Colourful Simplices and Octahedral Systems

Tamon Stephen

Simon Fraser University

Department of Mathematics

joint work with

Antoine Deza and Feng Xie

The Fields Institute Retrospective Workshop on Discrete Geometry, Optimization and Symmetry, November 28th, 2013

Tamon Stephen

Colourful Simplices and Octahedral Systems

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

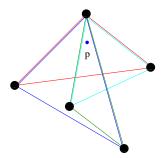
- Simplicial Depth.
- Colourful Simplices.
- Lower Bounds for Colourful Simplicial Depth.
- Transversals, Octahedra and Octahedral Systems.
- Parity Tables and Enumeration Strategies.
- Subspace Coverings.
- Questions and Discussion.

(日)

Э

Simplicial Depth

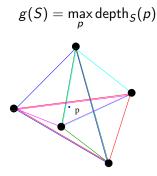
Given a set S of n points in ℝ^d, the simplicial depth of any point p with respect to S is the number of open simplices generated by points in S containing p. Denote this depth_S(p) or just depth(p).



• We consider open rather than closed simplicial depth.

Deepest points

- Question: For fixed n and d, what are the possible values of the (monochrome) depth_S(p)?
- In particular, consider for a given S the quantity:



• Then g(S) is the maximum number of open simplices generated by S containing a given point.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bounds for Deepest Points

• For a set S of n points in \mathbb{R}^2 the bounds are¹:

$$n^3/27 + O(n^2) \le g(S) \le n^3/24 + O(n^2).$$

• Bárány showed that in dimension d:

$$\frac{1}{(d+1)^{d+1}} \binom{n}{d+1} + O(n^d) \le g(S) \le \frac{1}{2^d(d+1)!} n^{d+1} + O(n^d).$$

- The upper bound is tight.
- For fixed *d*, this gives the correct asymptotics in *n*. However the gap in constants is large.
- The lower bound has recently been improved by Gromov (2010), Karasev (2012) and Král', Mach and Serini (2012), ...

¹Boros and Füredi (1984), but see Bukh, Matoušek∋and Nivasch (2010) 📱 ∽୍୍

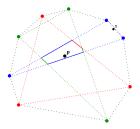
Simplicial Depth Context

- The simplicial depth of p is an gives an idea of how representative p is of S. It is one of several measures studied by statisticians of the "depth" of a data point relative to a sample.
- A point of maximum simplicial depth can be considered to be a simplicial median. The simplicial median is a multidimensional generalization of the median of a set of numbers.
- The probability that p lies inside a random simplex chosen from S is: $\frac{\text{depth}_S(p)}{n^{d+1}}$.
- The algorithmic problem of *finding* a simplex containing *p* is equivalent to the problem of finding a feasible basis in linear programming.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Colourful Carathéodory Theorem

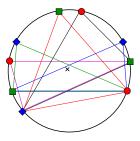
• Theorem (Bárány): if a point in \mathbb{R}^d is in the convex hull of (d+1) colourful sets, then it can be expressed as a convex combination of points of (d+1) different colours.



- This is a "Colourful" Carathéodory Theorem.
- We call the intersection of the (d + 1) colourful sets the core of the configuration.
- Note that it is not sufficient to have the point in the convex hull of some colour(s).

Colourful Simplicial Depth

- Define a colourful configuration S to be a collection of d + 1 sets of points S₁,..., S_{d+1} in ℝ^d.
- Define the colourful simplicial depth, denoted depth_S(p), of a point p with respect to a colourful configuration S to be the number of open colourful simplices from S containing p.

