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Simplicial Depth

Given a set S of n points in Rd , the simplicial depth of any
point p with respect to S is the number of open simplices
generated by points in S containing p. Denote this depthS(p)
or just depth(p).
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We consider open rather than closed simplicial depth.
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Deepest points

Question: For fixed n and d , what are the possible values of
the (monochrome) depthS(p)?

In particular, consider for a given S the quantity:

g(S) = max
p

depthS(p)
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Then g(S) is the maximum number of open simplices
generated by S containing a given point.
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Bounds for Deepest Points

For a set S of n points in R2 the bounds are1:

n3/27+ O(n2) ≤ g(S) ≤ n3/24+ O(n2).

Bárány showed that in dimension d :

1
(d + 1)d+1

(
n

d + 1

)
+O(nd) ≤ g(S) ≤ 1

2d(d + 1)!
nd+1+O(nd).

The upper bound is tight.

For fixed d , this gives the correct asymptotics in n. However
the gap in constants is large.

The lower bound has recently been improved by Gromov
(2010), Karasev (2012) and Král’, Mach and Serini (2012), ...

1Boros and Füredi (1984), but see Bukh, Matoušek and Nivasch (2010)
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Simplicial Depth Context

The simplicial depth of p is an gives an idea of how
representative p is of S . It is one of several measures studied
by statisticians of the “depth” of a data point relative to a
sample.

A point of maximum simplicial depth can be considered to be a
simplicial median. The simplicial median is a multidimensional
generalization of the median of a set of numbers.

The probability that p lies inside a random simplex chosen

from S is:
depthS(p)

nd+1 .

The algorithmic problem of finding a simplex containing p is
equivalent to the problem of finding a feasible basis in linear
programming.
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The Colourful Carathéodory Theorem

Theorem (Bárány): if a point in Rd is in the convex hull of
(d + 1) colourful sets, then it can be expressed as a convex
combination of points of (d + 1) different colours.

p

x

This is a “Colourful” Carathéodory Theorem.
We call the intersection of the (d + 1) colourful sets the core
of the configuration.
Note that it is not sufficient to have the point in the convex
hull of some colour(s).
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Colourful Simplicial Depth

Define a colourful configuration S to be a collection of d + 1
sets of points S1, . . . ,Sd+1 in Rd .

Define the colourful simplicial depth, denoted depthS(p), of a
point p with respect to a colourful configuration S to be the
number of open colourful simplices from S containing p.

Let µ(d) be the minimum colourful simplicial depth of a core
point in dimension d .
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Refining Colourful Carathéodory

In a typical (random) situation, we expect to find 0 in around
(d+1)d+1

2d simplices.
Theorem: There is a configuration of d + 1 points in each of
d + 1 colours with 0 in the convex hull of each colour, but
with 0 contained in only d2 + 1 colourful simplices.
Conjecture: This is minimal, i.e. µ(d) = d2 + 1 for all d .
True for d = 0, 1, 2, 3, 4.
Example: A 2-dimensional colourful configuration which
contains 0 in only 5 simplices:

0
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Technical Reminders

The core of a colourful configuration is:

d+1⋂
i=1

conv(Si ).

We make the following assumptions:

We have d + 1 points of each colour.

The points are in general position.

We have 0 ∈ int coreS.

By scaling the points, we assume without loss of generality
that they lie on the unit sphere Sd ⊂ Rd .
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Colourful Simplicial Depth Context

The Colourful Carathéodory Theorem was originally proved by
Bárány in the service of proving his lower bound for
monochrome simplicial depth. This proof can be trivially
modified to include a factor of µ(d) in the lower bound.

There remains a probabilistic interpretation: the probability
that p lies in a simplex whose vertices are sampled

independently from the Si ’s is:
depthS(p)

|S1| · . . . · |Sd+1|
.

Given a colourful configuration with 0 in the core, the
Colourful Linear Programming question of efficiently finding a
colourful set of (d + 1) points containing 0 in their convex hull
is an interesting problem whose complexity remains poorly
understood.

Recent research interest includes considering relaxed core
conditions.
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Lower bounds

From Bárány (1982), we can deduce µ(d) ≥ d + 1.

Deza et al. (2006) show µ(d) ≥ 2d and µ(2) = 5.

Quadratic lower bounds were independently obtained in
Bárány and Matoušek (2007) and S. and Thomas (2008) using
somewhat different methods. Additionally, Bárány and
Matoušek showed that µ(3) = 10.

