

Towards efficient approximation of *p*-cones

Department of Mathematics & Statistics

Pooyan Ghomi Yuriy Zinchenko

November 28, 2013

Content

Second order and *p*-norm cones

- definitions
- applications
- some facts
- "Greedy" polyhedral approximation
 - complexity analysis
- Moving further: SOC approximation and beyond

Definitions

Euclidean norm

$$\vec{x} \in \mathfrak{R}^n, \|\vec{x}\| = \sqrt{\sum_{i=1}^n x^2}$$

second order cone

-homogenization of a ball

$$SOC = \left\{ (\vec{x}, t) \in \Re^{n} \times \Re : \|\vec{x}\| \le t \right\}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{1}$$

Definitions

p-norm

$$\vec{x} \in \mathfrak{R}^{n}, \left\|\vec{x}\right\|_{p} = \sqrt[p]{\sum_{i=1}^{n} x^{p}}$$

p-cone

-homogenization of a *p*-ball

$$C_{p} = \left\{ (\vec{x}, t) \in \Re^{n} \times \Re : \|\vec{x}\|_{p} \le t \right\}$$

$$x_{2}$$

$$(x_{1}, x_{2})\|_{p} \le 1$$

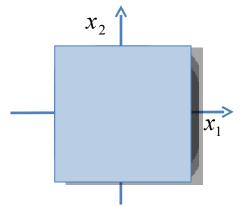
$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

- *p*-norm geometry
 - given by $p \ge 1$
 - -p-balls are convex, so are the cones
 - -p = 1,∞ are polyhedral
 - -inclusion $C_1 \subseteq C_p \subseteq C_{\infty}, \forall p \ge 1$



- Duality
 - -dual

-given by conjugate $C_p^* = C_q$, where $\frac{1}{p} + \frac{1}{q} = 1$

First primitive

- recursive definition via "tower of variables"

 $\vec{x} \in \Re^n, n = 2^k$: let $\|\vec{x}\| = \sqrt[p]{x_1^p} + x_2^p + \dots + x_n^p \le 1$ $\sqrt[p]{x_{1}^{p} + x_{2}^{p}} \leq (x_{1,1}), \sqrt[p]{x_{3}^{p} + x_{4}^{p}} \leq (x_{1,2}), \dots, \sqrt[p]{x_{n-1}^{p} + x_{n}^{p}} \leq (x_{1,\frac{n}{2}}), \dots, \sqrt[p]{x_{1,1}^{p} + x_{1,2}^{p}} \leq (x_{2,1}), \dots, \sqrt[p]{x_{1,\frac{n}{2}-1}^{p} + x_{1,\frac{n}{2}}^{p}} \leq (x_{1,\frac{n}{4}}), \dots, \sqrt[p]{x_{1,\frac{n}{4}-1}^{p}} \leq (x_{1,\frac{n}{4}-1}), \dots, \sqrt[p]{x_{1,\frac{n}{4}-1}^{p}} < (x_{1,\frac{n}{4}-1}), \dots, \sqrt[p]{x_{1,\frac{n}{4}-1}^{p}} < (x_{1,\frac{n}{4}-1}), \dots, \sqrt[p]{x_{1,\frac{n}{4}-1}^{p}} < (x_{1,\frac{n}{4}-1}), \dots, \sqrt[p]{x_{1,\frac{n}{4}-1}^{p}} < (x_{1,\frac{n}{4}-1}), \dots, \sqrt[p]{x_{1,\frac{n}{4}-1}$ *n*/2 n/4 $\sqrt[p]{x_{k-1,1}^p + x_{k-1,2}^p} \le 1$ 3-dimensional cones (n - 1)

Facts

Applications

- Linear conic programming $\inf \vec{c} \cdot \vec{x} : A\vec{x} = \vec{b}, \vec{x} \in C$
- SOCP C is a product of second order cones
 - superseeds convex quadratic programming,
 - has numerous applications,
 - sensor location,
 - mean-variance investment portfolio optimization,
 - robust linear programming, etc.
 - *p*-cone programming
 - has fewer known applications (?),
 - may be used to shape distributions,
 - radiotherapy planning

