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Geometric Graphs

A geometric graph is G = (V,E),
V =set of points in the plane,
E =set of line segments between points in V .
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3Applications:
• Cartography (GIS, Navigation, etc.)
• Networks (VLSI Design, Optimization, etc.)
• Combinatorial Geometry (Incidences, Unit Distances, etc.)
• Rigidity (Robot arms, etc.)



Counting labeled plane graphs

Giménez and Noy (2009): The asymptotic number of
(labeled) planar graphs on n vertices is g · n−7/2γnn!
where γ ≈ 27.22688 and g ≈ 4.26 · 10−6.

Ajtai, Chvátal, Newborn, & Szemerédi (1982): On any n
points in R2, at most cn labeled planar graphs can be
embedded, where c < 1013.

Fáry (1957): Every planar graph has an embedding
in the plane as a geometric graph.

Hoffmann et al. (2010): c < 207.85.
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Requiring straight-line edges is a real restriction.
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Pach & Wenger (2001): Every labeled
planar graph can be embedded on any n
points in R2 using polyline edges with a
total of O(n2) bends. This bound is the
best possible.
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Problem: Can this bound be improved to 2O(n log k) ?



Every n-vertex planar graph has a straight line embedding, but
not all of them can be embedded on an arbitrary set of n points.

C4
K4C4 K4

• Allow the edges to bend
• Allow graph isomorphisms

Counting unlabeled plane graphs

• C4 can be embedded on any 4 points in the plane.
• K4 cannot be embedded on 4 points in convex position.
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Cardinal, Hoffmann, & Kusters (2013):
• For n = 1, . . . , 10, there is an n-element point set that can host all
n-vertex planar graphs (by exhaustive search).

• For n ≥ 15, there is no n-element point set that can accommodate all
n-vertex planar graphs (by counting argument).

• Allow the edges to bend
• Allow graph isomorphisms

Counting unlabeled planar geometric graphs

A point set S ⊂ R2 is n-universal if every n-vertex planar
graph has an embedding such that the vertices map into S.



Universal point sets

A point set S ⊂ R2 is n-universal if every n-vertex planar
graph has an embedding such that the vertices map into S.
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De Fraysseix, Pach, & Pollack (1990) and Schnyder (1990):
An (n−1)× (n−1) section of the integer lattice is n-universal.

Methods:
• partial orders defined on the vertices
• three Schnyder trees (Schnyder wood)

One method is an incremental algorithm,
the other embedding all vertices at once.
They have turned out to be equivalent...
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A point set S ⊂ R2 is n-universal if every n-vertex planar
graph has an embedding such that the vertices map into S.
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De Fraysseix, Pach, & Pollack (1990) and Schnyder (1990):
An (n−1)× (n−1) section of the integer lattice is n-universal.

Methods:
• partial orders defined on the vertices
• three Schnyder trees (Schnyder wood)

One method is an incremental algorithm,
the other embedding all vertices at once.
They have turned out to be equivalent...

n2

2 points suffice if we do not insist on a rectangular lattice.



Universality in Geometric Graphs

1. A structute is universal if it is “compatible” with every
geometric graph from a certain family
(e.g., universal point sets, universal slopes, etc.)

2. An abstract graph is universal if it has a geometric
realization for any possible choice of certain parameters
(e.g., globally rigid graphs, length-universal graphs, area
universal floorplans).
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An (n− 1)× (n− 1) section of the integer
lattice is n-universal.

Universal point sets

A point set S ⊂ R2 is n-universal if every n-vertex planar
graph has an embedding such that the vertices map into S.

How small an n-universal point set can be?
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An (n− 1)× (n− 1) section of the integer
lattice is n-universal.

Universal point sets

Brandenburg (2008): An 4
3n×

2
3n section of

the integer lattice is also n-universal.

Frati & Patrignani (2008): If a rectanular section of the integer
lattice is n-universal, it must contain at least n2/9 points.

