The simplex method is strongly polynomial for deterministic Markov decision processes

Ian Post Yinyu Ye

Fields Institute November 29, 2013

4 0 8

 QQ

A Markov decision process is a method of modeling repeated decision making over time in stochastic, changing environments.

- It consists of states s and actions a with rewards r_a and probability distributions P_a over states
- When action a is used it receive the reward r_a and transitions to a new state according to the distribution P_a

- We are also given a discount factor γ < 1 as part of the input
- Goal: pick actions so as to maximize

$$
\sum_{t=0}^{\infty} \gamma^t \mathbf{E}_{\mathcal{A}}[r(t)]
$$

where $r(t)$ is the reward at time t

- We are also given a discount factor $\gamma < 1$ as part of the input
- Goal: pick actions so as to maximize

$$
\sum_{t=0}^{\infty} \gamma^t \mathbf{E}_{\mathcal{A}}[r(t)]
$$

where $r(t)$ is the reward at time t

- We are also given a discount factor $\gamma < 1$ as part of the input
- Goal: pick actions so as to maximize

$$
\sum_{t=0}^{\infty}\gamma^t\mathbf{E}_\mathcal{A}[r(t)]
$$

where $r(t)$ is the reward at time t

- We are also given a discount factor $\gamma < 1$ as part of the input
- Goal: pick actions so as to maximize

$$
\sum_{t=0}^{\infty}\gamma^t\mathbf{E}_\mathcal{A}[r(t)]
$$

where $r(t)$ is the reward at time t

Reward: $r_1 + \gamma r_5 + \gamma^2 r_4$

Motivation

MDPs are widely used in machine learning, operations research, economics, robotics and control, etc.

4 0 8

 \sim

画

 QQ

Motivation

- MDPs are widely used in machine learning, operations research, economics, robotics and control, etc.
- MDPs are also an interesting problem theoretically in that they are essentially where our knowledge of how to solve LPs in strongly polynomial time stops
	- \triangleright Close to being strongly polynomial [Ye05] and possess a lot of structure that allows for powerful algorithms like policy iteration [How60]...
	- \triangleright ...but also appear hard for powerful algorithms [Fea10] [FHZ11]

 QQ

Motivation

- MDPs are widely used in machine learning, operations research, economics, robotics and control, etc.
- MDPs are also an interesting problem theoretically in that they are essentially where our knowledge of how to solve LPs in strongly polynomial time stops
	- \triangleright Close to being strongly polynomial [Ye05] and possess a lot of structure that allows for powerful algorithms like policy iteration [How60]...
	- \triangleright ...but also appear hard for powerful algorithms [Fea10] [FHZ11]
- **•** Performance of basis exchange algorithms like policy iteration and simplex remains poorly understood
	- \triangleright A number of open questions including their performance on special cases like deterministic MDPs [HZ10]
	- \blacktriangleright Important for developing new algorithms with better performance

 QQ

イロト イ何 トイヨ トイヨ トー ヨ

Previous Work

- Policy iteration [How60]
	- \triangleright Long conjectured to be strongly polynomial but only exponential bounds known [MS99]
	- Recently shown to be exponential $[Fea10]$
- Simplex lower bounds using MDPs [FHZ11] [Fri11] [MC94]
- Discounted MDPs (bounds depend on $\frac{1}{1-\gamma})$
	- \triangleright ϵ -approximation to the optimum [Bel57]
	- \triangleright True optimum [Ye11] [HMZ11]
- Specialized algorithms for deterministic MDPs and other special cases [PT87] [HN94] [MTZ10] [Mad02]

 Ω

スタース ミドス ミドーミ

Results

Theorem

The simplex method with Dantzig's most-negative reduced cost pivoting rule converges in $O(n^3m^2\log^2 n)$ iterations for deterministic MDPs regardless of the discount factor.

