Transition to electric mobility

Imen Ben Tahar 1 joint work with René Aïd 2

Workshop on Electricity, Energy and Commodities Risk Management

August, 14-16, 2013

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

¹CEREMADE and FiME

²EDF R&D and FiME

Introduction: some data

Transition dynamics

Optimal subsidy rule

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Electric vehicles (EV) **v.s.** Fossile-fuel Vehicle (FV)
- ▶ Renewed interest in electric mobility:
 - ▶ peak-oil,
 - decarbonization ambitions,
 - \blacktriangleright new socio-technical developments, ...

Ambitions	Facts
IEA's goal: 5.9 millions EV/year by 2020	last year: 113000
target: 75% by 2050	

うして ふゆう ふほう ふほう ふしつ

barriers to electric mobility?
[battery costs, other battery concerns, infrastructure, ..]

- ▶ Electric vehicles (EV) **v.s.** Fossile-fuel Vehicle (FV)
- ▶ Renewed interest in electric mobility:
 - ▶ peak-oil,
 - decarbonization ambitions,
 - \blacktriangleright new socio-technical developments, ...

Ambitions	Facts
IEA's goal: 5.9 millions EV/year by 2020	last year: 113000
target: 75% by 2050	currently $0,02\%$

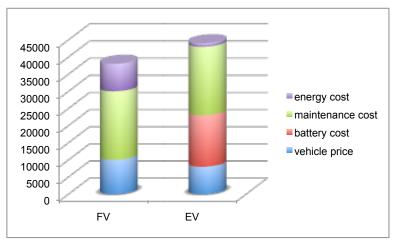
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

barriers to electric mobility?
[battery costs, other battery concerns, infrastructure, ..]

- ▶ Electric vehicles (EV) **v.s.** Fossile-fuel Vehicle (FV)
- ▶ Renewed interest in electric mobility:
 - ▶ peak-oil,
 - decarbonization ambitions,
 - \blacktriangleright new socio-technical developments, ...

Ambitions	Facts
IEA's goal: 5.9 millions EV/year by 2020	last year: 113000
target: 75% by 2050	currently $0,02\%$

うして ふゆう ふほう ふほう ふしつ


barriers to electric mobility?
[battery costs, other battery concerns, infrastructure, ..]

- ▶ Electric vehicles (EV) **v.s.** Fossile-fuel Vehicle (FV)
- ▶ Renewed interest in electric mobility:
 - ▶ peak-oil,
 - decarbonization ambitions,
 - \blacktriangleright new socio-technical developments, ...

Ambitions	Facts
IEA's goal: 5.9 millions EV/year by 2020	last year: 113000
target: 75% by 2050	currently $0,02\%$

うして ふゆう ふほう ふほう ふしつ

barriers to electric mobility?
[battery costs, other battery concerns, infrastructure, ..]

Time Horizon: 15 years, kilometers/year = 13000

Study and documents, n°41, May 2011, General Commissioner for Sustainable Growth

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

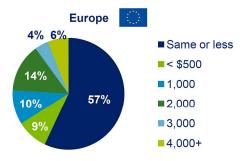


Figure: premium consumers are willing to pay for EV, Europe - (Deloitte)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Cost vs. Social Benefit

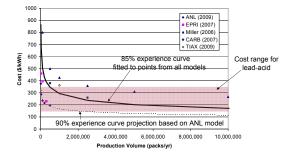
► Vehicle Cost-of-owning

$$C_t = P_t + \frac{\text{energy cost}}{\text{discount rate}}$$

distinction between: short-term private discounting
& longer time-horizon social discounting

	FV	EV	
vehicle price	15000	30000	
energy $\cos t/year$	1125	270	
private disc. rate	16%	16%	
private cost of owning	22000	31700	FV < EV
social disc. rate	4%	4%	
social cost of owning	43125	36750	$\mathrm{FV}>\mathrm{EV}$

► Social benefit per EV:


$$C_t^{FV} - C_t^{EV} = \Delta$$
 purchase price + $\frac{\Delta \text{ energy cost}}{\text{social discount rate}}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

A Basic Model

Notations and Hypothesis:

- the EV purchase price, P_t^e
- \blacktriangleright the FV purchase price, P, constant over time
- ► the price-spread $x_t = P_t^e P_t$: explained by the cost of the battery

