Relaxations of Graph Partitioning and Vertex Separator Problems using Continuous Optimization

Henry Wolkowicz

(work with Ting Kei Pong, Hao Sun, Ningchuan Wang)

Dept. Combinatorics and Optimization, University of Waterloo

at: THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES November 25- 29, 2013; Retrospective Workshop on Discrete Geometry, Optimization, and Symmetry

Motivation: Graph Partitioning/Vertex Separator

- Model NP-hard problem using quadratic-quadratic program
- approximate/relax using eigenvalue bounds and semidefinite programming
- bounds: we follow approaches for eigenvalue and projected eigenvalue bounds in: Hadley, Rendl, W. 1990 [1, 5] Rendl, Lisser, Piacenti, (RLP) 2012 [4] and Semidefinite bounds in: W., Zhao 1996 [6].

Background/Notation

Given graph G and set sizes m

• G = (N, E) edge-weighted undirected graph $N = \{1, 2, ..., n\}$ node set $E_{ij}, ij = 1, 2, ..., n$ edge weights $m = \begin{pmatrix} m_1 \\ ... \\ m_k \end{pmatrix}$ (pos. integer) set sizes, with $m^T e = n$

Set of all Partitions

$$P_m =$$

$$\{ (S_1, \ldots, S_k) : S_i \subset N, |S_i| = m_i \forall i; \\ S_i \cap S_j = \emptyset \forall i \neq j; \cup_i S_i = N \}$$

Partition matrix $X \in \mathbb{R}^{n \times k}$; col. X_j incidence vector of S_j

$$X_{ij} = \begin{cases} 1 & \text{if } i \in S_j \\ 0 & \text{otherwise.} \end{cases}$$

linear/quadratic constraints (many are redundant)

set of: zero-one; nonnegative; linear equalities; *m*-diagonal orthogonality type; *e*-diagonal orthogonality type; and gangster constraints, respectively:

$$\begin{split} \mathcal{Z} &:= & \{X \in \mathbb{R}^{n \times k} : X_{ij} \in \{0,1\}, \forall ij\} \\ &= \{X \in \mathbb{R}^{n \times k} : X_{ij}^2 = X_{ij}, \forall ij\} \\ \mathcal{N} &:= & \{X \in \mathbb{R}^{n \times k} : X_{ij} \geq 0, \forall ij\} \\ \mathcal{E} &:= & \{X \in \mathbb{R}^{n \times k} : Xe = e, X^T e = m\} \\ &= \{X \in \mathbb{R}^{n \times k} : \|Xe - e\|^2 + \|X^T e - m\|^2 = 0\} \\ \mathcal{D}_0 &:= & \{X \in \mathbb{R}^{n \times k} : X^T X = \text{Diag}(m)\} \\ \mathcal{D}_e &:= & \{X \in \mathbb{R}^{n \times k} : \text{diag}(XX^T) = e\} \\ \mathcal{G} &:= & \{X \in \mathbb{R}^{n \times k} : X_{:i} \circ X_{:j} = 0, \forall i \neq j\}, \quad \circ \text{Hadamard prod.} \end{split}$$

Equivalent Representations of Partition Matrices

The set of partition matrices in \mathbb{R}^{nk} ,

$$\mathcal{M}_{m} = \mathcal{E} \cap \mathcal{Z}$$

= $\mathcal{E} \cap \mathcal{D}_{0} \cap \mathcal{N}$
= $\mathcal{E} \cap \mathcal{D}_{0} \cap \mathcal{D}_{e} \cap \mathcal{N}$
= $\mathcal{E} \cap \mathcal{Z} \cap \mathcal{D}_{0} \cap \mathcal{G} \cap \mathcal{N}$

Cut of a partition

- $\delta(S_i, S_j)$ set of edges between sets S_i, S_j
- δ(S) = ∪_{i<j<k}δ(S_k, S_j) set of edges with endpoints in distinct partition sets S₁,..., S_{k-1}
- The minimum of the cardinality |δ(S)| is denoted (objective) cut(m) = min{|δ(S)| : S ∈ P_m}

