

In a polygon (2-face), every vertex (0-face) belongs precisely to two edges (1-faces)

In a polyhedron (3-face), every edge (1-face) belongs precisely to two polygons (2-faces)

Every edge (1-face) contains precisely two vertices (0-faces)

In a polygon (2-face), every vertex (0-face) belongs precisely to two edges (1-faces)

In a polyhedron (3-face), every edge (1-face) belongs precisely to two polygons (2-faces)

etc.

Flag

$Flag \longrightarrow \text{maximal totally ordered subset}$

$\textbf{Flag} \longrightarrow \text{maximal totally ordered subset}$

Automorphism

Flag \rightarrow maximal totally ordered subset

$\label{eq:action} Automorphism \longrightarrow {\rm order} \ {\rm preserving} \ {\rm bijection}$

Flag \rightarrow maximal totally ordered subset

Automorphism — order preserving bijection Regular polytope

Flag \rightarrow maximal totally ordered subset

- **Automorphism** —> order preserving bijection
- **Regular polytope** \longrightarrow automorphism group transitive on flags

$\label{eq:reflections} \begin{array}{l} \textbf{Regular polytope} \longrightarrow \text{maximal symmetry by} \\ \textbf{reflections} \end{array}$

November, 2013 – p. 11

Regular polytope \longrightarrow maximal symmetry by reflections

Chiral polytope \longrightarrow maximal symmetry by rotation, but not by reflections

Coxeter, 1948 \longrightarrow chiral maps on the torus

- Coxeter, 1948 \longrightarrow chiral maps on the torus
- Sherk, 1962 \longrightarrow family of maps on surfaces with higher genus

- Coxeter, 1948 \longrightarrow chiral maps on the torus
- Sherk, 1962 \longrightarrow family of maps on surfaces with higher genus
- Garbe, 1969 \longrightarrow showed that there are no chiral maps on surfaces with genus 2 6

- Coxeter, 1948 \rightarrow chiral maps on the torus
- Sherk, 1962 \longrightarrow family of maps on surfaces with higher genus
- Garbe, 1969 \longrightarrow showed that there are no chiral maps on surfaces with genus 2 6
- M. Conder, P. Dobcsányi, I. Hubard, D. Lemmans, R. Nedela, J. E. Schulte, ŠiráňT. Tucker, ... \rightarrow various aspects

Coxeter, 1970 \longrightarrow chiral 4-polytopes from hyperbolic honeycombs

- Coxeter, 1970 \longrightarrow chiral 4-polytopes from hyperbolic honeycombs
- Conder, Hubard, Pisanski, 2008 \longrightarrow computer based search for chiral 4- and 5-polytopes

- Coxeter, 1970 \longrightarrow chiral 4-polytopes from hyperbolic honeycombs
- Conder, Hubard, Pisanski, 2008 \longrightarrow computer based search for chiral 4- and 5-polytopes

DP, 2010 \longrightarrow recursive construction of chiral *n*-polytopes

- Coxeter, 1970 \longrightarrow chiral 4-polytopes from hyperbolic honeycombs
- Conder, Hubard, Pisanski, 2008 \longrightarrow computer based search for chiral 4- and 5-polytopes
- DP, 2010 \longrightarrow recursive construction of chiral *n*-polytopes
- A. Breda, M. Conder, G. Cunningham, I. Hubard, E. O'Reilly, E. Schulte, A. Weiss \longrightarrow other approaches

No natural family \mathcal{P}_n of chiral *n*-polytopes

- No natural family \mathcal{P}_n of chiral *n*-polytopes
- No chiral convex polytopes

- No natural family \mathcal{P}_n of chiral *n*-polytopes
- No chiral convex polytopes
- No toroidal *n*-polytopes for $n \neq 3$

- No natural family \mathcal{P}_n of chiral *n*-polytopes
- No chiral convex polytopes
- No toroidal *n*-polytopes for $n \neq 3$
- For rank $n \ge 6$, chiral *n*-polytopes seem to be BIG

From a group theoretical perspective,

From a group theoretical perspective,

Conder, Hartley, Hubard, Leemans, Schulte \longrightarrow finite almost simple groups

From a group theoretical perspective,

- Conder, Hartley, Hubard, Leemans, Schulte \longrightarrow finite almost simple groups
- Conder, Hubard, O'Reilly, Pellicer \longrightarrow construction of chiral *n*-polytopes with symmetric or alternating automorphism groups

Chiral *n*-polytopes from (n-1)-polytopes

- Chiral *n*-polytopes from (n-1)-polytopes
- The facets of a chiral polytope may be either regular or chiral

- Chiral *n*-polytopes from (n-1)-polytopes
- The facets of a chiral polytope may be either regular or chiral
- The facets of the facets of a chiral polytope are regular

- Chiral *n*-polytopes from (n-1)-polytopes
- The facets of a chiral polytope may be either regular or chiral
- The facets of the facets of a chiral polytope are regular
- If a chiral *n*-polytope has chiral facets, it is not the facet of an (n + 1)-chiral polytope

Chiral *n*-polytopes from (n-1)-polytopes

- Chiral *n*-polytopes from (n-1)-polytopes
- Schulte, Weiss, 1995 \longrightarrow every chiral *d*-polytope with regular facets is the facet of an infinite chiral (d+1)-polytope

- Chiral *n*-polytopes from (n-1)-polytopes
- Schulte, Weiss, 1995 \longrightarrow every chiral *d*-polytope with regular facets is the facet of an infinite chiral (d+1)-polytope
- Is every finite *d*-polytope with regular facets the facet of a FINITE chiral (d + 1)-polytope?