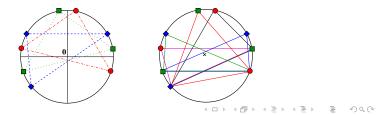


• Let $\mu(d)$ be the minimum colourful simplicial depth of a core point in dimension d.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Refining Colourful Carathéodory

- In a typical (random) situation, we expect to find **0** in around $\frac{(d+1)^{d+1}}{2^d}$ simplices.
- **Theorem**: There is a configuration of d + 1 points in each of d + 1 colours with **0** in the convex hull of each colour, but with **0** contained in only $d^2 + 1$ colourful simplices.
- Conjecture: This is minimal, i.e. $\mu(d) = d^2 + 1$ for all d.
- True for d = 0, 1, 2, 3, 4.
- Example: A 2-dimensional colourful configuration which contains **0** in only 5 simplices:



• The core of a colourful configuration is:

$$\bigcap_{i=1}^{d+1} \operatorname{conv}(S_i).$$

- We make the following assumptions:
 - We have d + 1 points of each colour.
 - The points are in general position.
 - We have $\mathbf{0} \in \mathsf{int} \mathsf{ core } \mathbf{S}$.
- By scaling the points, we assume without loss of generality that they lie on the unit sphere S^d ⊂ ℝ^d.

・ロト ・ 一下・ ・ ロー

Colourful Simplicial Depth Context

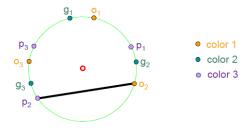
- The Colourful Carathéodory Theorem was originally proved by Bárány in the service of proving his lower bound for monochrome simplicial depth. This proof can be trivially modified to include a factor of μ(d) in the lower bound.
- There remains a probabilistic interpretation: the probability that p lies in a simplex whose vertices are sampled independently from the S_i 's is: $\frac{\text{depth}_{S}(p)}{|S_1| \cdot \ldots \cdot |S_{d+1}|}$.
- Given a colourful configuration with 0 in the core, the Colourful Linear Programming question of *efficiently* finding a colourful set of (d + 1) points containing 0 in their convex hull is an interesting problem whose complexity remains poorly understood.
- Recent research interest includes considering relaxed core conditions.

Lower bounds

- From Bárány (1982), we can deduce $\mu(d) \geq d+1$.
- Deza et al. (2006) show $\mu(d) \ge 2d$ and $\mu(2) = 5$.
- Quadratic lower bounds were independently obtained in Bárány and Matoušek (2007) and S. and Thomas (2008) using somewhat different methods. Additionally, Bárány and Matoušek showed that μ(3) = 10.
- Deza, S. and Xie (2011): $\mu(d) \ge \lceil (d+1)^2/2 \rceil$.
- A computational approach described in this talk (2013) improves this by one in dimension 4.
- Deza, Meunier, and Sarrabezolles have recently announced proofs that $\mu(d) \geq \frac{d^2}{2} + \frac{7d}{2} 8$ and $\mu(4) = 17$.

Transversals

- All these lower bounds depend on a key fact that we call the *Octahedron Lemma*. Octahedra are built from transversals.
- Fix a colour *i*. We call a set *t* of *d* points that contains exactly one point from each **S**_{*i*} other than **S**_{*i*} an *i*-transversal.

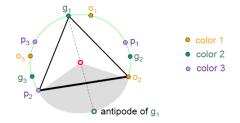


• In the picture, p_2 and o_2 form a $\hat{2}$ -transversal.

Image: A. Deza

Transversals and Antipodes

• Transversals are generators of colourful cones.



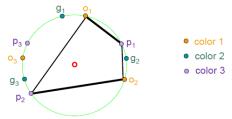
• An *i*-transversal and a point of colour *i* form a colourful simplex containing **0** if and only if the ray from **0** through the antipode of the point passes through the affine hyperplane generated by the transversal.

Image: A. Deza

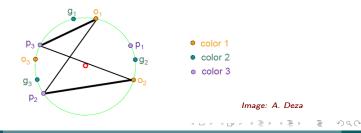
A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Octahedra

• We call any pair of disjoint \hat{i} -transversals an \hat{i} -octahedron.



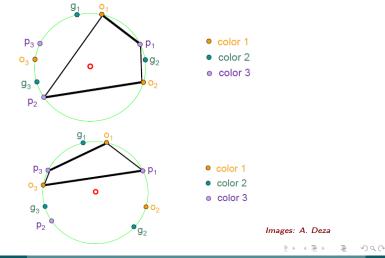
• These may or may not generate a geometric cross-polytope (*d*-dimensional octahedron).



Tamon Stephen

Octahedral Lemma

• The Octahedron Lemma: Rays from 0 in general position always intersect the same parity of facets made from \hat{i} -transversals of any fixed \hat{i} -octahedron.