\mathcal{G} has a vertex separator

graph *G* has a vertex separator if there exists $S \in P_m$ with $\delta(S) = \emptyset$, i.e., cut(m) = 0. (see (RLP) [4], Hager, Hungerford 2013 [2] for relationship with

bandwidth of graph and other applications)

Trace Representation of Cut Problem

•
$$B := \begin{bmatrix} ee^T - I_{k-1} & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{S}^k$$
,
 $\mathbb{S}^k \cdot k \times k$ symm. matrices with trace inner-product.
• $A = (a_{ij})$ - adjacency matrix, $a_{ij} = \begin{cases} 1 & \text{if } E_{ij} \neq 0 \\ 0 & \text{otherwise} \end{cases}$
• $L := \text{Diag}(Ae) - A = \sum_{ij \in E(G)} (e_i - e_j)(e_i - e_j)^T$ -
Laplacian (e_i unit vectors)

Quadratic objective for cut(m)

Proposition RLP [4, Prop. 2] For partition $S \in P_m$, and associated partition matrix $X \in \mathcal{M}_m$, the cardinality of the partition is $|\delta(S)| = \frac{1}{2} \operatorname{trace} AXBX^T = \frac{1}{2} \operatorname{trace}(-L)XBX^T$

Basic Eigenvalue Bound

Relaxed problem

$$\begin{array}{rcl} \operatorname{cut}(m) & \geq & p_{eig}^{*}(m) \\ & & := & \min & \frac{1}{2}\operatorname{trace} AXBX^{T} & (A \text{ or } -L) \\ & & \text{ s.t. } & X \in \mathcal{D}_{O} \end{array}$$
$$\mathcal{D}_{O} = \{X \in \mathbb{R}^{n \times k} : X^{T}X = M := \operatorname{Diag}(m)\} \\ (\text{orthogonal type cols for } X) \end{array}$$

Hoffman-Wielandt '53 [3] bound/Theorem

C, *D* symmetric order *n*, *k*, resp., $k \le n$. Then min {trace $CXDX^T : X^TX = I_k$ } = min { $\sum_{i=1}^k \lambda_i(D)\lambda_{\phi(i)}(C) : \phi : N \to \{1, \dots, k\}$ is an injection }. minimum attained for $X = (p_{\phi(1)}, \dots, p_{\phi(k)}) Q^T$, where $p_{\phi(i)}$ normalized eigenvector to $\lambda_{\phi(k)}(C)$ and cols of $Q = [q_1 \dots q_k]$ contains normalized eigenvectors q_i of $\lambda_i(D)$.

Basic Eigenvalue Bound II

Lemma (RLP)

k-ordered eigs of $\tilde{B} := M^{1/2} B M^{1/2}$ satisfy

$$\lambda_1(ilde{B}) \leq \lambda_2(ilde{B}) \leq \ldots \leq \lambda_{k-2}(ilde{B}) < \lambda_{k-1}(ilde{B}) = 0 < \lambda_k(ilde{B}).$$

Basic Eigenvalue Bound, apply Hoffman-Wielandt Theorem

Let $-\lambda_1(L) \ge -\lambda_2(L) \ge -\lambda_n(L)$ denote ordered *n* eigenvalues of -L; $-\lambda(L)$ denotes corresponding vector of eigenvalues. Pad the 0 eigenvalue of \tilde{B} with further zeros to get an ordered vector of length *n* and denote it by $\hat{\lambda}(\tilde{B})$. Then

$$\operatorname{cut}(m) \ge 0 > p_{eig}^* = -\lambda(L)^T \hat{\lambda}(\tilde{B})$$

Two Projected Eigenvalue Bound

Relaxed problem

$$\begin{array}{rcl} \operatorname{cut}(m) & \geq & p_{\operatorname{projeig}}^{*}(m) \\ & \coloneqq & \min & \frac{1}{2}\operatorname{trace} AXBX^{T} & (A \text{ or } -L) \\ & & \text{ s.t. } & X \in \mathcal{D}_{\mathsf{O}} \cap \mathcal{E} \end{array}$$

