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Motivation: Graph Partitioning/Vertex Separator

Model NP-hard problem using quadratic-quadratic program

approximate/relax using eigenvalue bounds and semidefinite
programming

bounds: we follow approaches for eigenvalue and projected eigenvalue
bounds in:
Hadley, Rendl, W. 1990 [1, 5]
Rendl, Lisser, Piacenti, (RLP) 2012 [4]
and
Semidefinite bounds in: W., Zhao 1996 [6].
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Background/Notation

Given graph G and set sizes m

G = (N,E) edge-weighted undirected graph
N = {1,2, . . . ,n} node set
Eij , ij = 1,2, . . . ,n edge weights

m =





m1

. . .

mk



 (pos. integer) set sizes, with mT e = n

Set of all Partitions Pm =

{(S1, . . . ,Sk ) : Si ⊂ N, |Si | = mi ∀i ;
Si ∩ Sj = ∅ ∀i 6= j ; ∪i Si = N

}

Partition matrix X ∈ R
n×k ; col. X:j incidence vector of Sj

Xij =

{

1 if i ∈ Sj

0 otherwise.
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Partition Matrix Constraints

linear/quadratic constraints (many are redundant)

set of: zero-one; nonnegative; linear equalities; m-diagonal
orthogonality type; e-diagonal orthogonality type; and gangster
constraints, respectively:

Z := {X ∈ R
n×k : Xij ∈ {0,1},∀ij}

= {X ∈ R
n×k : X 2

ij = Xij ,∀ij}
N := {X ∈ R

n×k : Xij ≥ 0,∀ij}
E := {X ∈ R

n×k : Xe = e,X T e = m}
= {X ∈ R

n×k : ‖Xe − e‖2 + ‖X T e − m‖2 = 0}
DO := {X ∈ R

n×k : X T X = Diag (m)}
De := {X ∈ R

n×k : diag (XX T ) = e}
G := {X ∈ R

n×k : X:i ◦ X:j = 0,∀i 6= j}, ◦ Hadamard prod.
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Equivalent Representations of Partition Matrices

The set of partition matrices in R
nk , Mm =

Mm = E ∩ Z
= E ∩ DO ∩ N
= E ∩ DO ∩ De ∩ N
= E ∩ Z ∩ DO ∩ G ∩ N
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Cuts and Separators, Objective

Cut of a partition

δ(Si ,Sj) - set of edges between sets Si ,Sj

δ(S) = ∪i<j<kδ(Sk ,Sj) - set of edges with endpoints in
distinct partition sets S1, . . . ,Sk−1

The minimum of the cardinality |δ(S)| is denoted
(objective) cut(m) = min{|δ(S)| : S ∈ Pm}

G has a vertex separator

graph G has a vertex separator if there exists S ∈ Pm with
δ(S) = ∅, i.e., cut(m) = 0.
(see (RLP) [4], Hager, Hungerford 2013 [2] for relationship with
bandwidth of graph and other applications)
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Trace Representation of Cut Problem

B :=

[

eeT − Ik−1 0
0 0

]

∈ S
k ,

S
k - k × k symm. matrices with trace inner-product.

A = (aij) - adjacency matrix, aij =

{

1 if Eij 6= 0
0 otherwise

L := Diag (Ae)− A =
∑

ij∈E(G)(ei − ej)(ei − ej)
T -

Laplacian (ei unit vectors)

Quadratic objective for cut(m)

Proposition RLP [4, Prop. 2] For partition S ∈ Pm, and
associated partition matrix X ∈ Mm, the cardinality of the
partition is
|δ(S)| = 1

2 trace AXBX T = 1
2 trace(−L)XBX T
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Basic Eigenvalue Bound

Relaxed problem

cut(m) ≥ p∗
eig(m)

:= min 1
2 trace AXBX T (A or − L)

s.t. X ∈ DO

DO = {X ∈ R
n×k : X T X = M := Diag (m)}

(orthogonal type cols for X )

Hoffman-Wielandt ’53 [3] bound/Theorem

C,D symmetric order n, k , resp., k ≤ n. Then
min

{

trace CXDX T : X T X = Ik
}

=

min
{

∑k
i=1 λi(D)λφ(i)(C) : φ : N → {1, . . . , k} is an injection

}

.

minimum attained for X =
(

pφ(1), . . . ,pφ(k)
)

QT , where pφ(i)
normalized eigenvector to λφ(k)(C) and cols of
Q =

[

q1 . . . qk
]

contains normalized eigenvectors qi of
λi(D).
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Basic Eigenvalue Bound II

Lemma (RLP)

k-ordered eigs of B̃ := M1/2BM1/2 satisfy

λ1(B̃) ≤ λ2(B̃) ≤ . . . ≤ λk−2(B̃) < λk−1(B̃) = 0 < λk (B̃).