Applications

Radiotherapy planning basics

- choose "intensity" so that
 - tumor gets killed,
 - healthy tissues are spared

Applications

- Radiotherapy planning basics
 - organ survival is ensured by "certain % of the organ receives no more than a certain dose",
 - e.g., no more than 30% of the liver receives 20Gy,
 - equivalent to specifying distribution for a (pseudo) random variable,
 - if compactly supported (true), equivalent to prescribing moments,
 - *p*-moments can be described using *p*-norms

$$\inf_{\vec{x}} \vec{c} \bullet \vec{x} : A\vec{x} = \vec{b}, \vec{x} \in C$$

 $\inf_{\vec{x}} \vec{c} \bullet \vec{x} : A\vec{x} = \vec{b}, \vec{x} \in C$

- Solving *p*-cone programs
 - interior-point methods
 - using suitable "barriers"
 - "efficient" approximation
 - by better understood class of optimization models

 \vec{c}

 $\nu \downarrow 0$

Solving *p*-cone programs

- interior-point methods and barriers

- d dimension
- n # of constraints (n > d)
- $A \in \Re^{n \times d}, \vec{b} \in \Re^n \mathbf{A}$ rrangement

$$A\vec{x} \ge \vec{b} - \mathbf{Polytope}$$

$$\vec{c} \in \Re^d - \text{objective}$$

 $\max \vec{c}^T \vec{x} : \ A \vec{x} \ge \vec{b} - \text{Linear Program}$

solve by following "central path"

$$\mathcal{P} = \{ \vec{x} \in \Re^d : \ \vec{x} = \arg \max_{\vec{z} \in \Re^d} \ \vec{c}^T \vec{z} + \nu \sum_{i=1}^{n} \ln(A\vec{z} - \vec{b})_i \} \nu \in (0, \infty) \}$$

"barrier"

i.e., the solution
$$\vec{k}$$
 i.e., $\vec{k} \in C$

Solving *p*-cone programs

- $-\operatorname{interior}\operatorname{-point}$ methods and barriers
 - complexity of solving

$$\inf_{\vec{x}} \vec{c} \bullet \vec{x} : A\vec{x} = \vec{b}, \vec{x} \in C$$

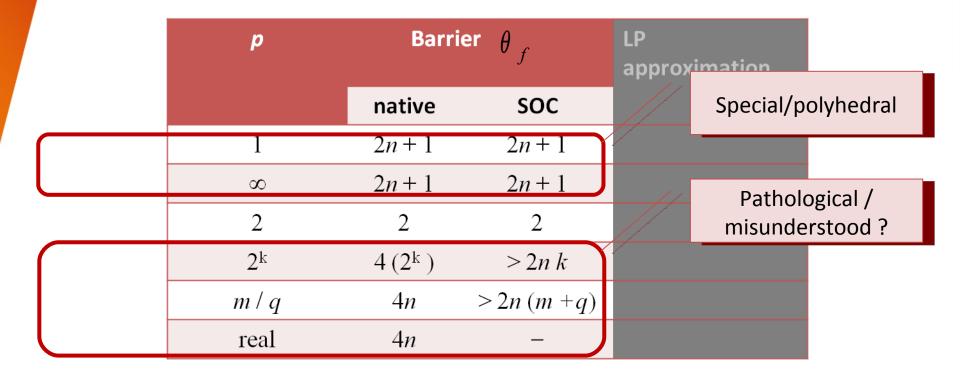
by following the solutions of

$$\inf_{\vec{x}} \vec{c} \bullet \vec{x} + v \cdot f(\vec{x}) : A\vec{x} = \vec{b}, \vec{x} \in C$$

is driven by barrier parameter θ_f (length of a barrier gradient in a certain norm), with number of iterations $O(\sqrt{\theta_f})$

Solving *p*-cone programs

- $-\operatorname{interior}\operatorname{-point}$ methods and barriers
- "efficient" approximation



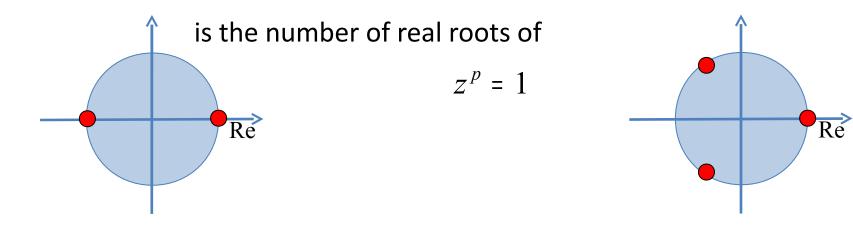
Solving *p*-cone programs

- interior-point methods and barriers
 - reason for native barriers associated with

$$C_p = \left\{ (\vec{x}, t) \in \mathfrak{R}^n \times \mathfrak{R} : \left\| \vec{x} \right\|_p \le t \right\}$$

being so different for

$$p = 2, \qquad p = 3, 4, 5, \dots$$



- Solving *p*-cone programs
 - interior-point methods
 - using suitable "barriers"
 - "efficient" approximation
 - by better understood class of optimization models

○ specifically Linear Programming (LP),

 \circ polyhedral approximation to $C_p\,$?