Deza, S. and Xie (2011): µ(d) ≥ d(d + 1)2/2e.

A computational approach described in this talk (2013)
improves this by one in dimension 4.

Deza, Meunier, and Sarrabezolles have recently announced
proofs that µ(d) ≥ d2

2 + 7d
2 − 8 and µ(4) = 17.
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Transversals

All these lower bounds depend on a key fact that we call the
Octahedron Lemma. Octahedra are built from transversals.

Fix a colour i . We call a set t of d points that contains
exactly one point from each Sj other than Si an î-transversal.

In the picture, p2 and o2 form a 2̂-transversal.
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Transversals and Antipodes

Transversals are generators of colourful cones.

An î-transversal and a point of colour i form a colourful
simplex containing 0 if and only if the ray from 0 through the
antipode of the point passes through the affine hyperplane
generated by the transversal.
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Octahedra

We call any pair of disjoint î−transversals an î-octahedron.

These may or may not generate a geometric cross-polytope
(d-dimensional octahedron).
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Octahedral Lemma

The Octahedron Lemma: Rays from 0 in general position
always intersect the same parity of facets made from
î−transversals of any fixed î-octahedron.
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From Geometry to Combinatorics

A colourful configuration defines a (d + 1)-uniform hypergraph
on S = ∪di=0Si by taking edges corresponding to the vertices
of 0 containing colourful simplices. Call these configuration
hypergraphs.
A strong version of the Colourful Carathéodory Theorem
implies that any configuration hypergraph H must satisfy
Property 1: Every vertex of a configuration hypergraph H
belongs to some edge of H.
The Octahedron Lemma gives that any configuration
hypergraph H must satisfy Property 2: For any octahedron
O, the parity of the set of edges using points from O and a
fixed point si for the ith coordinate is the same for all choices
of si .
Call a hypergraph whose edges consist of one vertex from each
of (d + 1) sets and satisfying Properties 1 and 2 a covering
octahedral system.
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Small Octahedral Systems

One strategy for proving lower bounds is to show that there
are no small covering octahedral systems.

Let ν(d) be the smallest size of a non-trivial covering
octahedral system. Then ν(d) ≤ µ(d) ≤ d2 + 1. Conjecture:
ν(d) = µ(d) = d2 + 1.

We begin by fixing a colour 0 and d + 1 disjoint 0̂-transversals
ti for i = 0, . . . , d .

We include initial edge 00...0 and focus on three key quantities
of a candidate covering octahedral system:

`, the number of edges containing t0. ?00...0

b the number of the octahedra formed from t0 and ti for some
i = 1, 2, . . . , d that have odd parity. t0 ∗ ti
j the minimum number of 0̂-transversals that form an edge
with any point of colour 0. 0??...?
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It is clear that for any covering octahedral system with d2 or
fewer edges we must have 1 ≤ `, b, j ≤ d .

The number of edges in the system is at least j(d + 1).

We can get further inequalities by studying the tradeoffs
between edges required to satisfy the odd parity octahedra and
the even parity octahedra: (b + `)(d + 1)− 2b` and
j + b ≥ d + 1.

Finally, if we choose colour 0 so as to minimize ` but still have
` ≥ d+2

2 , then we also have that the number of edges is at
least d`+ 1.

These inequalities combine to give ν(d) ≥ d(d + 1)2/2e.
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A Small Parity Table

For a given (d + 1)-uniform hypergraph, we can form a parity
table that lists the parity of each point of colour 0 with respect
to the octahedra generated by t0 and each of the transversals
t1, t2, . . . td .

Example: With d = 4, this is the parity table for the
hypergraph with 3 edges: 00...0, 10...0, . . . , 20...0, i.e.
(0, t0), (1, t0) and (2, t0).

octahedron ↓ 0th point → 0 1 2 3 4
t0 ∗ t1 1 1 1 0 0
t0 ∗ t2 1 1 1 0 0
t0 ∗ t3 1 1 1 0 0
t0 ∗ t4 1 1 1 0 0

Only edges containing t0 can change more than one entry in
this table.