 $\mathcal{D}_{O} = \{ X \in \mathbb{R}^{n \times k} : X^{T}X = M := \text{Diag}(m) \}$ (orthog type)

 $\mathcal{E} = \{ X \in \mathbb{R}^{n \times k} : Xe = e, X^Te = m \}$ (linear row/col sums)

Special Parametrization of $X \in \mathcal{E}$

$$\tilde{m} = \sqrt{m}; \quad n \times n, k \times k \text{ orthogonal matrices } P, Q$$
$$P = \begin{bmatrix} \frac{1}{\sqrt{n}}e & V \end{bmatrix} \in \mathcal{O}_n, \quad Q = \begin{bmatrix} \frac{1}{\sqrt{n}}\tilde{m} & W \end{bmatrix} \in \mathcal{O}_k. \quad (*)$$

LEMMA: Rendl and W. 1990 [5]

Let $\tilde{M} = \text{Diag}(\tilde{m})$. Suppose that $X \in \mathbb{R}^{n \times k}$ and $Z \in \mathbb{R}^{(n-1) \times (k-1)}$ are related by

$$X = P \begin{bmatrix} 1 & 0 \\ 0 & Z \end{bmatrix} Q^T \tilde{M}. \qquad (*)$$

Then the following holds:

 $X \in \mathcal{E} .$ 2 $X \in \mathcal{N} \Leftrightarrow VZW^T \geq -\frac{1}{n}e\tilde{m}^T$ 3 $X \in \mathcal{D}_0 \Leftrightarrow Z \in \mathcal{O}_{(n-1) \times (k-1)}$

Conversely, if $X \in \mathcal{E}$, then there exists Z such that the representation (*) holds.

THEOREM

V, W as above, $\hat{X} := \frac{1}{n} em^T \in \mathbb{R}^{n \times k}$ $\mathcal{Q} : \mathbb{R}^{(n-1) \times (k-1)} \to \mathbb{R}^{n \times k}, \ \mathcal{Q}(Z) = VZW^T \tilde{M}$ Then: $\hat{X} \in \mathcal{E}$, and \mathcal{Q} is invertible $\mathbb{R}^{(n-1) \times (k-1)} \leftrightarrow \mathcal{E} - \hat{X}$ Equivalently, \mathcal{E} can be parametrized using $\hat{X} + VZW^T \tilde{M}$.

Thus, two objective functions

 $\begin{array}{l} \frac{1}{2} \operatorname{trace} AXBX^{T} = \\ \frac{1}{2} \operatorname{trace} (A\hat{X}B\hat{X}^{T} + (V^{T}AV)Z(W^{T}\tilde{M}B\tilde{M}W)Z^{T} + 2V^{T}A\hat{X}B\tilde{M}WZ^{T}) \\ \text{and} \\ \frac{1}{2} \operatorname{trace} ((-L)XBX^{T}) = \frac{1}{2} \operatorname{trace} (V^{T}(-L)V)Z(W^{T}\tilde{M}B\tilde{M}W)Z^{T}. \end{array}$

Two Projected Eigenvalue Bounds

Let $\hat{A} = V^T A V, \hat{L} = V^T (-L) V, \hat{B} = W^T \tilde{M} B \tilde{M} W,$ $\alpha = \text{trace } A \hat{X} B \hat{X}^T, C = 2 V^T A \hat{X} B \tilde{M} W.$ Then:

$$\operatorname{cut}(m) \ge p_{\operatorname{projeig},A}^* = \frac{1}{2} \left\{ \alpha + \min_{\phi \text{ injective}} \left\{ \sum_{i=1}^k \lambda_i(\hat{B}) \lambda_{\phi(i)}(\tilde{A}) \right\} + \min_{\substack{0 \le \hat{X} + VZW^T \tilde{M}}} \operatorname{trace} CZ^T \right\}$$

$$\ge p_{eig}^*$$

$$\begin{array}{ll} \mathsf{cut}(m) \geq p_{\textit{projeig},L}^{*} &=& \frac{1}{2} \min_{\phi \text{ injective}} \left\{ \Sigma_{i=1}^{k} \lambda_{i}(\hat{B}) \lambda_{\phi(i)}(\tilde{L}) \right\} \\ &\geq & p_{\textit{eig}}^{*}, \end{array}$$

and note eigenvalues of $V^T L V$ are n - 1 nonzero eigenvalues of L.

