Polytopes derived from

cubic tessellations

Asia Ivić Weiss York University

including joint work with

Isabel Hubard, Mark Mixer, Alen Orbanić and Daniel Pellicer

TESSELLATIONS

A Euclidean tessellation is a collection of n - polytopes, called cells, which cover E^n and tile it in face-to-face manner.

A Euclidean tessellation \mathcal{U} is said to be regular if its group of symmetries (isometries preserving \mathcal{U}) is transitive on the flags of \mathcal{U} . The cells of a regular tessellation are convex, isomorphic regular polytopes.

TESSELLATIONS

A Euclidean tessellation is a collection of n - polytopes, called cells, which cover E^n and tile it in face-to-face manner.

A Euclidean tessellation \mathcal{U} is said to be regular if its group of symmetries (isometries preserving \mathcal{U}) is transitive on the flags of \mathcal{U} . The cells of a regular tessellation are convex, isomorphic regular polytopes.

REGULAR TESSELLATIONS Eⁿ:

$$\left\{ 4, 3^{n-2}, 4 \right\} , n \ge 2$$

$$\left\{ 3, 6 \right\} , \left\{ 6, 3 \right\}$$

$$\left\{ 3, 3, 4, 3 \right\} , \left\{ 3, 4, 3, 3 \right\}$$

• Abstract polytope

- Abstract polytope

- Abstract polytope
- Classification of equivelar abstract polytopes of type {4,4} and {4,3,4}

The group of symmetries $\Gamma(\mathcal{U})$ of the tessellation \mathcal{U} is a Coxeter group. In this talk we will mostly be concerned with cubic tessellations in dimension 2 and 3 so that $\Gamma(\mathcal{U}) = [4,4]$ or [4,3,4].

The group of symmetries $\Gamma(\mathcal{U})$ of the tessellation \mathcal{U} is a Coxeter group. In this talk we will mostly be concerned with cubic tessellations in dimension 2 and 3 so that $\Gamma(\mathcal{U}) = [4,4]$ or [4,3,4].

$\Gamma(\mathcal{U}) \cong T \rtimes S$

where T is the translation subgroup and S is the stabilizer of origin (point group of \mathcal{U}).

The group of symmetries $\Gamma(\mathcal{U})$ of the tessellation \mathcal{U} is a Coxeter group. In this talk we will mostly be concerned with cubic tessellations in dimension 2 and 3 so that $\Gamma(\mathcal{U}) = [4,4]$ or [4,3,4].

$\Gamma(\mathcal{U}) \cong T \rtimes S$

where T is the translation subgroup and S is the stabilizer of origin (point group of \mathcal{U}).

When G is a fixed-point free subgroup of $\Gamma(\mathcal{U})$ the quotient

𝖅 = 𝒴 / G

is called a (cubic) twistoid.

Twistoid \mathscr{T} is an abstract polytope whose faces are orbits of faces of \mathscr{U} under the action of G.

Twistoid \mathscr{T} is an abstract polytope whose faces are orbits of faces of \mathscr{U} under the action of G.

Note: $\mathcal{U}/G \cong \mathcal{U}/G' \Leftrightarrow G$ and G' are conjugate in $\Gamma(\mathcal{U})$.

Twistoid \mathscr{T} is an abstract polytope whose faces are orbits of faces of \mathscr{U} under the action of G.

Note: $\mathcal{U}/G \cong \mathcal{U}/G' \Leftrightarrow G$ and G' are conjugate in $\Gamma(\mathcal{U})$.

Sym $(\mathcal{T}) := \{ \phi \in \Gamma(\mathcal{U}) \mid \phi^{-1} \alpha \phi \in G \text{ for all } \alpha \in G \}$

Aut (𝟸) := *Sym* (𝟸) / G

RANK 3

Fixed-point free crystallographic groups in Euclidean plane:

Generated by:

two independent translations

two parallel glide reflections (same translation vectors)

torus

Klein bottle

Equivelar Toroids of type {4, 4}:

Conjugacy classes of vertex stabilizers for {4,4} Class 1: regular {4,4} maps on torus

(Coxeter 1948)

Class 2: chiral {4,4} maps on torus

(Coxeter 1948)

$$\{4,4\}_{(a,b)(-b,a)}$$

a>b>0

Class 2₁: vertex, edge and face transitive {4,4} maps on torus

(Širán, Tucker, Watkins, 2001)

