Classification of Regular and Chiral Polytopes by Topology

Egon Schulte

Northeastern University, Boston

November 2013, Toronto

Classical Regular Polytopes — Review

Convex polytope: convex hull of finitely many points in \mathbb{E}^n Key observation: topologically spherical, both globally and locally!

Regularity: flag transitivity of the symmetry group (other equivalent definitions).

- n=2: polygons $\{p\}$ (Schläfli-symbol)
- n=3: Platonic solids $\{p,q\}$

DIMENSION n≥4

4D cube {4, 3, 3}

24-cell {3, 4, 3} (with thickened edges)

Symmetry group of $\{p,q,r\}$ is the Coxeter group with string diagram

Presentation

$$
\rho_0^2 = \rho_1^2 = \rho_2^2 = \rho_3^2 = 1
$$

\n
$$
(\rho_0 \rho_1)^p = (\rho_1 \rho_2)^q = (\rho_2 \rho_3)^r = 1
$$

\n
$$
(\rho_0 \rho_2)^2 = (\rho_1 \rho_3)^2 = (\rho_0 \rho_3)^2 = 1
$$

Generators are reflections in the walls of a fundamental chamber.

Presentation for 3-cube

$$
\rho_0^2 = \rho_1^2 = \rho_2^2 = 1
$$

\n
$$
(\rho_0 \rho_1)^4 = (\rho_1 \rho_2)^3 = (\rho_0 \rho_2)^2 = 1
$$

• Regular star-polyhedra — Kepler-Poinsot polyhedra (Kepler 1619, Poinsot 1809). Cauchy (1813).

• Ten regular star-polytopes in dimension 4. None in dimension $>$ 4.

Regular Star-Polytopes in \mathbb{E}^n ($n \geq 3$)

Regular Honeycombs

Euclidean space

- n=2: with triangles, hexagons, squares $\{3,6\}, \{6,3\}, \{4,4\}$
- n≥2: with cubes, {4,3,...,3,4}
- n=4: with 24-cells, {3,4,3,3} with cross-polytopes, {3,3,4,3}

Hyperbolic space

n=2: each symbol $\{p,q\}$ with $\frac{1}{p}+\frac{1}{q}<\frac{1}{2}$ $n=3:$ $\# =15$ $\{3,5,3\}, \{4,3,5\}, \{5,3,5\}, \{6,3,3\}, \ldots$ $n=4:$ $\# = 7$ {5,3,3,4}, {5,3,3,5}, {3,4,3,4}, ... $n=5$: $\# =5$ {3,3,4,3,3}, {3,3,3,4,3}, ... n≥6: none

Abstract Polytopes P of rank n

- P ranked partially ordered set
- i-faces elements of rank i $(= -1, 0, 1, \ldots, n)$
- $i=0$ vertices
- $i=1$ edges
- $i=n-1$ facets
- Faces F_{-1} , F_n (of ranks -1, n)
- Each flag of P contains exactly $n+2$ faces
- P is connected
- Intervals of rank 1 are diamonds:
- P is regular iff $\Gamma(P)$ flag transitive.

P is *chiral* iff Γ(P) has two orbits on the flags such that adjacent flags always are in different orbits.

Nothing new in ranks 0, 1, 2 (points, segments, polygons)! Rank 3: maps (2-cell tessellations) on closed surfaces.

Rich history: Klein, Dyck, Brahana, Coxeter, Jones & Singerman, Wilson, Conder

Well-known: torus maps $\{4,4\}_{(b,c)}, \{3,6\}_{(b,c)}, \{6,3\}_{(b,c)}.$

Classification of regular and chirals maps by genus (Conder)

— orientable surfaces of genus 2 to 300

— non-orientable surfaces of genus 2 to 600

Rank $n \geq 4$: How about polytopes of rank 4 (or higher)?