Basic Eigenvalue Bound, apply Hoffman-Wielandt Theorem

Let −λ1(L) ≥ −λ2(L) ≥ −λn(L) denote ordered n eigenvalues
of −L; −λ(L) denotes corresponding vector of eigenvalues.
Pad the 0 eigenvalue of B̃ with further zeros to get an ordered
vector of length n and denote it by λ̂(B̃). Then

cut(m) ≥ 0 > p∗
eig = −λ(L)T λ̂(B̃)
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Two Projected Eigenvalue Bound

Relaxed problem

cut(m) ≥ p∗
projeig(m)

:= min 1
2 trace AXBX T (A or − L)

s.t. X ∈ DO ∩ E

DO = {X ∈ R
n×k : X T X = M := Diag (m)} (orthog type)

E = {X ∈ R
n×k : Xe = e,X T e = m} (linear row/col sums)
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Special Parametrization of X ∈ E

m̃ =
√

m; n × n, k × k orthogonal matrices P,Q

P =
[

1√
n
e V

]

∈ On, Q =
[

1√
n
m̃ W

]

∈ Ok . (∗)

LEMMA: Rendl and W. 1990 [5]

Let M̃ = Diag (m̃). Suppose that X ∈ R
n×k and

Z ∈ R
(n−1)×(k−1) are related by

X = P
[

1 0
0 Z

]

QT M̃. (∗)

Then the following holds:
1 X ∈ E .
2 X ∈ N ⇔ VZW T ≥ − 1

n em̃T

3 X ∈ DO ⇔ Z ∈ O(n−1)×(k−1)

Conversely, if X ∈ E , then there exists Z such that the
representation (*) holds.
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Projected Eigenvalue Lower Bounds/THEOREM

THEOREM

V ,W as above, X̂ := 1
n emT ∈ R

n×k

Q : R(n−1)×(k−1) → R
n×k , Q(Z ) = VZW T M̃

Then:
X̂ ∈ E , and Q is invertible R

(n−1)×(k−1) ↔ E − X̂
Equivalently, E can be parametrized using X̂ + VZW T M̃.

Thus, two objective functions
1
2 trace AXBX T =
1
2 trace(AX̂BX̂ T +(V T AV )Z (W T M̃BM̃W )Z T +2V T AX̂BM̃WZ T )
and
1
2 trace((−L)XBX T ) = 1

2 trace(V T (−L)V )Z (W T M̃BM̃W )Z T .
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Two Projected Eigenvalue Bounds

Let
Â = V T AV , L̂ = V T (−L)V , B̂ = W T M̃BM̃W ,
α = trace AX̂BX̂ T , C = 2V T AX̂BM̃W .
Then:

cut(m) ≥ p∗
projeig,A = 1

2

{

α+ min
φ injective

{

Σk
i=1λi(B̂)λφ(i)(Ã)

}

+

min
0≤X̂+VZW T M̃

trace CZ T

}

≥ p∗
eig

cut(m) ≥ p∗
projeig,L = 1

2 min
φ injective

{

Σk
i=1λi(B̂)λφ(i)(L̃)

}

≥ p∗
eig,

and note eigenvalues of V T LV are n − 1 nonzero eigenvalues
of L.
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Attainment for Quadratic Terms

let Q ∈ R
k−1×k−1 be orthog. with cols consisting of

eigenvectors of B̂ corresponding to eigenvalues of B̂ in
nondecreasing order;
let PA,PL ∈ R

n−1×k−1 have orthonormal cols consisting of k − 1
eigenvectors of Â, L̂, respectively, corresponding to eigenvalues
in nonincreasing order where the columns correspond to the
largest k − 2 followed by the smallest. Then the minimal scalar
product terms in p∗

projeig,A,p
∗
projeig,L are attained by resp.