$$\Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$$

$$\Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$$

 $(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = Id$

$$\Gamma(\mathcal{P}) = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$$

$$(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = Id$$

Intersection condition

Theorem Given a group $\Gamma = \langle \sigma_1, \dots, \sigma_{d-1} \rangle$ satisfying $(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = Id$ and the intersection condition, it is the automorphism group of a unique regular or chiral *n*-polytope

Theorem Given a group $\Gamma = \langle \sigma_1, \dots, \sigma_{d-1} \rangle$ satisfying $(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = Id$ and the intersection condition, it is the automorphism group of a unique regular or chiral *n*-polytope

 $\blacktriangleright \ \mathcal{P}$ is regular if and only if there is an automorphism

$$\sigma_1 \mapsto \sigma_1^{-1}$$

$$\sigma_2 \mapsto \sigma_1^2 \sigma_2$$

$$\sigma_k \mapsto \sigma_k \quad k \ge 3$$

\blacktriangleright PR \longrightarrow Permutation representation

November, 2013 – p. 23

PR graphs

PR graphs

• Vertex set $\longrightarrow \{1, \ldots, n\}$

- Vertex set $\longrightarrow \{1, \ldots, n\}$
- Generators $\sigma_1, \ldots, \sigma_{d-1}$

- Vertex set $\longrightarrow \{1, \ldots, n\}$
- Generators $\sigma_1, \ldots, \sigma_{d-1}$
 - Arrows labeled *i* indicate the action of σ_i

- Vertex set $\longrightarrow \{1, \ldots, n\}$
- Generators $\sigma_1, \ldots, \sigma_{d-1}$
- Arrows labeled *i* indicate the action of σ_i

Involutions $\tau_{i,i+1} := \sigma_i \sigma_{i+1}$ may replace σ_i or σ_{i+1}

November, 2013 – p. 24

November, 2013 – p. 24

PR graphs

PR graphs

PR graphs

November, 2013 – p. 25

PR graphs

November, 2013 – p. 25

PR graphs

PR graphs

PR graphs

PR graphs

PR graphs

November, 2013 – p. 25

It was known that if a directed graph with arrows/edges labelled in $\{1, \ldots, n\}$ satisfies that

It was known that if a directed graph with arrows/edges labelled in $\{1, \ldots, n\}$ satisfies that

• Restricted to arrows labelled $1, \ldots, n-1$ is the Cayley PR graph of a regular or chiral *n*-polytope,

It was known that if a directed graph with arrows/edges labelled in $\{1, \ldots, n\}$ satisfies that

- Restricted to arrows labelled $1, \ldots, n-1$ is the Cayley PR graph of a regular or chiral *n*-polytope,
- The edges labelled n form squares with all arrows labelled $1, \ldots, n-2$,

Construction

• The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,

- The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,
- For every $k \in \{2, \ldots, n-1\}$ there is a connected component with labels $\{1, \ldots, n-1\}$ that intersects a connected component with labels $\{k, \ldots, n\}$ in a connected component with labels $\{k, \ldots, n\}$ in a $\{k, \ldots, n-1\}$,

- The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,
- For every $k \in \{2, \ldots, n-1\}$ there is a connected component with labels $\{1, \ldots, n-1\}$ that intersects a connected component with labels $\{k, \ldots, n\}$ in a connected component with labels $\{k, \ldots, n\}$ in a $\{k, \ldots, n-1\}$,
- then it is the PR graph of a chiral or regular (n+1)-polytope

It was known that if a directed graph with arrows/edges labelled in $\{1, \ldots, n\}$ satisfies that

- Restricted to arrows labelled $1, \ldots, n-1$ is the Cayley PR graph of a regular or chiral *n*-polytope,
- The edges labelled n form squares with all arrows labelled $1, \ldots, n-2$,

- The action of $\langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ intersects trivially that of $\langle \sigma_n \rangle$,
- For every $k \in \{2, \ldots, n-1\}$ there is a connected component with labels $\{1, \ldots, n-1\}$ that intersects a connected component with labels $\{k, \ldots, n\}$ in a connected component with labels $\{k, \ldots, n\}$ in a $\{k, \ldots, n-1\}$,
- then it is the PR graph of a chiral or regular (n+1)-polytope

November, 2013 – p. 30

November, 2013 – p. 31

If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then

- If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then
- the last entry of the Schläfli type is $2(a^2 + b^2) 2$

- If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then
 - the last entry of the Schläfli type is $2(a^2 + b^2) 2$
 - the automorphism group is isomorphic to $(A_{a^2+b^2} \times A_{a^2+b^2}) \rtimes D_4$

- If the starting polytope is the toroidal "prime" map $\{4,4\}_{(a,b)}$ then
- the last entry of the Schläfli type is $2(a^2 + b^2) 2$
- the automorphism group is isomorphic to $(A_{a^2+b^2} \times A_{a^2+b^2}) \rtimes D_4$

Are there natural families of chiral polytopes with one polytope of each rank?

- Are there natural families of chiral polytopes with one polytope of each rank?
- Are there "small" chiral *n*-polytopes?

- Are there natural families of chiral polytopes with one polytope of each rank?
- Are there "small" chiral *n*-polytopes?
- What is the smallest n-polytope for a given n?

- Are there natural families of chiral polytopes with one polytope of each rank?
- Are there "small" chiral *n*-polytopes?
- What is the smallest n-polytope for a given n?
- Are all orientably regular polytopes the facet of a chiral polytope?

... E N D ...

November, 2013 – p. 37