A point set S ⊂ R2 is n-universal if every n-vertex planar
graph has an embedding such that the vertices map into S.

How small an n-universal point set can be?
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the integer lattice is also n-universal.

Frati & Patrignani (2008): If a rectanular section of the integer
lattice is n-universal, it must contain at least n2/9 points.

Open Problem: Find n-universal point sets of size o(n2).

A point set S ⊂ R2 is n-universal if every n-vertex planar
graph has an embedding such that the vertices map into S.

How small an n-universal point set can be?
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Universal point sets

Bannister et al. (2013) there is an n-universal point set of
size n2/4 + Θ(n) for all n ∈ N. (not a lattice section)
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successively inserting a new vertex into a triangular face, and
conecting it to all three corners.
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Universal point sets in special classes

Bannister et al. (2013): There is an n-universal point set of
size O(n log n) for simply nested planar graphs, and of
size O(npolylog n) for planar graphs of bounded
pathwidth.

Gritzman et al. (1991): Every
n-element point set in general
position is n-universal for
outerplanar graphs

Angelini et al (2011): There is an
n-univrsal point set of size
O(n(log n/ log log n)2) for simply
nested planar graphs.



Our n-universal point set for planar 3-trees is constructed
from an 14n× 14n section of the integer lattice in two steps:
1. sparsening,
2. stretching.

Thm. (2013): There is an n-universal point set of size
O(n3/2 log n) for planar 3-trees.
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Our n-universal point set for planar 3-trees is constructed
from an 14n× 14n section of the integer lattice in two steps:
1. sparsening,
2. stretching.

Stretching
Transformation (x, y)→ (x, (28n)y)

Objective: The slope of an edge between
rows i and j is larger than the slope of any
other edge among rows 1..j − 1.

i

j

Construction for planar 3-trees



Our n-universal point set for planar 3-trees is constructed
from an 14n× 14n section of the integer lattice in two steps:
1. sparsening,
2. stretching.

Stretching

Objective: The slope of an edge between
rows i and j is larger than the slope of any
other edge among rows 1, 2, . . . , j − 1.

When we pull back the stretched grid to
the integer grid, the straight-line edges
become Γ-shaped curves.

Construction for planar 3-trees

Transformation (x, y)→ (x, (28n)y)
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In a top-down traversal of T (G), we
allocate a rectangular region to each
subtree (triangle).
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When a new vertex is inserted,
the rectangle is subdivided into
four rectangles: left, right, and
bottom rectangles.

Embedding algorithm

Any given an n-vertex planar 3-tree can be embedded into
our point set.



If a “large” rectangle R(∆) is allocated to a subgraph lying in a
triangle ∆, then we can complete the embedding with the
algorithm of de Fraysseix, Pach, & Pollack (1990).

k

∆

This is possible when k points has to be embedded in a triangle ∆, and
the full rows or full columns in the rectangle R(∆) form a k × k grid.

Embedding algorithm



For all planar graphs, the currently best bounds are
1.235n− o(n) (Kurowski) and n2/4 (Bannister et al.).

Universal Point Sets: Summary

Open Problem: Find n-universal point sets of size o(n2).

Problem: Is our point set universal for all planar graphs?



For all planar graphs, the currently best bounds are
1.235n− o(n) (Kurowski) and n2/4 (Bannister et al.).

Universal Point Sets: Summary

Open Problem: Find n-universal point sets of size o(n2).

Generalization:
A point set S is universal for a family of graphs G if every
graph G ∈ G has a geometric realization with cr(G) crossings
such that all vertices are mapped into S.

Open Problem: Find n-universal point sets for all graphs.

...might be elusive:
—computing the crossing number, cr(G), is NP-hard,
—no optimal embedding is known for the complete graph Kn.

Problem: Is our point set universal for all planar graphs?