Local picture for a 4-polytope of type $\{4, 4, 3\}$

Facets: torus maps $\{4,4\}_{(s,0)}$ $(s \times s$ chessboard) Vertex-figures: cubes {4, 3}

2 tori meeting at each 2-face

3 tori surround each edge

6 tori surround each vertex

Problems: local — global; universal polytopes; finiteness.

regular polytopes < → C-groups

C-group
$$
\Gamma = \langle \rho_0, \ldots, \rho_{n-1} \rangle
$$

\n $\rho_i^2 = (\rho_i \rho_j)^2 = 1 \quad (|i-j| \geq 2)$

\n $(\rho_0 \rho_1)^{p_1} = (\rho_1 \rho_2)^{p_2} = \ldots = (\rho_{n-2}\rho_{n-1})^{p_{n-1}} = 1$

\n& in general additional relations!

• Intersection property $\langle \rho_i | i \in I \rangle \cap \langle \rho_i | i \in J \rangle = \langle \rho_i | i \in I \cap J \rangle$

Polytope associated with Γ

 j -faces — right cosets of $\Gamma_j := \langle \rho_i \mid i \neq j \rangle$ partial order: $\Gamma_j \varphi \leq \Gamma_k \psi$ iff $j \leq k$ and $\Gamma_j \varphi \cap \Gamma_k \psi \neq \emptyset$. Quotient of the Coxeter group . $\overline{p_{\mathbf{1}}}$ • $\overline{p_{2}}$ \bullet \cdots \cdots \bullet $\overline{p_{n-1}}$ •

Topological classification (of universal polytopes)

Classical case spherical or locally spherical \mathbb{I} quotient of a regular tessellation in S^{n-1} , E^{n-1} or H^{n-1}

Grünbaum's Problem (mid 70's): Classify toroidal and locally toroidal regular polytopes.

Step 1: Tessellations on the $(n-1)$ -torus (globally toroidal)

Step 2: Locally toroidally polytopes only in ranks $n = 4, 5, 6$.

A lot of progress! Enumeration complete for $n = 5$; almost complete for $n = 4$; conjectures for $n = 6$.

McMullen & S.; also Weiss, Monson

Toroids

Torus maps $\{4,4\}_{(b,c)}$, $\{3,6\}_{(b,c)}$, $\{6,3\}_{(b,c)}$. How about higherdimensional tori?

Tessellations T in euclidean space

$$
n = 2: \quad \text{with triangles, hexagons, squares,} \n{3, 6}, {6, 3}, {4, 4}
$$

$$
n \ge 2: \quad \text{with cubes, } \{4, 3, ..., 3, 4\}
$$

$$
n = 4
$$
: with 24-cells, {3, 4, 3, 3}
with cross-polytopes, {3, 3, 4, 3}

Regular toroids of rank $n + 1$ (McMullen & S.)

Quotients T/Λ of regular tessellations T in \mathbb{E}^n by suitable lattices Λ.

A toroid with 27 cubical facets on the 3-torus (rank 4)

Type $\{4,3,4\}_{(3,0,0)}$ $(\rho_0 \rho_1 \rho_2 \rho_3 \rho_2 \rho_1)^3 = 1$ Cubical Toroids $\{4,3^{n-2},4\}$ on n-Torus

Standard relations for $\bullet \frac{\pi}{4} \bullet \frac{\pi}{3} \bullet \dots \bullet \frac{\pi}{3} \bullet \frac{\pi}{4} \bullet$ and the single extra relation

$$
(\rho_0 \rho_1 \dots \rho_n \rho_{n-1} \dots \rho_k)^{ks} = 1 \quad (k = 1, 2 \text{ or } n, \text{resp.})
$$

Exceptional Toroids $\{3, 3, 4, 3\}$ on 4-Torus (up to duality)

Standard relations for $\bullet \frac{\ }{3}$ $\bullet \frac{\ }{3}$ $\bullet \frac{\ }{4}$ $\bullet \frac{\ }{3}$

and the single extra relation

$$
\begin{cases} (\rho_0 \sigma \tau \sigma)^s = 1 & \text{if } s = (s, 0, 0, 0), \\ (\rho_0 \sigma \tau)^{2s} = 1 & \text{if } s = (s, s, 0, 0), \end{cases}
$$

where $\sigma = \rho_1 \rho_2 \rho_3 \rho_2 \rho_1$ and $\tau = \rho_4 \rho_3 \rho_2 \rho_3 \rho_4$.