Cost Estimates with Production Volume

Figure: battery experience curve

A Basic Model

▶ standard exponential learning dynamics for the Battery cost

$$B_{t+\delta t} = B_t - \alpha(t) \left(B_t - B_\infty \right)$$

Then

$$x_{t+\delta t} = x_t - \alpha(t) \left(x_t - \beta \right)$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• the speed of learning: $\alpha(t) \sim \text{new EV}$ adopters

A Basic Model

- ▶ W.B. Arthur (1989) ' style model
- ▶ annual rate of new EV purchases μ
- Sequentially arriving car buyers at times $\{t_i\}_i$:

at time t_i agent *i* adopts EV iff $\mathbf{x}_{t_i} \leq \mathbf{w}.\mathbf{t}.\mathbf{p}(\mathbf{i})$

► Number of new EV adopters in $[t_k, t_k + \delta t]$

$$n_{t_{k}}^{EV} = \sum_{j=1}^{[|\mu\delta t|]} \mathbf{1}_{\{w.t.p(j) \ge \mathbf{x}_{t_{k}}\}}$$
$$= \mu\delta t \left(\mathbb{P}(w.t.p(k) \ge \mathbf{x}_{t_{k}}) + M_{t_{k+1}} \right)$$
$$= \mu\delta t \left(\Phi(\mathbf{x}_{t_{k}}) + M_{t_{k}} \right)$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

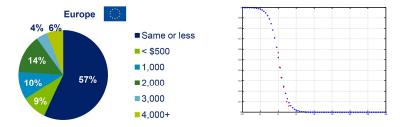


Figure: Willingness to pay statistics – function Φ

The limiting o.d.e.

 \blacktriangleright Dynamics of the cost-spread ${\bf x}$

$$\begin{aligned} x_{t+\delta t} &= x_t - \alpha(t) \left(x_t - \beta \right) & \text{with } \alpha(t) = \alpha n_t^{EV} \\ x_{t+\delta t} &= x_t - \alpha \mu \delta t \left(\Phi(x_t) \left(x_t - \beta \right) + \tilde{M}_{t_k} \right) \end{aligned}$$

▶ Limit o.d.e

$$\dot{x}(t) = -\alpha \mu \Phi(x(t)) \left(x(t) - \beta \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Reference: V. S. Borkar (2008).

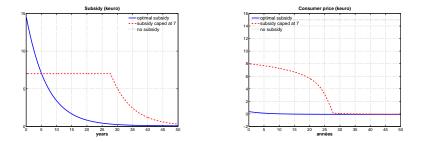
Optimization Problem

- ▶ Objective: maximize the social benefit
- Control: subsidy process $\{s_t\}$
- \blacktriangleright \Rightarrow Cost spread dynamics

$$\dot{x}^{s}(t) = -\alpha \mu \Phi(x^{s}(t) - s_{t}) \left(x^{s}(t) - \beta\right)$$

- ► Social Benefit: $(C_t^{FV} C_t^{EV}) n_t^{EV}$
- Optimization problem

$$\max_{\{s\}} \int_0^T e^{-\rho t} \left\{ b - x_t^s - s_t \right) \mu \Phi(x_t^s - s_t) dt \; .$$


where $b := \frac{\Delta \text{ energy cost}}{\text{social discount rate}}$ is the fuel economy

(ロ)、(型)、(E)、(E)、(E)、(D)、(C)

Optimal subsidy rule

▶ optimal {s^{*}} is such that: (Kalish and Lilien (1983))

$$e^{-\rho t}(x_t^{\star} - s_t^{\star})$$
 constant

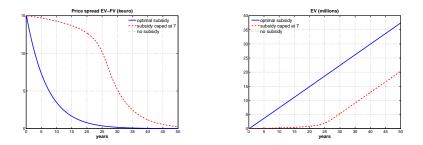


Figure: price-spread evolution - EV purchases evolution

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

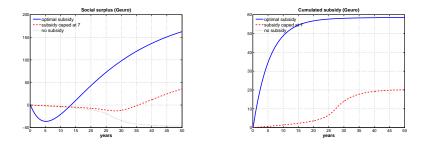


Figure: Social Benefit - cumulated subsidy value

Conclusions and Perspectives

- Without subsidy \Rightarrow no take-off
- Below threshold subsidy \Rightarrow no take-off
- With optimal subsidy rule \Rightarrow take-off

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

- interacting strategic firms
- ▶ R& D investment