Given
$$\varepsilon > 0$$
, determine $A(\vec{x}, t) + D(\vec{y} \ge \vec{b})$
i) $(\vec{x}, t) \in C_p \Rightarrow \exists \vec{y} - \text{feasible}$,
ii) $(\vec{x}, t, \vec{y}) - \text{feasible} \Rightarrow \frac{1}{1+\varepsilon} (\vec{x}, t) \in C_p$

Definitions

Euclidean norm

$$\vec{x} \in \mathfrak{R}^n, \|\vec{x}\| = \sqrt{\sum_{i=1}^n x^2}$$

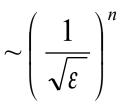
second order cone

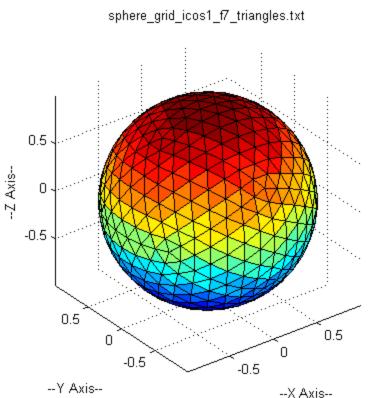
-homogenization of a ball

$$SOC = \left\{ (\vec{x}, t) \in \Re^{n} \times \Re : \|\vec{x}\| \le t \right\}$$

Solving *p*-cone programs

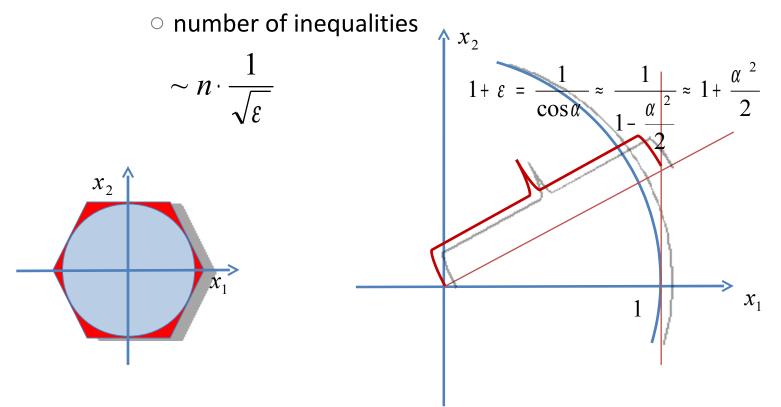
- "efficient" approximation of ${
 m SOC}(C_2)$
 - naïve
 - ${}^{\odot}$ exponential number of inequalities



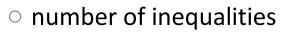


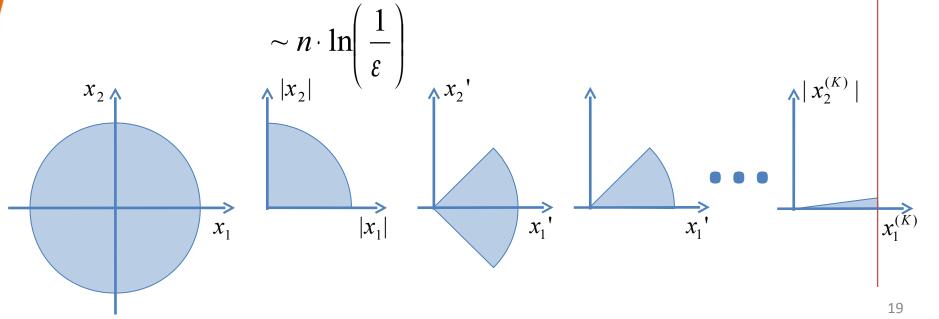
18

- Solving *p*-cone programs
 - "efficient" approximation of ${
 m SOC}(C_2)$
 - simple
 - $^{\circ}$ using tower of variables, suffices to describe 3D cone,