Locally Toroidal Regular Polytopes

 \bullet universal polytopes $=$ {facets, vertex-figures}

Rank $n=4$

$$
\{\{4,4\}_s, \{4,3\}\},
$$

$$
\{\{4,4\}_s, \{4,4\}_t\},
$$

$$
\{\{6,3\}_s, \{3,r\}\} \quad (r = 3, 4, 5),
$$

$$
\{\{6,3\}_s, \{3,6\}_t\},
$$

$$
\{\{3,6\}_s, \{6,3\}_t\},
$$

where $s = (s,0)$ or (s,s) and $t = (t,0)$ or (t,t) .

Locally toroidal 4-polytopes $\{\{4,4\}_{(s,0)}, \{4,3\}\}\$

 $\Gamma_s := \langle \rho_0, \rho_1, \rho_2, \rho_3 \rangle \cong W_s \rtimes C_2$ is the correct group!

The universal polytope is finite iff $s = 2$ or $s = 3$.

The polytope for $s = 3$ (with group $S_6 \rtimes C_2$) can be realized by a tessellation on \mathbb{S}^3 consisting of 20 tori (Grünbaum and Coxeter & Shephard).

More on Rank 4

The finite polytopes $\{\{4,4\}_s,\{4,3\}\}\$, $s = (s,0),(s,s)$.

The finite polytopes $\{\{4,4\}_s,\{4,4\}_t\}$

(except $\{\{4,4\}_{(s,0)}, \{4,4\}_{(t,0)}\}$, with s, t odd and distinct)

Conjecture

The universal polytopes $\{\{4,4\}_{(s,0)}, \{4,4\}_{(t,0)}\}$, with s, t odd and distinct, are finite iff the regular tessellation $\{s, t\}$ is spherical (that is, iff $(s, t) = (3, 5), (5, 3).$)

Case $(s, t) = (3, 5)$: $Sp_4(4) \times C_2 \times C_2$.

Still more on Rank 4

The finite polytopes $\{\{6,3\}_s,\{3,r\}\}\$ $(s = (s, 0), (s, s)$ and $r = 3, 4, 5$.

Thm The universal regular 4-polytope $\{\{6,3\}_{(s,0)}, \{3,6\}_{(t,0)}\}$ exists for all $s, t \geq 2$. In particular, it is finite if and only if $(s, t) = (2, k)$ or $(k, 2)$, with $k = 2, 3, 4$. In this case, its group is $[1 1 2]^{k} \rtimes (C_2 \times C_2)$, of order 480, 108 · 4!, 256 · 5! if $k = 2, 3, 4$, respectively.

Thm The universal regular 4-polytope $\{\{6,3\}_{(s,s)}, \{3,6\}_{t}\},$ with $t = (t, 0)$ or (t, t) , exists for all $s, t \geq 2$. In particular, it is finite if and only if $s = 2$ and $t = (2, 0)$; in this case, its group is $S_5 \times S_4 \times C_2$.

Somewhat open: $\{\{3,6\}_s,\{6,3\}_t\}$

Locally toroidal regular polytopes (cont.)

Rank $n = 5$

Finite polytopes $\{\{3, 4, 3\}, \{4, 3, 4\}_s\}$ (with $s = (s, 0, 0), (s, s, 0), (s, s, s)$)

> • 3 • 4 • 3 F_{4}

Locally toroidal regular polytopes (cont.)

Rank $n = 6$ (first type)

Conjectured finite polytopes of type $\{ \{3, 3, 3, 4\}, \{3, 3, 4, 3\}_s \}$

Rank $n = 6$ (second type)

Conjectured finite polytopes of type

 $\{ {3, 3, 4, 3} _{\rm s}, { {3, 4, 3, 3} } _{\rm t} \}$

Rank $n = 6$ (third type)

Conjectured finite polytopes of type

 $\{\{3, 4, 3, 3\}_{\rm s}, \{4, 3, 3, 4\}_{\rm t}\}$

Open Problem Classify all locally toroidal chiral polytopes!

Rank 4: $\{\{4,4\}_{(b,c)}, \{4,3\}\}\$, $\{\{4,4\}_{(b,c)}, \{4,4\}_{(e,f)}\}\$,

Almost completely open!

Chirality

 $\Gamma(P)$ has 2 flag-orbits, represented by adjacent flags!

