The simplex method is strongly polynomial for deterministic Markov decision processes

Ian Post Yinyu Ye

Fields Institute November 29, 2013

A Markov decision process is a method of modeling repeated decision making over time in stochastic, changing environments.

- It consists of states s and actions a with rewards r_a and probability distributions P_a over states
- When action a is used it receive the reward r_a and transitions to a new state according to the distribution P_a

- ullet We are also given a discount factor $\gamma < 1$ as part of the input
- Goal: pick actions so as to maximize

$$\sum_{t=0}^{\infty} \gamma^t \mathbf{E}_{\mathcal{A}}[r(t)]$$

- ${\, \bullet \,}$ We are also given a discount factor $\gamma < 1$ as part of the input
- Goal: pick actions so as to maximize

$$\sum_{t=0}^{\infty} \gamma^t \mathbf{E}_{\mathcal{A}}[r(t)]$$

- ${\, \bullet \,}$ We are also given a discount factor $\gamma < 1$ as part of the input
- Goal: pick actions so as to maximize

$$\sum_{t=0}^{\infty} \gamma^t \mathbf{E}_{\mathcal{A}}[r(t)]$$

- ${\, \bullet \,}$ We are also given a discount factor $\gamma < 1$ as part of the input
- Goal: pick actions so as to maximize

$$\sum_{t=0}^{\infty} \gamma^t \mathbf{E}_{\mathcal{A}}[r(t)]$$

• Reward:
$$r_1 + \gamma r_5 + \gamma^2 r_4$$

Motivation

• MDPs are widely used in machine learning, operations research, economics, robotics and control, etc.

Motivation

- MDPs are widely used in machine learning, operations research, economics, robotics and control, etc.
- MDPs are also an interesting problem theoretically in that they are essentially where our knowledge of how to solve LPs in strongly polynomial time stops
 - Close to being strongly polynomial [Ye05] and possess a lot of structure that allows for powerful algorithms like policy iteration [How60]...
 - ...but also appear hard for powerful algorithms [Fea10] [FHZ11]

Motivation

- MDPs are widely used in machine learning, operations research, economics, robotics and control, etc.
- MDPs are also an interesting problem theoretically in that they are essentially where our knowledge of how to solve LPs in strongly polynomial time stops
 - Close to being strongly polynomial [Ye05] and possess a lot of structure that allows for powerful algorithms like policy iteration [How60]...
 - ...but also appear hard for powerful algorithms [Fea10] [FHZ11]
- Performance of basis exchange algorithms like policy iteration and simplex remains poorly understood
 - ► A number of open questions including their performance on special cases like deterministic MDPs [HZ10]
 - Important for developing new algorithms with better performance

イロト 不得下 イヨト イヨト 二日

Previous Work

- Policy iteration [How60]
 - Long conjectured to be strongly polynomial but only exponential bounds known [MS99]
 - Recently shown to be exponential [Fea10]
- Simplex lower bounds using MDPs [FHZ11] [Fri11] [MC94]
- Discounted MDPs (bounds depend on $\frac{1}{1-\gamma}$)
 - ϵ -approximation to the optimum [Bel57]
 - True optimum [Ye11] [HMZ11]
- Specialized algorithms for deterministic MDPs and other special cases [PT87] [HN94] [MTZ10] [Mad02]

- 3

- 4 同 6 4 日 6 4 日 6

Results

Theorem

The simplex method with Dantzig's most-negative reduced cost pivoting rule converges in $O(n^3m^2\log^2 n)$ iterations for deterministic MDPs regardless of the discount factor.

Theorem

If each action can have a distinct discount, then the simplex method converges in $O(n^5m^3\log^2 n)$ iterations.

.

Results

Theorem

The simplex method with Dantzig's most-negative reduced cost pivoting rule converges in $O(n^3m^2\log^2 n)$ iterations for deterministic MDPs regardless of the discount factor.

Theorem

If each action can have a distinct discount, then the simplex method converges in $O(n^5m^3\log^2 n)$ iterations.

• Subsequent work [HKZ13] has improved these bounds by a factor of n

Value vector

• Let π be a *policy* (a choice of action for each state)

- This defines a Markov chain
- The value (dual variable) \mathbf{v}_s^{π} of a state s is the expected reward for starting in the state and following π

$$\mathbf{v}_{s}^{\pi} = \mathbf{r}_{a} + \gamma (P_{a}^{\pi})^{T} \mathbf{v}^{\pi}$$

 Key property: increasing the value of one state only increases values of others

Doct	V _o
F USL.	

Flux vector

 The flux (primal variable) x^π_a through an action a is the discounted number of times an action is used when starting in all the states

$$\mathbf{x}^{\pi} = \sum_{i\geq 0} (\gamma P^{\pi})^i \mathbf{1} = (I - \gamma P^{\pi})^{-1} \mathbf{1} \; ,$$

Flux through an action in π is always between 1 and $\frac{n}{1-\gamma} = n \sum_{i=0}^{\infty} \gamma^i$

Flux vector

 The flux (primal variable) x^π_a through an action a is the discounted number of times an action is used when starting in all the states

$$\mathbf{x}^{\pi} = \sum_{i\geq 0} (\gamma P^{\pi})^i \mathbf{1} = (I - \gamma P^{\pi})^{-1} \mathbf{1} \; ,$$

Flux through an action in π is always between 1 and $\frac{n}{1-\gamma} = n \sum_{i=0}^{\infty} \gamma^i$