- Solving *p*-cone programs
 - "efficient" approximation of ${
 m SOC}(C_2)$
 - efficient (Ben-Tal, Nemirovski)
 - $^{\circ}$ using tower of variables, suffices to describe 3D cone,
 - rely on rotational invariance to describe unit ball,





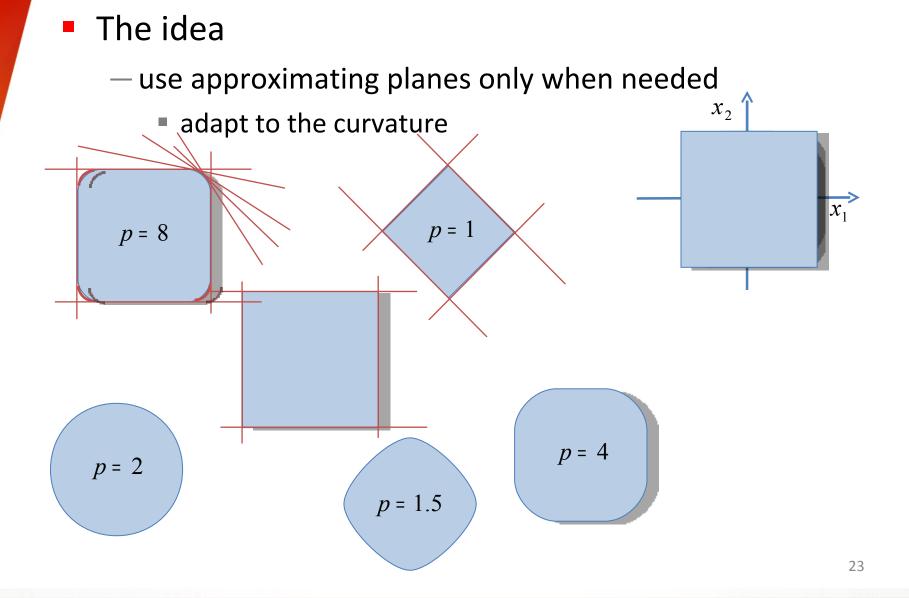
- Solving *p*-cone programs
 - "efficient" approximation of C_p ?
 - cannot be extended in straightforward manner
 - using tower of variables, suffices to describe 3D cone,
 - rotational invariance is lost !
 - for p = powers of 2, can build "cascading" construction
 - \circ use SOC to approximate epigraph of \mathcal{Y} = x^2 ,
 - number of inequalities

for p = rational, becomes prohibitively expensive

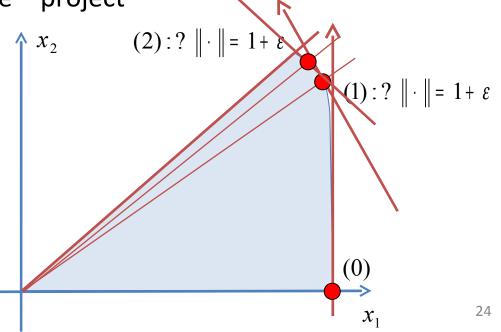
Solving *p*-cone programs

- $-\operatorname{interior}\operatorname{-point}$ methods and barriers
- "efficient" approximation

p	Barrier θ_f		LP approximation	
	native	SOC		
1	2 <i>n</i> + 1	2 <i>n</i> + 1	2n + 1	
∞	2 <i>n</i> + 1	2 <i>n</i> + 1	2n + 1	
2	2	2	$n \ln(1/\epsilon)$	
2k	4 (2k)	> 2n k	$n k \ln(1/\epsilon)$	
m / q	4 <i>n</i>	> $2n(m+q)$	(too large ©)	
p	Barri	er	LP approximation	



- The idea
 - $\, {\rm use}$ approximating planes only when needed
 - adapt to the curvature ,
 - by coordinate symmetry suffices to consider first octant,
 - by duality, p > 2 suffices,
 - "tangent locate project"