Theorem

If each action can have a distinct discount, then the simplex method converges in $O(n^5m^3 \log^2 n)$ iterations.

Results

Theorem

The simplex method with Dantzig's most-negative reduced cost pivoting rule converges in $O(n^3m^2\log^2 n)$ iterations for deterministic MDPs regardless of the discount factor.

Theorem

If each action can have a distinct discount, then the simplex method converges in $O(n^5m^3 \log^2 n)$ iterations.

• Subsequent work [HKZ13] has improved these bounds by a factor of n

Value vector

• Let π be a *policy* (a choice of action for each state)

- \blacktriangleright This defines a Markov chain
- The value (dual variable) \mathbf{v}^{π}_{s} of a state s is the expected reward for starting in the state and following π

$$
\mathbf{v}_s^{\pi} = \mathbf{r}_a + \gamma (P_a^{\pi})^T \mathbf{v}^{\pi}
$$

 \triangleright Key property: increasing the value of one state only increases values of others

4 0 8

Flux vector

The flux (primal variable) \mathbf{x}_a^{π} through an action a is the discounted number of times an action is used when starting in all the states

$$
\mathbf{x}^{\pi} = \sum_{i\geq 0} (\gamma P^{\pi})^i \mathbf{1} = (I - \gamma P^{\pi})^{-1} \mathbf{1} ,
$$

► Flux through an action in π is always between 1 and $\frac{n}{1-\gamma} = n \sum_{i=0}^{\infty} \gamma^i$

- 3

Flux vector

The flux (primal variable) \mathbf{x}_a^{π} through an action a is the discounted number of times an action is used when starting in all the states

$$
\mathbf{x}^{\pi} = \sum_{i\geq 0} (\gamma P^{\pi})^i \mathbf{1} = (I - \gamma P^{\pi})^{-1} \mathbf{1} ,
$$

► Flux through an action in π is always between 1 and $\frac{n}{1-\gamma} = n \sum_{i=0}^{\infty} \gamma^i$

Linear Program

MDPs can be solved with the following primal/dual pair of LPs

PRIMAL:
\nmaximize
$$
\sum_{a} \mathbf{r}_{a} \mathbf{x}_{a}
$$

\nsubject to $\forall s \in S$, $\sum_{a \in A_{s}} \mathbf{x}_{a} = 1 + \gamma \sum_{a} P_{a,s} \mathbf{x}_{a}$
\n $\mathbf{x} \geq 0$

DUAL:

\nminimize
$$
\sum_{s} \mathbf{v}_{s}
$$

\nsubject to $\forall s \in S, a \in A_{s}, \quad \mathbf{v}_{s} \geq \mathbf{r}_{a} + \gamma \sum_{s'} P_{a,s'} \mathbf{v}_{s'}$

 \leftarrow \Box

4 何 ▶

造

 \sim

÷ \rightarrow 298

Gain

The gain (reduced cost) \mathbf{r}^{π}_{a} of an action is improvement for switching to that action for one step

$$
\mathbf{r}_a^{\pi} = (\mathbf{r}_a + \gamma P_a^T \mathbf{v}^{\pi}) - \mathbf{v}_s^{\pi}
$$

• We will pivot on the action with the highest gain

Basic idea: all variables lie in an interval of polynomial size. As a result the gap to the optimum shrinks by a polynomial factor each iteration.

- Suppose $\frac{1}{1-\gamma}$ is polynomial.
- Let π be the current policy and $\Delta = \max \mathbf{r}^{\pi}$ and $\mathbf{a} = \arg \max \mathbf{r}^{\pi}$

$$
\mathbf{e} \ \mathbf{r}^T \mathbf{x}^* - \mathbf{r}^T \mathbf{x}^{\pi} = (\mathbf{r}^{\pi})^T \mathbf{x}^* \leq \Delta \frac{n}{1 - \gamma}
$$

 \bullet Using action a will increase objective by at least Δ , so distance to optimum shrinks by factor of $1-\frac{1-\gamma}{n}$ n

