

Towards efficient approximation of *p*-cones

Department of Mathematics & Statistics

Pooyan Ghomi Yuriy Zinchenko

November 28, 2013

■ Second order and p-norm cones

- **definitions**
- **applications**
- some facts
- **"Greedy" polyhedral approximation**
	- **Complexity analysis**
- **Moving further: SOC approximation and beyond**

Definitions

Euclidean norm

$$
\vec{x} \in \mathfrak{R}^n, \|\vec{x}\| = \sqrt{\sum_{i=1}^n x^2}
$$

second order cone

—homogenization of a ball

$$
SOC = \left\{ (\vec{x}, t) \in \Re^{n} \times \Re : ||\vec{x}|| \leq t \right\}
$$

$$
\xrightarrow[x_{1}]{x_{2}}
$$

$$
\xrightarrow[x_{1}]{x_{1}}
$$

Definitions

p-norm

$$
\vec{x} \in \mathfrak{R}^n, \left\| \vec{x} \right\|_p = p \sqrt{\sum_{i=1}^n x^p}
$$

p-cone

—homogenization of a *p*-ball

$$
C_p = \left\{ (\vec{x}, t) \in \Re^n \times \Re : ||\vec{x}||_p \le t \right\}
$$
\n
$$
x_2
$$
\n
$$
x_1
$$
\n
$$
x_1
$$
\n
$$
x_2
$$
\n
$$
x_1
$$
\n
$$
x_2
$$
\n
$$
x_1
$$

Facts

- **P** *p*-norm geometry
	- $-$ given by $p \ge 1$
	- —*p*-balls are convex, so are the cones
	- —*p* = 1,∞ are polyhedral
	- $-$ inclusion $C_1 \subseteq C_p \subseteq C_{\infty}$, $\forall p \geq 1$

- Duality
	- $-\frac{du}{dt}$

 $-\frac{1}{2}$ given by conjugate 1 1 1 $\frac{1}{n}$ = C_a , $+ - =$ $C_p^* = C_q$ *p q*

+

+

+

First primitive

—recursive definition via "tower of variables"

 $x_{k-1,2}^p \leq 1$ \int ,..., $p\left(x_{n}^{p} + x_{n}^{p} \leq (x_{n})^{p}\right)$ 4 1, 2 1 1, 2 1, $\sum_{1,1}^{P}$ + $X_{1,2}^{P} \leq (x_{2,1}, y_{1,2}, ..., y_{n}) x_{1,n}^{P} + x_{1,n}^{P} \leq$ $p\left(X_{1,n-1}^n + X_{1,n-1}^n\right) \ge \left(X_{1,n-1}^n\right)$ $p \left| \begin{array}{cc} p & \perp & p \end{array} \right|$ *k p* $x_{k-1,1}^p + x$ *p n p n* $p \left[x_1^p + x_1^p \leq (x_{2,1}, \dots, x_n) | x_1^p + x_1^p \leq (x_n^p + x_1^p) \right]$ $\ddot{\cdot}$ let $= \sqrt[p]{x_1^p + x_2^p + \ldots + x_n^p} \leq 1$ $\in \mathfrak{R}^n, n = 2^k:$ $p \mid p$ p p p p *n* \vec{x} = $\frac{p}{\sqrt{x_1^p + x_2^p + ... + x_n^p}}$ $\vec{x} \in \mathbb{R}^n, n = 2^k$ \rightarrow $\overline{}$ *n*/2 *n*/4 1 *…* $(n-1)$ 3-dimensional cones $\int_{\mathbb{R}} \frac{p}{x^p} + x^p \leq (x_{1,2}, \ldots, x_{n}^{p}) x^p + x^p \leq (x_{n}, \ldots, x_{n}^{p})$ 2 λ_1 λ_2 $\lambda_{1,1}$, λ_3 λ_4 $\lambda_{1,2}$, \ldots , λ_{n-1} λ_n λ_{n} $p \left(x_1^p + x_2^p \leq (x_{1,1}, y) \right)$ $p \left(x_3^p + x_4^p \leq (x_{1,2}, y) \dots, p \left(x_{n-1}^p + x_n^p \leq (x_{n-1}, y) \right)$ $+ x_2^F \leq (x_{1,1}, y_{1,1})^F x_3^F + x_4^F \leq (x_{1,2}, y_{1,1}, y_{1,1})^F x_1^F + x_1^F \leq$