Linear Program

MDPs can be solved with the following primal/dual pair of LPs

PRIMAL:
maximize
$$\sum_{a} \mathbf{r}_{a} \mathbf{x}_{a}$$

subject to $\forall s \in S$, $\sum_{a \in A_{s}} \mathbf{x}_{a} = 1 + \gamma \sum_{a} P_{a,s} \mathbf{x}_{a}$
 $\mathbf{x} \geq 0$

DUAL:
minimize
$$\sum_{s} \mathbf{v}_{s}$$

subject to $\forall s \in S, a \in A_{s}, \mathbf{v}_{s} \ge \mathbf{r}_{a} + \gamma \sum_{s'} P_{a,s'} \mathbf{v}_{s'}$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Gain

• The gain (reduced cost) \mathbf{r}_a^{π} of an action is improvement for switching to that action for one step

$$\mathbf{r}_{a}^{\pi} = (\mathbf{r}_{a} + \gamma P_{a}^{T} \mathbf{v}^{\pi}) - \mathbf{v}_{s}^{\pi}$$

We will pivot on the action with the highest gain

Basic idea: all variables lie in an interval of polynomial size. As a result the gap to the optimum shrinks by a polynomial factor each iteration.

- Suppose $\frac{1}{1-\gamma}$ is polynomial.
- Let π be the current policy and $\Delta = \max \mathbf{r}^{\pi}$ and $a = \operatorname{argmax} \mathbf{r}^{\pi}$

•
$$\mathbf{r}^T \mathbf{x}^* - \mathbf{r}^T \mathbf{x}^\pi = (\mathbf{r}^\pi)^T \mathbf{x}^* \le \Delta \frac{n}{1-\gamma}$$

• Using action *a* will increase objective by at least Δ , so distance to optimum shrinks by factor of $1 - \frac{1-\gamma}{n}$

Discounted MDPs

- Now consider optimal gains r*
- Suppose $\Delta = \min_{a' \in \pi} \mathbf{r}^*$ and $a = \operatorname{argmin}_{a' \in \pi} \mathbf{r}^*$
- $\Delta > \mathbf{r}^T \mathbf{x}^\pi \mathbf{r}^T \mathbf{x}^* > \Delta \frac{n}{1-\gamma}$ if $a \in \pi$.
- Therefore if $\mathbf{r}^T \mathbf{x}^{\pi} \mathbf{r}^T \mathbf{x}^*$ shrinks by factor of $\frac{n}{1-\gamma}$, *a* can never again appear in a policy, and this happens after

$$\log_{1-(1-\gamma)/n} \frac{1-\gamma}{n} = O\left(\frac{n}{1-\gamma}\log\frac{n}{1-\gamma}\right)$$

rounds [Ye10]

Deterministic MDPs

- An action is either on a path or a cycle
- If a is on a path then $\mathbf{x}_a \in [1, n]$
- If *a* is on a cycle then $\mathbf{x}_a \in \left[\frac{1}{1-\gamma}, \frac{n}{1-\gamma}\right]$
- So if $\mathbf{x}_a \neq 0$, it must lie in one of two *layers* of polynomial size

Lemma

If the algorithm updates a path action it reduces the gap to the last policy before creating a new cycle by a factor of $1 - 1/n^2$.

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Lemma

If the algorithm updates a path action it reduces the gap to the last policy before creating a new cycle by a factor of $1 - 1/n^2$.

Lemma

After $O(n^2 \log n)$ iterations, either the algorithm finishes, creates a new cycle, breaks a cycle, or some action never again appears in a policy before a new cycle is created.

A B M A B M

Lemma

If the algorithm updates a path action it reduces the gap to the last policy before creating a new cycle by a factor of $1 - 1/n^2$.

Lemma

After $O(n^2 \log n)$ iterations, either the algorithm finishes, creates a new cycle, breaks a cycle, or some action never again appears in a policy before a new cycle is created.

Lemma

After $O(n^2 m \log n)$ iterations, either the algorithm finishes or creates a new cycle.

イロト 不得下 イヨト イヨト 二日

Lemma

If the algorithm creates a new cycle it reduces the gap to the optimum by a factor of 1 - 1/n.

Lemma

After $O(n \log n)$ cycles are created either the algorithm finishes, some action is eliminated from cycles for the remainder of the algorithm or entirely eliminated from future policies, or the algorithm converges.

Theorem

The simplex method converges in $O(n^3m^2\log^2 n)$ iterations on deterministic MDPs.

(日) (周) (三) (三)

- Now each action a has its own discount γ_a
- Problem: no more conservation of flux!
- Previously used highest gain to bound distance to the optimum, but now this is no longer possible

• Different cycles in a policy may have vastly different amounts of flux

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, *assuming its optimal flux is in that range*

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, *assuming its optimal flux is in that range*

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, *assuming its optimal flux is in that range*

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, *assuming its optimal flux is in that range*

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, *assuming its optimal flux is in that range*

Basic idea:

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, assuming its optimal flux is in that range

Theorem

The algorithm terminates in $O(n^5m^3\log^2 n)$ iterations.

_			
<u>ч</u>	oct.	· V/	
	υsι,		

3

< □ > < ---->

Open questions

- Analyze policy iteration on deterministic MDPs
- Strongly polynomial algorithm for MDPs
- Apply layer idea to other problems

3