Tamon Stephen Colourful Simplices and Octahedral Systems 20



Repairing the Small Parity Table

The choice of b dictates the required parities of the octahedra
t0 ∗ ti for i = 1, . . . , d . Without loss of generality, these can be 1
for i = 0, 1, . . . , b − 1 and 0 for i = b, b + 1, . . . , d . Then given b,
the parity table corresponding to the hypergraph must have b
constant rows of ones, followed by d − b constant rows of zeros. In
the case where d = 4 and b = 2, this would be

octahedron ↓ 0th point → 0 1 2 3 4
t0 ∗ t1 1 1 1 1 1
t0 ∗ t2 1 1 1 1 1
t0 ∗ t3 0 0 0 0 0
t0 ∗ t4 0 0 0 0 0

Thus, starting from the hypergraph consisting of the edges
00...0, 10...0 and 20...0 (previous overhead), we need to add at
least 10 additional edges to get the proper parity table for b = 2.

Tamon Stephen Colourful Simplices and Octahedral Systems 21



Exclusion via Enumeration

We implemented an enumeration scheme to improve the
bound (slightly) for d = 4.

We start by fixing a choice of (`, b, j).

Beginning with an empty hypergraph, add edges initially as
required by `, these are unique up to symmetry.

Then repair the parity table. At each stage we add one of the
15 edges that flip a single entry in the table.

Next we try to add edges using the fact that a covering
octahedral system with d2 or fewer edges cannot have any
isolated edges that differ from all other edges of the
hypergraph in more than one vertex.

As a last resort we may have to add arbitrary edges.
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A Large Parity Table

An octahedral system needs to satisfy an enormous number of
parity conditions simultaneously.

Call a set of (d + 1) points, one of each colour, a full
transversal.

Meunier and Deza (2013) reformulate Property 2 elegantly as
Property 2’: For any pair of full transversals, the number of
edges from the octahedral system that are contained in the
pair must always be even.

For the edge T0 := t0 ∪ {0} alone, there are dd+1 such parity
conditions that must be satisfied.
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Fixing a Large Parity Table

Consider now building an octahedral system beginning with T0
and adding additional edges.

With T0 alone, all dd+1 parity conditions fail.

Adding an edge will flip exactly dk parity conditions, where k
is the number of 0’s in the edge.

This immediately gives the fact that any octahedral system
with d2 or fewer edges must not contain any isolated edges: if
T0 is isolated, the number of parity conditions fixed by adding
an edge is at most dd−1, thus we require at least d2 additional
edges.
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The Parity Cube

Rather than simply counting parity conditions, we should
exploit their natural structure.

Each full transversal is indexed by a point in
{1, 2, . . . , d}d+1 ⊆ Rd+1. We call this the parity cube.

The effect of adding edge e to the configuration is to flip all
parity conditions in the subspace defined by the equations
xi = ei for each non-zero entry in e.

So, for example with d = 4, including edge 12020 changes
exactly the d2 parity conditions of points in the subspace
{x0 = 1, x1 = 2, x3 = 2}.
The initial edge T0 changed the entire (d + 1)-dimensional
parity cube, while an edge disjoint from T0 will change a single
parity condition, i.e. a 0-dimensional subspace.
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Subspace Coverings

Thus the problem of fixing the parity conditions for T0 can be
viewed as a subspace covering problem (modulo 2). Required is to
cover (modulo 2) the points of the parity cube,
i.e. {1, 2, . . . , d}d+1, by non-trivial coordinate subspaces.

Tamon Stephen Colourful Simplices and Octahedral Systems 26

Image: HPC REU @ UMBC



Subspace Coverings

For the cover to satisfy Property 1, we note that if edge e
contains point i ≥ 1 of colour j , then the related subspace
satisfies xj = i . The 0 points of each colour are in T0, so we
need merely to require that the subspace cover includes at
least one subspace contained in each of the d(d + 1)
hyperplanes xj = i for i = 1, . . . , d and j = 0, . . . , d .

Thus we would like to find such a (mod 2) subspace cover of
minimal size.

If we drop the (mod 2) condition, an inductive approach
should show that such a cover requires at least d2 subspaces.

Unfortunately with the (mod 2) condition, there are subspace
covers of size d2/2+ O(d), which do not appear to to arise
from octahedral systems.
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Questions and Discussion

A gap remains even for d = 5.

Deza, Meunier and Sarrabezolles show that some covering
octahedral systems are not realizable via colourful
configurations. However, it remains possible that µ(d) = ν(d)
for all d .

Can we get lower bounds analogous to the lower bound for the
monochrome g(S) for the maximum colourful simplicial depth
of a point in colourful configuration? (The point is not
necessarily in the core.)

There is interesting recent progress on the monochrome depth
problem.
How to compute colourful simplicial depth efficiently?

The complexity of Colourful Linear Programming.
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Thank you!
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