Facts

Applications

Linear conic programming $\vec{c} \cdot \vec{x}$: $A\vec{x} = b, \vec{x} \in C$ \vec{C} and \vec{C} $\inf_{\alpha} \vec{c} \cdot \vec{x}$: $A\vec{x} = b$,

x

- SOCP $-$ C is a product of second order cones
	- —superseeds convex quadratic programming,
	- —has numerous applications,
		- **E** sensor location,
		- mean-variance investment portfolio optimization,
		- **robust linear programming, etc.**
- *p*-cone programming
	- —has fewer known applications (?),
	- $-$ may be used to shape distributions,
		- \blacksquare radiotherapy planning

Applications

Radiotherapy planning basics

- —choose "intensity" so that
	- tumor gets killed,
	- healthy tissues are spared

Applications

- Radiotherapy planning basics
	- $-$ organ survival is ensured by "certain % of the organ receives no more than a certain dose",
		- e.g., no more than 30% of the liver receives 20Gy,
	- —equivalent to specifying distribution for a (pseudo) random variable,
		- **If compactly supported (true), equivalent to prescribing** moments,
		- *p*-moments can be described using *p*-norms

$$
\inf_{\vec{x}} \vec{c} \cdot \vec{x} : A\vec{x} = \vec{b}, \vec{x} \in C
$$

 $\vec{c} \cdot \vec{x}$: $A\vec{x} = b, \vec{x} \in C$

 $\bullet x: Ax = b, x \in$

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

 $\inf_{\alpha} \vec{c} \cdot \vec{x}$: $A\vec{x} = b$,

- **Solving p-cone programs**
	- —interior-point methods
		- using suitable "barriers"
	- —"efficient" approximation
		- **by better understood class of optimization models**

x

 \overrightarrow{C}

 $\nu \downarrow 0$

Solving p-cone programs

—interior-point methods and barriers

- d dimension
- $n \#$ of constraints $(n > d)$
- →

$$
\mathbf{A}\vec{x} \ge \vec{b} - \mathbf{Polytope}
$$

$$
\bullet \quad \vec{c} \in \Re^d - \text{objective}
$$

x

 $\max \overrightarrow{c}^T \overrightarrow{x}$: $A\overrightarrow{x} > \overrightarrow{b}$ – Linear Program

solve by following "central path"

$$
\mathcal{P} = \{ \vec{x} \in \mathbb{R}^d : \ \vec{x} = \arg \max_{\vec{z} \in \mathbb{R}^d} \ \vec{c}^T \vec{z} + \nu \sum_{i=1}^{\infty} \ln(A\vec{z} - \vec{b})_i \} \ \nu \in (0, \infty) \}
$$
\ni.e.,

\n
$$
\text{there'}
$$
\ni.e.,

\n
$$
\text{there'}
$$

Facts

Solving p-cone programs

- —interior-point methods and barriers
	- complexity of solving

$$
\inf_{\vec{x}} \vec{c} \bullet \vec{x} : A\vec{x} = \vec{b}, \vec{x} \in C
$$

by following the solutions of

$$
\inf_{\vec{x}} \vec{c} \cdot \vec{x} + v \cdot f(\vec{x}) : A\vec{x} = \vec{b}, \vec{x} \in C
$$

is driven by barrier parameter $\theta_{\parallel f}$ (length of a barrier gradient in a certain norm), with number of iterations $\left|O\right|\sqrt{\theta_{|f|}}\right)$.