let $Q \in \mathbb{R}^{k-1 \times k-1}$ be orthog. with cols consisting of eigenvectors of \hat{B} corresponding to eigenvalues of \hat{B} in nondecreasing order; let $P_A, P_L \in \mathbb{R}^{n-1 \times k-1}$ have orthonormal cols consisting of k-1 eigenvectors of \hat{A}, \hat{L} , respectively, corresponding to eigenvalues in nonincreasing order where the columns correspond to the largest k - 2 followed by the smallest. Then the minimal scalar product terms in $p_{projeig,A}^*, p_{projeig,L}^*$ are attained by resp.

 $Z_A = P_A Q^T, Z_L = P_L Q^T.$

Get two approx. solutions using Q:

 $X_A = \hat{X} + V Z_A W^T \tilde{M}, \quad X_L = \hat{X} + V Z_L W^T \tilde{M},$

Feasible Solutions; Upper Bounds

Using an approx. solution \bar{X}

Find nearest (Frobenius norm) feas. soln (use strong polytime LP)

Recall: $X \in \mathcal{E} \cap \mathcal{Z}$ implies that $Xe = e, X^Te = m$, and $X^TX = \text{Diag}(m)$. Therefore:

$$\begin{aligned} \|\bar{X} - X\|_F^2 &= \operatorname{trace}\left(\bar{X}^T\bar{X} + X^TX - 2\bar{X}^TX\right) \\ &= n + n + 2\operatorname{trace}\left(-\bar{X}^TX\right). \end{aligned}$$

Finding nearest feasible solution; a strong polytime LP

Solve the transportation problem:

$$\begin{array}{ll} \max &= \operatorname{trace} \bar{X}^T X \\ \text{s.t.} & X e = e \\ & X^T e = m \\ & X \ge 0 \end{array}$$

Node-Arcs for a Random Adjacency Matrix

node <i>i</i>											
1	2	3	4	5	7	8	9	10	11	12	13
2	3	4	8	9	10	11	12	13	14		
3	6	7	8	9	10	11	12	13	14		
4	7	8	9	11	13	14					
5	6	7	9	10	12	13					
6	7	9	10	12	13						
7	8	10	12	13							
8	9	10	11	12	14						
9	10	13	14								
10	11	12	14								
11	12										
12	13	14									
Table: Existing edges node <i>i</i> to node <i>i</i>											

Random Ex.; Proj. Eigenvalue Lower Bound

total edges: 61

Bounds, Feas. Sol., $m = (4 \ 2 \ 1 \ 6), k = 4, n = 13$

imax = 35; *k* = 6

n is 144 and m is [28 17 28 32 34 5]

best projection lower and upper bounds are: 5092 5495 relative gap is: 0.076131

n is 94 and *m* is [3 17 14 32 19 9]

best projection lower and upper bounds are 1672 1890 relative gap is 0.1224

imax = 35; k = 8

n is 188 and *m* is [31 27 26 34 7 6 35 22] best projection lower and upper bounds are 7558 8285 relative gap is 0.091776

An equivalent quadratically constrained quadratic problem

$$\operatorname{cut}(m) \ge p_{SDP}^* = \min \quad \frac{1}{2} \operatorname{trace} AXBX^T \qquad (A \text{ or } (-L))$$

s.t. $X \circ X = X$
 $\|Xe - e\|^2 = 0$
 $\|X^Te - m\|^2 = 0$
 $X_{;i} \circ X_{;i} = 0 \ \forall i \neq j.$

where o is the Hadamard (elementwise) product

Quadratic Model

We can use the various equality (quadratic) constraints in the representation and use the quadratic objective function. The Lagrangian relaxation for this quadratic-quadratic problem is equivalent to a semidefinite program, SDP. The dual of this is the SDP relaxation. Adding redundant constraints can help.