Tamon Stephen

From Geometry to Combinatorics

- A colourful configuration defines a (d + 1)-uniform hypergraph on S = ∪_{i=0}^dS_i by taking edges corresponding to the vertices of 0 containing colourful simplices. Call these configuration hypergraphs.
- A strong version of the Colourful Carathéodory Theorem implies that any configuration hypergraph *H* must satisfy
 Property 1: Every vertex of a configuration hypergraph *H* belongs to some edge of *H*.
- The Octahedron Lemma gives that any configuration hypergraph \mathcal{H} must satisfy **Property 2**: For any octahedron \mathcal{O} , the parity of the set of edges using points from \mathcal{O} and a fixed point s_i for the *i*th coordinate is the same for all choices of s_i .
- Call a hypergraph whose edges consist of one vertex from each of (d + 1) sets and satisfying Properties 1 and 2 a covering octahedral system.

Small Octahedral Systems

- One strategy for proving lower bounds is to show that there are no small covering octahedral systems.
- Let ν(d) be the smallest size of a non-trivial covering octahedral system. Then ν(d) ≤ μ(d) ≤ d² + 1. Conjecture: ν(d) = μ(d) = d² + 1.
- We begin by fixing a colour 0 and d + 1 disjoint 0-transversals
 t_i for i = 0,..., d.
- We include initial edge 00...0 and focus on three key quantities of a candidate covering octahedral system:
 - ℓ , the number of edges containing t_0 . ?00...0
 - **b** the number of the octahedra formed from t_0 and t_i for some i = 1, 2, ..., d that have odd parity. $t_0 * t_i$
 - *j* the minimum number of $\widehat{0}$ -transversals that form an edge with any point of colour 0. 0??...?

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- It is clear that for any covering octahedral system with d^2 or fewer edges we must have $1 \le \ell, b, j \le d$.
- The number of edges in the system is at least j(d + 1).
- We can get further inequalities by studying the tradeoffs between edges required to satisfy the odd parity octahedra and the even parity octahedra: $(b + \ell)(d + 1) 2b\ell$ and $j + b \ge d + 1$.
- Finally, if we choose colour 0 so as to minimize ℓ but still have $\ell \geq \frac{d+2}{2}$, then we also have that the number of edges is at least $d\ell + 1$.
- These inequalities combine to give $\nu(d) \ge \lceil (d+1)^2/2 \rceil$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Small Parity Table

- For a given (d + 1)-uniform hypergraph, we can form a parity table that lists the parity of each point of colour 0 with respect to the octahedra generated by t₀ and each of the transversals t₁, t₂,... t_d.
- Example: With d = 4, this is the parity table for the hypergraph with 3 edges: 00...0, 10...0, ..., 20...0, i.e. (0, t₀), (1, t₀) and (2, t₀).

octahedron \downarrow 0 th point \rightarrow	0	1	2	3	4
$t_0 * t_1$	1	1	1	0	0
$t_0 * t_2$	1	1	1	0	0
$t_0 * t_3$	1	1	1	0	0
$t_0 * t_4$	1	1	1	0	0

• Only edges containing t₀ can change more than one entry in this table.

- ロト - (日下 - (日) - (1)

Repairing the Small Parity Table

The choice of *b* dictates the required parities of the octahedra $t_0 * t_i$ for i = 1, ..., d. Without loss of generality, these can be 1 for i = 0, 1, ..., b - 1 and 0 for i = b, b + 1, ..., d. Then given *b*, the parity table corresponding to the hypergraph must have *b* constant rows of ones, followed by d - b constant rows of zeros. In the case where d = 4 and b = 2, this would be

octahedron \downarrow 0 th point \rightarrow	0	1	2	3	4
$t_0 * t_1$	1	1	1	1	1
$t_0 * t_2$	1	1	1	1	1
$t_0 * t_3$	0	0	0	0	0
$t_{0} * t_{4}$	0	0	0	0	0

Thus, starting from the hypergraph consisting of the edges 00...0, 10...0 and 20...0 (previous overhead), we need to add at least 10 additional edges to get the proper parity table for b = 2.