Discounted MDPs

- Now consider optimal gains r^{*}
- Suppose $\Delta = \min_{\mathbf{a}' \in \pi} \mathbf{r}^*$ and $\mathbf{a} = \operatorname{argmin}_{\mathbf{a}' \in \pi} \mathbf{r}^*$
- $\Delta > \mathbf{r}^T \mathbf{x}^{\pi} \mathbf{r}^T \mathbf{x}^* > \Delta \frac{n}{1-\gamma}$ if $a \in \pi$.
- Therefore if $\mathbf{r}^{\mathsf{T}}\mathbf{x}^{\pi} \mathbf{r}^{\mathsf{T}}\mathbf{x}^*$ shrinks by factor of $\frac{n}{1-\gamma}$, a can never again appear in a policy, and this happens after

$$
\log_{1-(1-\gamma)/n}\frac{1-\gamma}{n} = O\left(\frac{n}{1-\gamma}\log\frac{n}{1-\gamma}\right)
$$

rounds [Ye10]

Deterministic MDPs

- An action is either on a path or a cycle
- If a is on a path then $x_a \in [1, n]$
- If a is on a cycle then $\mathbf{x}_a \in \left[\frac{1}{1-\gamma}, \frac{n}{1-\gamma}\right]$
- So if $x_a \neq 0$, it must lie in one of two *layers* of polynomial size

Lemma

If the algorithm updates a path action it reduces the gap to the last policy before creating a new cycle by a factor of $1 - 1/n^2$.

画

 QQ

化重新润滑脂

4 0 8

Lemma

If the algorithm updates a path action it reduces the gap to the last policy before creating a new cycle by a factor of $1 - 1/n^2$.

Lemma

After $O(n^2 \log n)$ iterations, either the algorithm finishes, creates a new cycle, breaks a cycle, or some action never again appears in a policy before a new cycle is created.

Lemma

If the algorithm updates a path action it reduces the gap to the last policy before creating a new cycle by a factor of $1 - 1/n^2$.

Lemma

After $O(n^2 \log n)$ iterations, either the algorithm finishes, creates a new cycle, breaks a cycle, or some action never again appears in a policy before a new cycle is created.

Lemma

After $O(n^2m\log n)$ iterations, either the algorithm finishes or creates a new cycle.

- 3

 QQ

イロト イ押ト イヨト イヨト

Lemma

If the algorithm creates a new cycle it reduces the gap to the optimum by a factor of $1 - 1/n$.

Lemma

After $O(n \log n)$ cycles are created either the algorithm finishes, some action is eliminated from cycles for the remainder of the algorithm or entirely eliminated from future policies, or the algorithm converges.

Theorem

The simplex method converges in $O(n^3m^2 \log^2 n)$ iterations on deterministic MDPs.

 Ω

医单位 医单位

- Now each action a has its own discount γ_a
- Problem: no more conservation of flux!
- Previously used highest gain to bound distance to the optimum, but now this is no longer possible

Different cycles in a policy may have vastly different amounts of flux

つひひ

Basic idea:

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, assuming its optimal flux is in that range

Basic idea:

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, assuming its optimal flux is in that range

Basic idea:

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, assuming its optimal flux is in that range

Basic idea:

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, assuming its optimal flux is in that range

Basic idea:

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, assuming its optimal flux is in that range

Basic idea:

- The discount/flux in a cycle roughly determined by lowest discount action on the cycle
- When a cycle is created we lot of progress towards the optimal value of some state, assuming its optimal flux is in that range

Theorem

The algorithm terminates in $O(n^5m^3 \log^2 n)$ iterations.

画

 Ω

← ロ → → ← 何 →

- Analyze policy iteration on deterministic MDPs
- **•** Strongly polynomial algorithm for MDPs
- Apply layer idea to other problems

4 0 8

画

 QQ