 $\{4,4\}_{(a,a)(b,-b)}, \quad a > b > 0$

$$\{4,4\}_{(a,b)(b,a)}, a > b > 0$$

Class 2₀₂: vertex and face transitive {4,4} maps on torus

(Hubard 2007; Duarte 2007)

Class 4: vertex and face transitive {4,4} maps on torus (Brehm, Khünel 2008; Hubard, Orbanić, Pellicer, Asia 2007)

Equivelar maps of type {4,4} on Klein bottle

(Wilson 2006)

 $\{4,4\}_{|4,2|}$ $\{4,4\}_{|4,2|}^{*}$ $\{4,4\}_{\setminus 6,2\setminus}$ $\{4,4\}_{\setminus 7,2\setminus}$

RANK 4

Fixed-point free crystallographic groups in Euclidean space:

Six generated by orientation preserving isometries (twists)

Four have orientation reversing generators (glide reflections)

Platycosms are the corresponding 3-manifolds.

Classification of twistoids on platycosms is mostly completed (Hubard, Mixer, Orbanić, Pellicer, Asia) and partially published in two papers. Platycosm arising from the group generated by

a six-fold twist and a three-fold twist

with parallel axes and congruent translation component is the only platycosm admitting no twistoids.

3-torus is the platycosm arising from the group G generated by three independent translations:

3-torus is the platycosm arising from the group G generated by three independent translations:

How can we place this fundamental region into a fixed cubical lattice {4,3,4} so that G is a subgroup of the lattice symmetries?

Twistoid on 3-torus is commonly referred to as 3-toroid.

Conjugacy classes of vertex stabilizers of equivelar 3-toroids of type {4, 3, 4}:

Class 1:

A "closer" view of $\{4,3,4\}_{(2a,0,0)(0,2a,0)(a,a,a)}$

Class 2:

Theorem: There are no chiral toroids of rank > 3. (McMullen & Schulte, 2002)

Class 2:

Theorem: There are no chiral toroids of rank > 3. (McMullen & Schulte, 2002)

Theorem: There are no rank 4 toroids with two flag orbits (in Class 2).

Class 2:

Theorem: There are no chiral toroids of rank > 3. (McMullen & Schulte, 2002)

Theorem: There are no rank 4 toroids with two flag orbits (in Class 2).

Examples in Class 3:

Projection of v	Class of \mathcal{P}_{Π}	Generators of ${\cal P}$	Parameters	Class of ${\mathcal P}$
0	1	(a, 0, 0), (0, a, 0), (0, 0, d)	$a, d > 0, d \neq a$	3
0	1	(a, a, 0), (a, -a, 0), (0, 0, d)	a, d > 0	
$(v_1 + v_2)/2$	1	(a, 0, 0), (0, a, 0), (a/2, a/2, d)	$a,d>0,d\neq a/2$	
$(v_1 + v_2)/2$	1	(a, a, 0), (a, -a, 0), (a, 0, d)	$a,d>0,d\neq a$	
0	202	(a, 0, 0), (0, b, 0), (0, 0, d)	a>b>d>0	6_A
0	202	(a, b, 0), (a, -b, 0), (0, 0, d)	a>b>0,d>0	
$(v_1 + v_2)/2$	202	(a, 0, 0), (0, b, 0), (a/2, b/2, d)	a>b>2d>0	
$(v_1 + v_2)/2$	202	(a, b, 0), (a, -b, 0), (a, 0, d)	$a>b>0,d>0,d\neq a,b$	
0	21	(a, a, 0), (b, -b, 0), (0, 0, d)	a>b>0,d>0	6_B
0	21	(a, b, 0), (b, a, 0), (0, 0, d)	a>b>0,d>0	
$(v_1 + v_2)/2$	21	(a, a, 0), (b, -b, 0), ((a + b)/2, (a - b)/2, d)	a>b>0,d>0	
$(v_1 + v_2)/2$	21	(a, b, 0), (b, a, 0), ((a + b)/2, (a + b)/2, d)	a>b>0,d>0	
$v_1/2$	1	(a, a, 0), (a, -a, 0), (a/2, a/2, d)	a, d > 0	
$v_1/2$	21	(a, a, 0), (b, -b, 0), (a/2, a/2, d)	a>b>0,d>0	
$v_2/2$	21	(a, a, 0), (b, -b, 0), (b/2, -b/2, d)	a>b>0,d>0	
0	2	(a, b, 0), (-b, a, 0), (0, 0, d)	a>b>0,d>0	6_C
$(v_1 + v_2)/2$	2	(a, b, 0), (-b, a, 0), ((a - b)/2, (a + b)/2, d)	a>b>0,d>0	
0	4	(a, b, 0), (c, 0, 0), (0, 0, d)	*	12_{A}
$(v_1 + v_2)/2$	4	(a, b, 0), (c, 0, 0), ((a + c)/2, b/2, d)	**	
$v_1/2$	2	(a, b, 0), (-b, a, 0), (a/2, b/2, d)	a>b>0,d>0	
$v_1/2$	202	(a, b, 0), (a, -b, 0), (a/2, b/2, d)	a>b>0,d>0	
$v_1/2$	21	(a, b, 0), (b, a, 0), (a/2, b/2, d)	a>b>0,d>0	
$v_1/2$	4	(a, b, 0), (c, 0, 0), (a/2, b/2, d)	***	
$v_2/2$	4	(a, b, 0), (c, 0, 0), (c/2, 0, d)	****	