ZA = PAQT ,ZL = PLQT .

Get two approx. solutions using Q:

XA = X̂ + VZAW T M̃, XL = X̂ + VZLW T M̃,
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Feasible Solutions; Upper Bounds

Using an approx. solution X̄

Find nearest (Frobenius norm) feas. soln (use strong polytime
LP)
Recall: X ∈ E ∩ Z implies that Xe = e,X T e = m, and
X T X = Diag (m). Therefore:

‖X̄ − X‖2
F = trace

(

X̄ T X̄ + X T X − 2X̄ T X
)

= n + n + 2 trace
(

−X̄ T X
)

.

Finding nearest feasible solution; a strong polytime LP

Solve the transportation problem:

max = trace X̄ T X
s.t. Xe = e

X T e = m
X ≥ 0
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Node-Arcs for a Random Adjacency Matrix

node i
1 2 3 4 5 7 8 9 10 11 12 13
2 3 4 8 9 10 11 12 13 14
3 6 7 8 9 10 11 12 13 14
4 7 8 9 11 13 14
5 6 7 9 10 12 13
6 7 9 10 12 13
7 8 10 12 13
8 9 10 11 12 14
9 10 13 14
10 11 12 14
11 12
12 13 14

Table: Existing edges node i to node j
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Random Ex.; Proj. Eigenvalue Lower Bound

Adjacency Matrix, m =
(

4 2 1 6
)

, k = 4,n = 13

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10
plot of adjacency matrix at start

total edges: 61
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Bounds, Feas. Sol., m =
(

4 2 1 6
)

, k = 4, n = 13

Adj. after shift set k right
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replot of adj. matrix A at end after shifting set k to right
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Adj. after delet. edges;
([low up] bnds: [0.76067 5])
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plot adj AA after shift and removing edges to set k; # cut edges left is 5

total # edges removed is 12;  [lower upper] cut bounds [1  5]
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Random Problems

imax = 35; k = 6

n is 144 and m is [28 17 28 32 34 5]
best projection lower and upper bounds are: 5092 5495
relative gap is: 0.076131

n is 94 and m is [3 17 14 32 19 9]
best projection lower and upper bounds are 1672 1890
relative gap is 0.1224

imax = 35; k = 8

n is 188 and m is [31 27 26 34 7 6 35 22]
best projection lower and upper bounds are 7558 8285
relative gap is 0.091776
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Quadratic-Quadratic Model

An equivalent quadratically constrained quadratic problem

cut(m) ≥ p∗
SDP = min 1

2 trace AXBX T (A or (−L))
s.t. X ◦ X = X

‖Xe − e‖2 = 0
‖X T e − m‖2 = 0
X:i ◦ X:j = 0 ∀i 6= j .

where ◦ is the Hadamard (elementwise) product
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Semidefinite Lower Bounds

Quadratic Model

We can use the various equality (quadratic) constraints in the
representation and use the quadratic objective function. The
Lagrangian relaxation for this quadratic-quadraitc problem is
equivalent to a semidefinite program, SDP. The dual of this is
the SDP relaxation. Adding redundant constraints can help.

Alternatively: directly by lifting process

linearize quadratic terms using the matrix

YX :=

(

1
vec (X )

)

(1 vec (X )T ),

vec (X ) is vector formed from the columns of X .
YX � 0 and is rank one, the hard constraint that is relaxed.
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SDP Relaxation

From direct lifting (can use A or −L?)

trace AXBX T = 〈AXB,X 〉 = vec (X )T (vec AXB) =
vec (X )T (B ⊗ A)vec (X ) = trace(B ⊗ A)(vec (X )vec (X )T )
The objective function becomes trace AXBX T = trace LAYX ,

LA :=

[

0 0
0 B ⊗ A

]

B ⊗ A is the Kronecker product

Relax the rank one restriction

(RGP)

cut(m) ≥ p∗
SDP := min trace LAY

s.t. arrow(Y ) = e0

trace D1Y = 0
trace D2Y = 0
GJ(Y ) = 0
Y00 = 1
Y � 0,
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Linear Transformations

arrow operator

acting (kn + 1)× (kn + 1) matrix Y

arrow(Y ) := diag (Y )− (0,Y0,1:kn)
T

represents the 0,1 constraints; guarantees diagonal and 0-th
row (or column) are identical;