• Rank 3: Lots of chiral torus maps! Occurrence very sporadic, at least for small genus g (next for $g = 7$).

Generators σ_1, σ_2 for type $\{p, q\}$ in rank 3

 $\sigma_1^p = \sigma_2^q = (\sigma_1 \sigma_2)^2 = 1$ & generally more relations.

Local definition: P not regular, but for some base flag $\Phi := \{F_1, F_0, \ldots, F_n\}$ there exist $\sigma_1, \ldots, \sigma_{n-1} \in \Gamma(P)$ such that σ_i fixes each face in $\Phi \setminus \{F_{i-1}, F_i\}$ and cyclically permutes consecutive *i*-faces in the section F_{i+1}/F_{i-2} .

 i σ_i cyclically permutes vertices (edges) of p_i -gon

Two enantiomorphic forms: Chiral polytopes occur in a "right-hand" and a "left-hand" version, distinguished by the choice of base flag.

Rank 4

Generators $\sigma_1, \sigma_2, \sigma_3$ for type $\{p, q, r\}$ in rank 4

Standard relations

$$
\sigma_1^p = \sigma_2^q = \sigma_3^r = (\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_3)^2 = (\sigma_1 \sigma_2 \sigma_3)^2 = 1
$$

Example: The universal $\{\{4,4\}_{(b,c)}, \{4,3\}\}\)$ has extra relation $(\sigma_1^{-1}$ $\frac{1}{1} \sigma_2)^b (\sigma_1 \sigma_2^{-1}$ $\binom{-1}{2}^c = 1$

Intersection property

$$
\langle \sigma_1 \rangle \cap \langle \sigma_2 \rangle = \langle \epsilon \rangle = \langle \sigma_2 \rangle \cap \langle \sigma_3 \rangle, \quad \langle \sigma_1, \sigma_2 \rangle \cap \langle \sigma_2, \sigma_3 \rangle = \langle \sigma_2 \rangle
$$

Polytopes associated with the groups

Regular polytopes: Γ generated by $\rho_0, \ldots, \rho_{n-1}$

 j -faces: right cosets of $\Gamma_j := \langle \rho_i \mid i \neq j \rangle$

Chiral polytopes: Γ generated by $\sigma_1, \ldots, \sigma_{n-1}$

j-faces: right cosets of

$$
\Gamma_j := \begin{cases} \langle \sigma_2, \dots, \sigma_{n-1} \rangle \text{ if } j = 0, \\ \langle \{\sigma_i \mid i \neq j, j+1\} \cup \{\sigma_j \sigma_{j+1}\} \rangle \text{ if } j = 1, \dots, n-2, \\ \langle \sigma_1, \dots, \sigma_{n-2} \rangle \text{ if } j = n-1. \end{cases}
$$

Partial order in both cases:

$$
\Gamma_j \varphi \le \Gamma_k \psi \text{ iff } j \le k \text{ and } \Gamma_j \varphi \cap \Gamma_k \psi \ne \emptyset.
$$

Rank 4

Plenty of locally toroidal chiral 4-polytopes. (Coxeter, Weiss & S., Monson, Nostrand; 1990's and earlier.)

Key idea: Relevant hyperbolic Coxeter groups have nice representations as groups of Möbius transformations over $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$, Rotation subgroups have generators like $\sigma_1, \sigma_2, \sigma_3$. Then construct polytopes by modular reduction of the corresponding groups of 2×2 matrices.

Example: Take rotation subgroup of $\bullet \frac{\pi}{4} \bullet \frac{\pi}{4} \bullet \frac{\pi}{3} \bullet$ and work over \mathbb{Z}_m , where -1 is a quadratic residue mod m. Gives chiral polytopes of type $\{\{4,4\}_{(b,c)}, \{4,3\}\}$ with $m=b^2+c^2$, $(b, c) = 1$ and group $PSL_2(\mathbb{Z}_m)$ or $PSL_2(\mathbb{Z}_m) \rtimes C_2$. (Work modulo the ideal in $\mathbb{Z}[i]$ generated by $b + ic$.)

Higher ranks

- Lots of finite examples in "low ranks" by Conder, Hubard & Pisanski; Breda, Jones & S.; Conder & Devillers, . . .
- Finite examples for every rank $n > 3$ (Pellicer, 2009)!