Solving *p*-cone programs

- interior-point methods and barriers
- "efficient" approximation

Facts

Solving p-cone programs

- —interior-point methods and barriers
	- r reason for native barriers associated with

$$
C_p = \left\{ (\vec{x}, t) \in \Re^{n} \times \Re : ||\vec{x}||_p \leq t \right\}
$$

being so different for

$$
p = 2
$$
, $p = 3, 4, 5, ...$

Solving *p*-cone programs

- —interior-point methods
	- using suitable "barriers"
- —"efficient" approximation
	- **by better understood class of optimization models**

o specifically Linear Programming (LP),

 \circ polyhedral approximation to C_p ?

Given $\varepsilon > 0$, determine $(A)(\vec{x},t)$ + $(D)\vec{y}$ $\geq b$: *ii*) (\vec{x}, t, \vec{y}) - feasible $\Rightarrow \frac{1}{1+z}(\vec{x}, t) \in C_p$ *i*) $(\vec{x}, t) \in C_p$ $\Rightarrow \exists \vec{y}$ - feasible, + \Rightarrow $\frac{1}{\epsilon}$ (\vec{x}, t) 1 1 (x, t, \vec{y}) - feasible \overrightarrow{a} \rightarrow \sqrt{D} \rightarrow $\sqrt{7}$ ε ε

Definitions

Euclidean norm

$$
\vec{x} \in \mathfrak{R}^n, \|\vec{x}\| = \sqrt{\sum_{i=1}^n x^2}
$$

second order cone

—homogenization of a ball

$$
SOC = \left\{ (\vec{x}, t) \in \Re^{n} \times \Re : ||\vec{x}|| \leq t \right\}
$$

$$
\xrightarrow[x_{1}]{x_{2}}
$$

$$
\xrightarrow[x_{1}]{x_{1}}
$$

Facts

Solving p-cone programs

- $-$ "efficient" approximation of SOC $(C_{_2})^{\overline{}}$
	- naïve
		- o exponential number of inequalities

Facts

18

- **Solving p-cone programs**
	- $-$ "efficient" approximation of SOC $(C_{_2})^{\overline{}}$
		- simple
			- o using tower of variables, suffices to describe 3D cone,

- **Solving p-cone programs**
	- $-$ "efficient" approximation of SOC $(C_{_2})^{\overline{}}$
		- **E** efficient (Ben-Tal, Nemirovski)
			- o using tower of variables, suffices to describe 3D cone,
			- \circ rely on rotational invariance to describe unit ball,
			- o number of inequalities

- **Solving p-cone programs**
	- $-$ "efficient" approximation of \overline{C}_p ?
		- cannot be extended in straightforward manner
			- o using tower of variables, suffices to describe 3D cone,
			- o rotational invariance is lost !
		- for $p =$ powers of 2, can build "cascading" construction
			- \circ use SOC to approximate epigraph of $\mathcal{Y} = \mathcal{X}^2$, $y = x^2$
			- \circ number of inequalities

 \blacksquare for $p =$ rational, becomes prohibitively expensive

Facts

Solving p-cone programs

- —interior-point methods and barriers
- —"efficient" approximation

- The idea
	- $-$ use approximating planes only when needed
		- adapt to the curvature,
		- by coordinate symmetry suffices to consider first octant,
		- by duality, $p > 2$ suffices,
		- "tangent locate project"