Alternatively: directly by lifting process

linearize quadratic terms using the matrix

$$Y_X := \begin{pmatrix} 1 \\ \operatorname{vec}(X) \end{pmatrix} (1 \operatorname{vec}(X)^T),$$

vec (X) is vector formed from the columns of X. $Y_X \succeq 0$ and is rank one, the hard constraint that is relaxed.

SDP Relaxation

From direct lifting (can use A or -L?)

trace $AXBX^T = \langle AXB, X \rangle = \text{vec}(X)^T(\text{vec} AXB) =$ $\text{vec}(X)^T(B \otimes A)\text{vec}(X) = \text{trace}(B \otimes A)(\text{vec}(X)\text{vec}(X)^T)$ The objective function becomes trace $AXBX^T = \text{trace} L_A Y_X$, $L_A := \begin{bmatrix} 0 & 0 \\ 0 & B \otimes A \end{bmatrix}$ $B \otimes A$ is the Kronecker product

Relax the rank one restriction

 $\begin{array}{ll} \operatorname{cut}(m) \geq p_{SDP}^* := \min & \operatorname{trace} L_A Y \\ \mathrm{s.t.} & \operatorname{arrow}(Y) = e_0 \\ & \operatorname{trace} D_1 Y = 0 \\ & \operatorname{trace} D_2 Y = 0 \\ & \mathcal{G}_J(Y) = 0 \\ & Y_{00} = 1 \\ & Y \succeq 0, \end{array}$

Linear Transformations

arrow operator

acting $(kn + 1) \times (kn + 1)$ matrix Y

$$\operatorname{arrow}(\mathsf{Y}) := \operatorname{diag}(\mathsf{Y}) - (\mathsf{0}, \mathsf{Y}_{\mathsf{0},\mathsf{1}:\mathsf{kn}})^{\mathsf{T}}$$

represents the 0, 1 constraints; guarantees diagonal and 0-th row (or column) are identical;

Gangster operator $\mathcal{G}_J : \mathcal{S}_{kn+1} \rightarrow \mathcal{S}_{kn+1}$

shoots "holes" in a matrix

$$(\mathcal{G}_J(\mathsf{Y}))_{ij} := \left\{ egin{array}{cc} \mathsf{Y}_{ij} & ext{if } (i,j) ext{ or } (j,i) \in J \\ \mathsf{0} & ext{otherwise,} \end{array}
ight.$$

 $J := \{(i,j) : i = (p-1)n + q, j = (r-1)n + q, \\ \text{for } \begin{cases} p < r, p, r \in \{1, \dots, k\} \\ q \in \{1, \dots, n\} \end{cases} \}$

represents the (Hadamard) orthogonality of the cols

Linear Transformations

The norm constraints

Loss of Slater's condition

all D_1 , D_2 , $Y \succeq 0$, both trace $YD_1 = 0$, trace $YD_2 = 0$; therefore, range of Y subset intersection of nullspaces of D_1 , D_2 . feasible set of (RGP) has no strictly feasible points; implies numerical difficulties for interior-point methods. Fix: apply facial reduction. Facial Reduction; $Y = \hat{V}Z\hat{V}^T \in \mathbb{S}^{kn+1}, Z \in \mathbb{S}^{(n-1)(k-1)+1}$

Range of \hat{V} forms basis for range (any) $\hat{Y} \in \text{relint } F$

$$\hat{V} := \begin{bmatrix} 1 & 0 \\ \frac{1}{n}m \otimes e_n & V_k \otimes V_n \end{bmatrix}$$

Constraints for $X \in \mathcal{E}$ eliminated; $Z \in \mathbb{S}^{(n-1)(k-1)+1}$

min trace $\hat{V}^T L_A \hat{V} Z$ s.t. arrow $(\hat{V} Z \hat{V}^T) = 0$ $\mathcal{G}_J (\hat{V} Z \hat{V}^T) = 0$ $(\hat{V} Z \hat{V}^T)_{00} = 1$ $Z \succeq 0$

Slater's CQ now holds (strict feasibility). But are we done? Are the constraints onto?