Lazy bound

 $\# \sim \frac{1}{\ln(1+\varepsilon)} \sim \frac{1}{\varepsilon}$

- -let the two points be (x_0, y_0) , (x_1, y_1)
- -intersecting $(1 + \varepsilon) \cdot (x_1, y_1)$: $y_1 = \frac{1}{y_0^{p-1}} \cdot \frac{1}{1 + \varepsilon} \left(\frac{x_0}{y_0}\right)^{p-1} x_1$
- $\text{ boundary} \qquad y_{0} = 1 + \varepsilon + (y_{0})^{p-1} + (y_{0})^{p-1} + (y_{0})^{p-1} x_{1}$ $\text{ combining} \qquad x_{1} < \frac{x_{1}}{y_{1}} < \frac{x_{0}}{y_{0}}, \qquad x_{2} \qquad (1): ? \|\cdot\| = 1 + \varepsilon$ $\frac{1}{y_{1}^{p-1}} < \frac{1}{1 + \varepsilon} \cdot \frac{1}{y_{0}^{p-1}}, \qquad (1): ? \|\cdot\| = 1 + \varepsilon$ $\frac{1}{y_{1}} > \frac{p-\sqrt{1+\varepsilon}}{\sqrt{1+\varepsilon}} \cdot y_{0}, \qquad (1): ? \|\cdot\| = 1 + \varepsilon$

(0)

Tight bounds and complexity

- number of inequalities

$$\sim n \cdot \frac{1}{\sqrt{\varepsilon}}$$

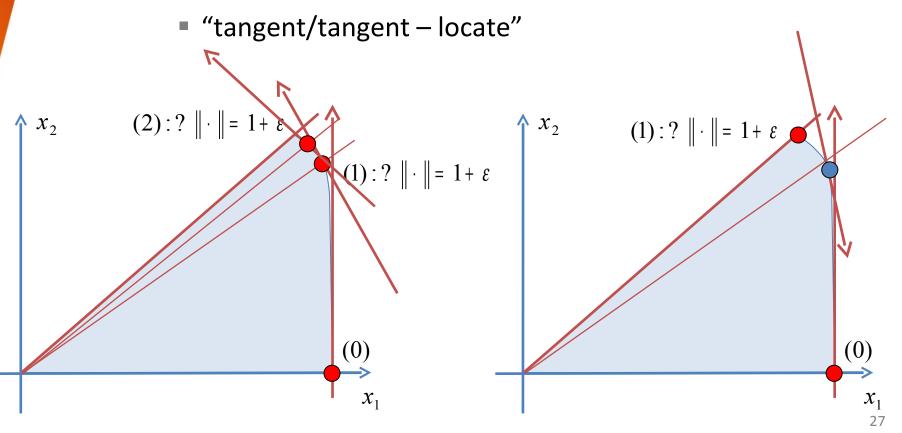
• can establish upper and lower bound of the same order - comparing to naïve equi-spaced scheme get $\lim_{\epsilon \to 0} \frac{\text{"greedy"# inequalites}}{\text{"naive"# inequalites}} = p - 1$

for large p the difference will be large

One extension

- "greedy" error is strictly below ϵ due to projections,

$-\operatorname{improve}$ by targeting exact error



One extension

- "greedy" error is strictly below ϵ due to projections,
- $-\operatorname{improve}$ by targeting exact error
 - "tangent/tangent locate"
- number of inequalities

$$\sim n \cdot \frac{1}{\sqrt{\varepsilon}}$$

roughly 2 times less than "greedy"

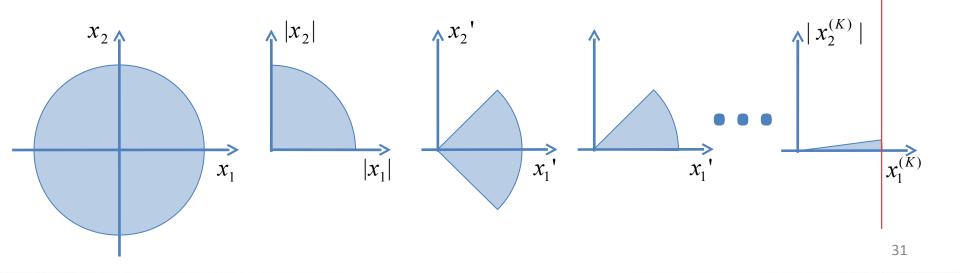
Solving *p*-cone programs

- $-\operatorname{interior}\operatorname{-point}$ methods and barriers
- "efficient" approximation

p	Barri	er θ_{f}	LP approximation	
	native	SOC		
1	2 <i>n</i> + 1	2 <i>n</i> + 1	2n + 1	1
~	2 <i>n</i> + 1	2 <i>n</i> + 1	2n + 1	
2	2	2	$n \ln(1/\epsilon)$	
2 k	4 (2k)	> 2n k	$n k \ln(1/\epsilon)$	
<i>m / q</i>	4 <i>n</i>	> $2n(m+q)$	(too large 👀	$\int 1$
p	Barri	er	LP approximation	$O\left(n\cdot\frac{1}{\sqrt{\varepsilon}}\right)$