Gangster operator GJ : Skn+1 → Skn+1

shoots “holes” in a matrix

(GJ (Y ))ij :=

{

Yij if (i , j) or (j , i) ∈ J
0 otherwise,

J := {(i , j) : i = (p − 1)n + q, j = (r − 1)n + q,

for
p < r , p, r ∈ {1, . . . , k}
q ∈ {1, . . . ,n}

}

represents the (Hadamard) orthogonality of the cols
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Linear Transformations

The norm constraints

represented by the (kn + 1)× (kn + 1) matrices

D1 :=

[

n −eT
k ⊗ eT

n
−ek ⊗ en (ekeT

k )⊗ In

]

and

D2 :=

[

m̄T m̄ −m̄T ⊗ eT
n

−m̄ ⊗ en Ik ⊗ (eneT
n )

]

.

Loss of Slater’s condition

all D1,D2,Y � 0,
both trace YD1 = 0, trace YD2 = 0; therefore, range of Y subset
intersection of nullspaces of D1,D2.
feasible set of (RGP) has no strictly feasible points; implies
numerical difficulties for interior-point methods.
Fix: apply facial reduction.
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Facial Reduction;
Y = V̂Z V̂ T ∈ S

kn+1, Z ∈ S
(n−1)(k−1)+1

Vj ∈ R
j×j−1

Vje = 0,V T
j Vj = Diag (w) ≻ 0, e.g.,

Vj :=













1 0 . . . . . . 0
0 1 . . . . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . 1
−1 . . . . . . 0 −1













j×(j−1)

.

Range of V̂ forms basis for range (any) Ŷ ∈ relint F

V̂ :=

[

1 0
1
n m ⊗ en Vk ⊗ Vn

]
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Facially Reduced SDP

Constraints for X ∈ E eliminated; Z ∈ S
(n−1)(k−1)+1

min trace V̂ T LAV̂Z
s.t. arrow(V̂Z V̂ T ) = 0

GJ(V̂Z V̂ T ) = 0
(V̂Z V̂ T )00 = 1
Z � 0

Slater’s CQ now holds (strict feasibility).
But are we done? Are the constraints onto?
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Final SDP; Slater and Onto (range of G ) Constraints

Projected onto range of gangster; J̄ = J ∪ (0,0)

min trace
(

V̂ T LAV̂
)

Z

s.t. G J̄(V̂Z V̂ T ) = G J̄(E00)
Z � 0

Dual program (also satisfies Slater)

max W00

s.t. V̂ TG J̄(W )V̂ � V̂ T LAV̂

Doubly Nonnegative

A stronger relaxation adds the nonnegativity elementwise:
V̂Z V̂ T ≥ 0.
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SDP Bounds; m =
(

4 2 1 6
)

, k = 4, n = 13

Adj. after shift set k right
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replot of adj. matrix A at end after shifting set k to right
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Adj. after delet. edges;
([low up] bnds: [0.76067 5])
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plot adj AA after shift and removing edges to set k; # cut edges left is 5

total # edges removed is 12;  [lower upper] cut bounds [1  5]
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lower bnds: [ Proj L and A; SDP; Doubly Nonneg.]
[

−0.52065 0.76067 2.9057 4.8603
]

rounded up:
[

0 1 3 5
]

.
Therefore, 5 is optimal value.
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Random Ex; n = 85, k = 6, m = [18 20 11 18 11 7]

Proj. Eig. Bounds

n is 85 and m is 18 20 11 18 11 7
best projection lower and upper bounds are 1518 1714
relative gap is 0.12129

SDP Bounds
sdp lower and upper bounds are 1556 1726
current best lower/upper bounds are: 1556 1714
relative gap is 0.096636

29



Summary

Model NP hard problems using quadratic-quadratic models

First Relaxations lead to eigenvalue problems

Lagrangian Relaxation leads to SDP problem and the dual
is the SDP (strong) relaxation

The Slater condition typically fails for SDP relaxations
(facial reduction is needed for stability)
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