Universal Slope Sets

Keszegh et al. (2008):
• Every (abstract) graph with maximum degree 3

has a geometric realization with 5 distinct slopes.
• Every graph with vertices of both degree 2 and 3

has a geometric realization with 4 slopes,
• A set S of 4 slopes is universal for all such graphs

iff S = {−→a ,−→b ,−→a −−→b ,−→a +
−→
b }.

Keszegh et al. (2010): There is a function f : N→ N such
thatevery planar graph G with maximum degree d admits a
geometric embedding with at most f(d) different slopes.

−→
b

−→a



Universal Slope Sets

Keszegh et al. (2008):
• Every (abstract) graph with maximum degree 3

has a geometric realization with 5 distinct slopes.
• Every graph with vertices of both degree 2 and 3

has a geometric realization with 4 slopes,
• A set S of 4 slopes is universal for all such graphs

iff S = {−→a ,−→b ,−→a −−→b ,−→a +
−→
b }.

Keszegh et al. (2010): There is a function f : N→ N such
thatevery planar graph G with maximum degree d admits a
geometric embedding with at most f(d) different slopes.

Open Problem: Which slope sets are universal
for all planar graphs of maximum degree d?

−→
b

−→a



Universality in Geometric Graphs

1. A structute is universal if it is “compatible” with every
geometric graph from a certain family
(e.g., universal point sets, universal slopes, etc.)

2. An abstract graph is universal if it has a geometric
realization for any possible choice of certain parameters
(e.g., globally globally rigid graphs, length-universal
graphs, area universal floorplans).



A geometric graph G = (V,E) is (locally) rigid if every small motion of
the vertices that preserves all edge lengths is an isometry.

⇒

flexiblerigid

Globally Rigid Graphs
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A geometric graph G = (V,E) is (locally) rigid if every small motion of
the vertices that preserves all edge lengths is an isometry.

⇒

flexiblerigid

Def.: An (abstract) graph

G = (V,E) is generically globally

rigid if every realization as a

geometric graph with vertices in

general position is rigid.

rigid

Jackson & Jordán (2005):
A graph G is generically
globally rigid iff
• either G = Kn, n ≤ 3,
• or G is 3-connnected and

redundantly rigid.

Globally Rigid Graphs
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A graph G = (V,E) is length universal if it admits a
geometric embedding for al length assignments ` : E → R+.
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Length Universal Graphs: An Easy Exercise

A graph G = (V,E) is length universal if it admits a
geometric embedding for al length assignments ` : E → R+.

E.g., a star is realizable with arbitrary positive edge lengths.

But the edges of a cycle must satisfy the triangle inequality.
The edge lengths cannot be chosen arbitrarily.

Observation: A graph is
length universal iff it is a forest.



Free Graphs

A graph G = (V,E) is free in a planar host graph H, G ⊆ H
if H has a geometric embedding for arbitrarily chosen positive
edge lengths `(e), e ∈ E.

Let G = (V,E) be a subgraph of a planar graph H. Graph G
is free in H if for every function ` : E → R+, H has a
geometric emgedding such that every e ∈ E has length `(e)



Free Graphs

A star is realizable with arbitrary positive edge lengths.

A graph G = (V,E) is free in a planar host graph H, G ⊆ H
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edge lengths `(e), e ∈ E.
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Free Graphs

A star is realizable with arbitrary positive edge lengths.

But a star with n ≥ 5 vertices cannot have arbitrary positive
edge lengths in a triangulation H.

1

1

2
2
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A graph G = (V,E) is free in a planar host graph H, G ⊆ H
if H has a geometric embedding for arbitrarily chosen positive
edge lengths `(e), e ∈ E.

A graph G = (V,E) is free in a planar host graph H, G ⊆ H
if H has a geometric embedding for arbitrarily chosen positive
edge lengths `(e), e ∈ E.

Let G = (V,E) be a subgraph of a planar graph H. Graph G
is free in H if for every function ` : E → R+, H has a
geometric emgedding such that every e ∈ E has length `(e)



Free Graphs

Thm.: A graph G is free in every planar H, G ⊆ H, iff G is
• a matching
• a forest with at most 3 edges, or
• two disjoint paths of length 2.