Exclusion via Enumeration

- We implemented an enumeration scheme to improve the bound (slightly) for d = 4.
- We start by fixing a choice of (ℓ, b, j) .
- Beginning with an empty hypergraph, add edges initially as required by ℓ , these are unique up to symmetry.
- Then repair the parity table. At each stage we add one of the 15 edges that flip a single entry in the table.
- Next we try to add edges using the fact that a covering octahedral system with d^2 or fewer edges cannot have any isolated edges that differ from all other edges of the hypergraph in more than one vertex.
- As a last resort we may have to add arbitrary edges.

A Large Parity Table

- An octahedral system needs to satisfy an enormous number of parity conditions simultaneously.
- Call a set of (d + 1) points, one of each colour, a full transversal.
- Meunier and Deza (2013) reformulate Property 2 elegantly as **Property 2'**: For any pair of full transversals, the number of edges from the octahedral system that are contained in the pair must always be even.
- For the edge $T_0 := t_0 \cup \{0\}$ alone, there are d^{d+1} such parity conditions that must be satisfied.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fixing a Large Parity Table

- Consider now building an octahedral system beginning with T₀ and adding additional edges.
- With T_0 alone, all d^{d+1} parity conditions fail.
- Adding an edge will flip exactly d^k parity conditions, where k is the number of 0's in the edge.
- This immediately gives the fact that any octahedral system with d^2 or fewer edges must not contain any isolated edges: if T_0 is isolated, the number of parity conditions fixed by adding an edge is at most d^{d-1} , thus we require at least d^2 additional edges.

イロト イポト イヨト イヨト

The Parity Cube

- Rather than simply counting parity conditions, we should exploit their natural structure.
- Each full transversal is indexed by a point in $\{1, 2, \dots, d\}^{d+1} \subseteq \mathbb{R}^{d+1}$. We call this the parity cube.
- The effect of adding edge *e* to the configuration is to flip all parity conditions in the subspace defined by the equations $x_i = e_i$ for each non-zero entry in *e*.

So, for example with d = 4, including edge 12020 changes exactly the d^2 parity conditions of points in the subspace $\{x_0 = 1, x_1 = 2, x_3 = 2\}$.

The initial edge T_0 changed the entire (d + 1)-dimensional parity cube, while an edge disjoint from T_0 will change a single parity condition, i.e. a 0-dimensional subspace.

Thus the problem of fixing the parity conditions for T_0 can be viewed as a subspace covering problem (modulo 2). Required is to cover (modulo 2) the points of the parity cube, i.e. $\{1, 2, \ldots, d\}^{d+1}$, by non-trivial coordinate subspaces.

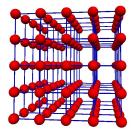


Image: HPC REU @ UMBC

Colourful Simplices and Octahedral Systems

Subspace Coverings

- For the cover to satisfy Property 1, we note that if edge e contains point $i \ge 1$ of colour j, then the related subspace satisfies $x_j = i$. The 0 points of each colour are in T_0 , so we need merely to require that the subspace cover includes at least one subspace contained in each of the d(d + 1) hyperplanes $x_j = i$ for i = 1, ..., d and j = 0, ..., d.
- Thus we would like to find such a (mod 2) subspace cover of minimal size.
- If we drop the (mod 2) condition, an inductive approach should show that such a cover requires at least d^2 subspaces.
- Unfortunately with the (mod 2) condition, there are subspace covers of size $d^2/2 + O(d)$, which do not appear to to arise from octahedral systems.

Questions and Discussion

• A gap remains even for d = 5.

- Deza, Meunier and Sarrabezolles show that some covering octahedral systems are not realizable via colourful configurations. However, it remains possible that μ(d) = ν(d) for all d.
- Can we get lower bounds analogous to the lower bound for the monochrome g(S) for the maximum colourful simplicial depth of a point in colourful configuration? (The point is not necessarily in the core.)
- There is interesting recent progress on the monochrome depth problem.
- How to compute colourful simplicial depth efficiently?
- The complexity of Colourful Linear Programming.

Thank you!

Tamon Stephen

Colourful Simplices and Octahedral Systems

《日》 《圖》 《문》 《문》