Projection of v	Class of $\mathcal{P}_{\Pi_{e}}$	Generators of ${\cal P}$	Parameters	Class of $\mathcal P$
0	1	(a, 0, -a), (0, a, -a), (c, c, c)	a, c > 0	4
$(v_1 + v_2)/3$	1	$(a, 0, -a), (0, a, -a), (\frac{a+c}{3}, \frac{a+c}{3}, \frac{-2a+c}{3})$	$a, c > 0, 3 \mid (a + c)$	4
0	1	(a, a, -2a), (2a, -a, -a), (c, c, c)	a, c > 0	4
$(v_1 + v_2)/3$	1	(a, a, -2a), (2a, -a, -a), (a + c, c, -a + c)	a>b>0,c>0	8
0	2	(a, b, -a - b), (-b, a + b, -a), (c, c, c)	a>b>0,c>0	8
$(v_1 + v_2)/3$	2	(a, b, -a - b), (-b, a + b, -a),	a>b>0,c>0	8
		$\left(\frac{a-b+c}{3},\frac{a+2b+c}{3},\frac{-2a-b+c}{3}\right)$	$3 \mid (a+2b+c)$	

Didicosm is the platycosm arising from the group G generated by

- two half-turn twists with parallel axes and congruent translation component, and
- a twist whose axis does not intersect and is perpendicular to the axes of the other two twists and has the translation component equal to a vector between the other two axes:

Identification of points of the boundary of the fundamental region:

How can we place this fundamental region into a fixed cubical lattice {4,3,4} so that G is a subgroup of the lattice symmetries?

Classification of cubic tessellations on didicosm according to their automorphism groups:

Group	Size	Generators	Conditions	Toroidal Covers
1	96	$ au_1, au_2, au_3,\chi,\chi_1,\chi_2,\chi_3, ho$	a = 2b = c even, $p = q = 0$	1
2	48	$ au_1, au_2, au_3,\chi,\chi_1\chi_2, ho$	$a = 2b = c \text{ odd}, \ p = \frac{1}{2}, \ q = 0$	1
3_1	32	$\tau_1,\tau_2,\tau_3,\chi,\chi_1,\rho$	$a = 2b, c \text{ even}, (p = 0 \text{ or } a \notin \mathbb{Z})$	1, 3
3_{2}	32	$ au_1, au_2, au_3,\chi,\chi_2, ho$	$c = 2b, a$ even, $(q = 0, c$ even or $q = \frac{1}{2}, c$ odd)	1, 3
3_3	32	$ au_1, au_2, au_3,\chi,\chi_3, ho$	a = c, 2b even, $p = q$	1, 3
6	16	$ au_1, au_2, au_3,\chi, ho$	$a,2b\in\mathbb{Z}\cup\sqrt{2}\mathbb{Z}$	$1, 3, 6_A, 6_B$
61	16	$ au_1, \chi, \chi_1, ho$	$a = 2b \notin \mathbb{Z} \cup \sqrt{2}\mathbb{Z}, c$ even	3
12_{2}	8	$ au_1, au_2, ho$	$a \in \sqrt{2}\mathbb{Z}, 2b \notin \sqrt{2}\mathbb{Z}$	6_B
12_3	8	$ au_1, au_3, ho$	$2b \in \sqrt{2}\mathbb{Z}, a \notin \sqrt{2}\mathbb{Z}$	6_B
12	8	$ au_1, \chi, ho$	$(a+2b) \notin \frac{\sqrt{2}}{2}\mathbb{Z} \setminus \sqrt{2}\mathbb{Z}$	$3, 6_B$