Lessons from BTN ^(C)

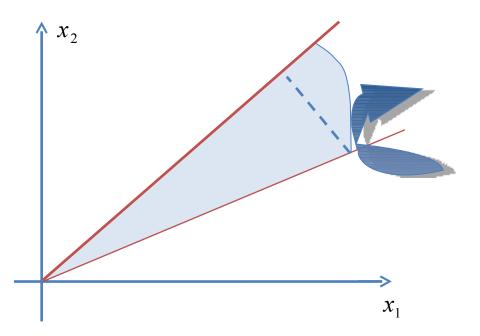
- other geometric primitives
 - reflect,
 - rotate,
 - fold onto
- only the boundary really matters!



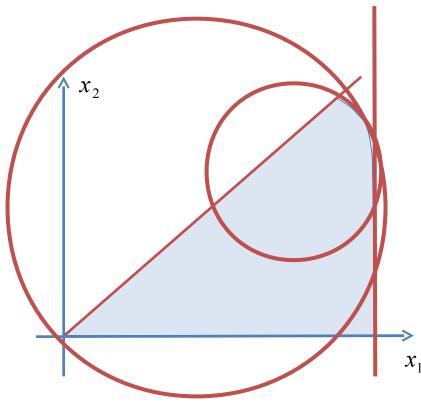
Lessons from BTN ^(C)

- other geometric primitives
 - reflect,
 - rotate,
 - fold onto
- only the boundary really matters!

- Boundary curvature and more insights
 - curvature = radius of inscribed circle,
 - curvature = "steering" when driving at a const speed,
 - increasing with arc-length for p > 2 (recall duality),
 - $-\operatorname{octant}$ may be folded "onto itself" , etc.



- Fitting with constant curvature
 - constant curvature = Euclidean ball
 - recall SOC has efficient polyhedral approximation,
 - "jerk-and-lock" the steering wheel ^(C)



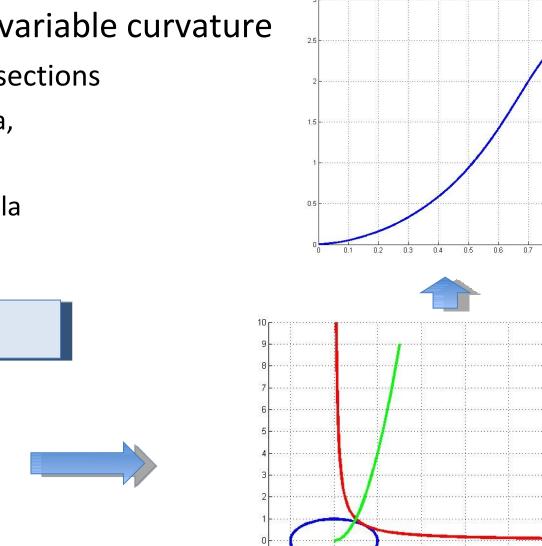
0.8

0.9

-35 10

8

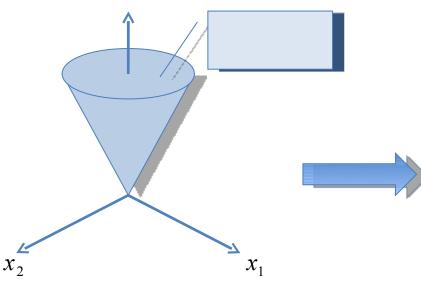
6



-2

Fitting with variable curvature

- SOC conic sections
 - parabola,
 - ellipse,
 - hyperbola



Fitting with variable curvature"

- $-\operatorname{SOC}$ conic sections
 - parabola, ellipse, hyperbola
- fit general quadratics

instead of "jerk-and-lock"	use smooth steering pattern
----------------------------	-----------------------------

<i>p</i> = 4							
Κ: ε = 10-Κ	# LP	# ball	# parabola	# general quadratic			
1	2	2	2	2			
2	6	3	3	3			
3	16	7	7	4			
4	49	14	18	7			
5	153	29	41	10			
<i>p</i> = 4							

- Despite *p*-norm not being rotationally-invariant, believe that true polyhedral approximation complexity
 - is not far from that of SOC...

THANK YOU!

p.s.: looking for a PDF