- Lazy bound
	- let the two points be (x_0, y_0) , (x_1, y_1)
	- —intersecting $(1 + \varepsilon) \cdot (x_1, y_1)$: $y_1 = \frac{1}{p-1} \cdot \frac{1}{1+z} \left| \frac{x_0}{y_1} \right|$ x_1 0 1 1, y_1 , $y_1 - \frac{y_1 - \frac{p-1}{p-1}}{y_0 - \frac{p-1}{p-1}}$ 1 1 $(1 + \varepsilon) \cdot (x_1, y_1): y_1 = \frac{1}{x_1^2} \cdot \frac{1}{x_1^2} - \left| \frac{x_0}{x_1^2} \right| x_1^2$ *y x* (x_1, y_1) : *y p* -1 1 + c | 1, | $\overline{}$ \mathbf{I} L I L − $+ \varepsilon$) (x_1, y_1) : $y_1 =$ ________. ε
	- —boundary —combining x_2 $(1): ? \|\cdot\| = 1 + \varepsilon$ (0) 0 0 *y* $\frac{1}{2}$ $\overline{}$ + ε 1 1 1 1 1 1 $1, y_1 \in \mathfrak{v} \cup_p \cdot y_1$ 1 $(x_1, y_1) \in \partial C_n: y_1 = \frac{1}{n-1} - \left| \frac{x_1}{x_1} \right| x_2$ *y x y* $(x_1, y_1) \in \partial C_n: y$ *p* $p \cdot y_1 - \frac{1}{p}$ − −1, 1, 1 $\overline{}$ $\frac{1}{2}$ \mathbf{I} I I $\overline{ }$ L \in θ C_n: $y_1 = \frac{1}{n+1}$ ε ε $1 + \varepsilon \cdot y_0$, ε 1 \sim $ln(1 + \varepsilon)$ 1 $#$ \sim , 1 1 1 1 , 1 $y_1 > \sqrt[p-1]{1+\varepsilon} \cdot y$ 1 0 1 1 0 0 1 $\frac{1}{\epsilon}$ + ⋅ + $\frac{1}{y_1^{p-1}} < \frac{1}{1+\varepsilon} \cdot \frac{1}{y_0^{p-1}}$ *y x y x*

1 *x*

1

−

p

Tight bounds and complexity

—number of inequalities

$$
\sim n \cdot \frac{1}{\sqrt{\varepsilon}}
$$

 can establish upper and lower bound of the same order —comparing to naïve equi-spaced scheme get 1 "naive"# inequalites "greedy"# inequalites lim 0 $= p \rightarrow$ *p* ε

■ for large *p* the difference will be large

One extension

$-$ "greedy" error is strictly below ε due to projections,

—improve by targeting exact error

- **One extension**
	- $-$ "greedy" error is strictly below ε due to projections,
	- —improve by targeting exact error
		- "tangent/tangent locate"
	- —number of inequalities

$$
\sim n \cdot \frac{1}{\sqrt{\varepsilon}}
$$

■ roughly 2 times less than "greedy"

 $\overline{}$

 $\overline{1}$

 $\bigg)$

Solving p-cone programs

- —interior-point methods and barriers
- —"efficient" approximation

Lessons from BTN \odot

- —other geometric primitives
	- reflect,
	- notate,
	- fold onto
- —only the boundary really matters!

- Lessons from BTN \odot

- —other geometric primitives
	- \blacksquare reflect,
	- rotate,
	- fold onto
- only the boundary really matters!

- Boundary curvature and more insights
	- $-$ curvature = radius of inscribed circle,
	- $-$ curvature = "steering" when driving at a const speed,
	- $-$ increasing with arc-length for $p > 2$ (recall duality),
	- —octant may be folded "onto itself" , etc.

- **Fitting with constant curvature**
	- $-$ constant curvature = Euclidean ball
		- **F** recall SOC has efficient polyhedral approximation,
		- " "jerk-and-lock" the steering wheel \odot

Fitting with variable curvature

- —SOC conic sections
	- parabola,
	- ellipse,
	- hyperbola

 $1₀$

Fitting with variable curvature"

- —SOC conic sections
	- parabola, ellipse, hyperbola
- —fit general quadratics
	- instead of "jerk-and-lock" use smooth steering pattern ...

■ Despite p-norm not being rotationally-invariant, believe that true polyhedral approximation complexity is not far from that of SOC…

THANK YOU!

p.s.: looking for a PDF