Let G = (V,E) be a subgraph of a planar graph H. Graph G
is free in H if for every function ` : E → R+, H has a
geometric emgedding such that every e ∈ E has length `(e)



Free Graphs
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Näıve idea:
1. Contract all edges e ∈ E of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all e ∈ E to the required lengths.



Free Graphs

Lemma: If G = (V,E) is a perfect matching in a
triangulation H, then all positive lengths `(e), e ∈ E,
can be realized in an embedding of H.

1

2

3
4 1

2
3

4
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Näıve idea:
1. Contract all edges e ∈ E of the matching;
2. Embed the resulting graph with “giant” edges;
3. Expand all e ∈ E to the required lengths.

`(e4)

`(e3)

Lemma: If G = (V,E) is a perfect matching in a
triangulation H, then all positive lengths `(e), e ∈ E,
can be realized in an embedding of H.



Free Graphs

1

2

3
4 1

2
3

4
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Free Graphs

Lemma: If G = (V,E) is a perfect matching in a
triangulation H, then all positive lengths `(e), e ∈ E,
can be realized in an embedding of H.
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Näıve idea:
1. Contract all edges e ∈ E of the matching;
2. Embed the graph with “giant” edges;
3. Expand all e ∈ E to the required lengths.

Main technical difficulty:
separating triangles.

A recursion on the hierarchy of
separating triangles and separating
4-cycles works, using an appropriate
linear transformation in each step.
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Let G = (V,E) be a subgraph of a planar graph H. Graph G
is extrinsically free in H if whenever if G has a geometric
embedding with edge lengths `(e), e ∈ E, then H also has a
geometric emgedding such that every e ∈ E has length `(e).
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Extrinsically Free Graphs

Let G = (V,E) be a subgraph of a planar graph H. Graph G
is extrinsically free in H if whenever if G has a geometric
embedding with edge lengths `(e), e ∈ E, then H also has a
geometric emgedding such that every e ∈ E has length `(e).

A triangle G = C3, and every triangulation G = T is
extrinsically free, since H = G.

The 4-cycle C4 is not extrisically free: if all four edges have
unit length, then C4 is a rhombus (i.e., convex), and cannot
have an external diagonal.
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Thm.: A graph G is extrinsically free in every planar H,
G ⊆ H, iff G is
• a matching
• a forest with at most 3 edges,
• two disjoint paths of length 2,
• a triangulation, or
• a triangle and one edge.
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No cycle Ck, k ≥ 4,
is extrinsically free:

Let G = (V,E) be a subgraph of a planar graph H. Graph G
is extrinsically free in H if whenever if G has a geometric
embedding with edge lengths `(e), e ∈ E, then H also has a
geometric emgedding such that every e ∈ E has length `(e).



“Triangulated” Carpenter’s Rule

Connelly et al. (2003): Every simple polygonal cycle (with
fixed edge lengths) can be continuously unfolded into convex
position (i.e., its configuration space is connected).

⇒
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Connelly et al. (2003): Every simple polygonal cycle (with
fixed edge lengths) can be continuously unfolded into convex
position (i.e., its configuration space is connected).

⇒

The unfolding algorithm by Streinu maintains a triangulation
of C: The edges of the interior triangulation are preserved,
and the edges of the exterior triangulation vanish.

⇒
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Given a simple polygonal cycle C and an arbitrary
curvilinear triangulation H, does H admit a straight-line
embedding such that the cycle C keeps its given edge lengths?
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“Triangulated” Carpenter’s Rule

Given a simple polygonal cycle C and an arbitrary
curvilinear triangulation H, does H admit a straight-line
embedding such that the cycle C keeps its given edge lengths?

⇒?

Thm. (Abel et al., 2013): “Yes” if the edge lengths are
nondegenerate, that is, if the cycle cannot be “flattened” into
1D in two different ways with the given edge lengths.
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Thank you!