Final SDP; Slater and Onto (range of G) Constraints

Projected onto range of gangster; $\overline{J} = J \cup (0, 0)$

min trace
$$(\hat{V}^T L_A \hat{V}) Z$$

s.t. $\mathcal{G}_{\bar{J}}(\hat{V}Z \hat{V}^T) = \mathcal{G}_{\bar{J}}(E_{00})$
 $Z \succeq 0$

Dual program (also satisfies Slater)

max
$$W_{00}$$

s.t. $\hat{V}^T \mathcal{G}_{\bar{J}}(W) \hat{V} \preceq \hat{V}^T L_A \hat{V}$

Doubly Nonnegative

A stronger relaxation adds the nonnegativity elementwise: $\hat{V}Z\hat{V}^{T} \ge 0.$

SDP Bounds; $m = (4 \ 2 \ 1 \ 6), k = 4, n = 13$

lower bnds: [Proj L and A; SDP; Doubly Nonneg.]

 $\begin{bmatrix} -0.52065 & 0.76067 & 2.9057 & 4.8603 \end{bmatrix}$ rounded up: $\begin{bmatrix} 0 & 1 & 3 & 5 \end{bmatrix}$. Therefore, **5** is optimal value.

Random Ex; *n* = 85, *k* = 6, *m* = [18 20 11 18 11 7]

Proj. Eig. Bounds

n is 85 and m is 18 20 11 18 11 7

best projection lower and upper bounds are 1518 1714 relative gap is 0.12129

SDP Bounds

sdp lower and upper bounds are 1556 1726 current best lower/upper bounds are: 1556 1714 relative gap is 0.096636

- Model NP hard problems using quadratic-quadratic models
- First Relaxations lead to eigenvalue problems
- Lagrangian Relaxation leads to SDP problem and the dual is the SDP (strong) relaxation
- The Slater condition typically fails for SDP relaxations (facial reduction is needed for stability)

References I

- S.W. Hadley, F. Rendl, and H. Wolkowicz, A new lower bound via projection for the quadratic assignment problem, Math. Oper. Res. 17 (1992), no. 3, 727–739. MR 93i:90080
- W.W. Hager and J.T. Hungerford, *A continuous quadratic programming formulation of the vertex separator problem*, Report, University of Florida, Gainesville, 2013.
- A.J. Hoffman and H.W. Wielandt, *The variation of the spectrum of a normal matrix*, Duke Mathematics **20** (1953), 37–39.
- F. Rendl, A. Lisser, and M. Piacentini, *Bandwidth, vertex* separators and eigenvalue optimization, Tech. report, Institut fuer Mathematik, Universitaet Klagenfurt, A - 9020 Klagenfurt, Austria, 2013.

- F. Rendl and H. Wolkowicz, A projection technique for partitioning the nodes of a graph, Ann. Oper. Res. 58 (1995), 155–179, Applied mathematical programming and modeling, II (APMOD 93) (Budapest, 1993). MR 96g:90096
- H. Wolkowicz and Q. Zhao, Semidefinite programming relaxations for the graph partitioning problem, Discrete Appl. Math. 96/97 (1999), 461–479, Selected for the special Editors' Choice, Edition 1999. MR 1 724 735

Thanks for your attention!

Relaxations of Graph Partitioning and Vertex Separator Problems using Continuous Optimization

Henry Wolkowicz

(work with Ting Kei Pong, Hao Sun, Ningchuan Wang)

Dept. Combinatorics and Optimization, University of Waterloo

at: THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES November 25- 29, 2013; Retrospective Workshop on Discrete Geometry, Optimization, and Symmetry