• Extension problem: Chiral *n*-polytope P as the facet of a chiral $(n + 1)$ -polytope Q? Facets of P regular!

(a) Universal: $\Gamma(Q) = \Gamma(P) *_{\Gamma^+(F)} \Gamma(F)$ (Weiss & S., 1994)

(b) Finite Q , if P is finite. (Cunningham & Pellicer, 2013)

 n -torus is the only compact euclidean space form with regular or chiral tessellations. Chirality only when $n = 2!$ (Hartley, McMullen & S., 1999)

..... The End

Thank you

Abstract

The past three decades have seen a revival of interest in the study of polytopes and their symmetry. The most exciting new developments all center around the concept and theory of abstract polytopes. The lecture gives a survey of currently known topological classification results for regular and chiral polytopes, focusing in particular on the universal polytopes which are globally or locally toroidal. While there is a great deal known about toroidal regular polytopes, there is almost nothing known about the classification locally toroidal chiral polytopes.

$$
\underline{\text{Example: P}} = \{\{6, 3\}_{(s,s)}, \{3, 3\}\}\
$$

•
$$
\overline{6}
$$
 • $\overline{3}$ • $\overline{3}$ • $\overline{3}$ • $\overline{3}$ • $\overline{3}$ • $\left(\rho_2(\rho_1 \rho_0)^2\right)^{2s} = 1$

\nPolytopes of type $\{6,3,r\}$

- 1. Normal subgroup W of Γ(P) of finite index!
- 2. "Locally unitary" representation

$$
\varphi:W\mapsto GL_m(C)
$$

which preserves a hermitian form h on C^m .

3. Finiteness of P is decided by h!

$$
P = \{\{6,3\}_{(s,s)}, \{3,3\}\}
$$

GROUP: $\Gamma(P) = W \ltimes S_4$ $\rho_0 = \sigma_1, \ \rho_1 = \tau_1, \ \rho_2 = \tau_2, \ \rho_3 = \tau_3$ Structure of $W = W_s$?

REPRESENTATION $\varphi: W \mapsto GL_4(C)$ $\sigma_i \mapsto S_i \ (i = 1, 2, 3, 4),$ where $S_i(x) = x - 2h(x, e_i) e_i$ · τ_3 $s \qquad \qquad \cdot 3$ s s τ_2 s · · 1 τ_1 2

4

HERMITIAN FORM:

 e_1, \ldots, e_4 canonical basis of C^4

$$
h(x,y) := \sum_{i=1}^{4} x_i \overline{y}_i - \sum_{i \neq j} c_{ij} x_i \overline{y}_j ,
$$

$$
\langle S_i, S_j, S_k \rangle \cong [1 \ 1 \ 1]^s \ (\text{"locally unitary"}).
$$

Choice of c_{ij} :

$$
c_{12} = c_{34} = c_{31} = \frac{e^{2\pi i/s}}{2}
$$

$$
c_{23} = c_{24} = c_{41} = \frac{e^{-2\pi i/s}}{2}
$$

Situation: W acts on $C⁴$ as a reflection group

Theorem: W finite iff h positive definite

Classification of unitary reflection groups: Shephard, Todd, Coxeter, Cohen

 $Consequence: $\{\{6,3\}_{(s,s)},\{3,3\}\}$ finite$ </u> iff h positive definite

$$
\det(h) = \frac{1}{16}(-9 - 16\cos\frac{2\pi}{s} - 2\cos\frac{4\pi}{s})
$$

h is
$$
\begin{cases} \text{positive definite for } s = 2\\ \text{positive semi-definite for } s = 3\\ \text{indefinite for } s \ge 4 \end{cases}
$$

$$
\underline{\text{Thm:}} \ P := \{ \{6, 3\}_{(s,s)}, \{3, 3\} \} \text{ exists for}
$$
\n
$$
\text{each } s \ge 2, \text{ and } P \text{ is finite iff } s = 2.
$$

$$
\frac{\mathsf{s}=2:}{W} \Gamma(P) = S_5 \times S_4, \\
W = S_5 = \langle (1\,5), (2\,5), (3\,5), (4\,5) \rangle
$$