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Project Overview

I Initial motivation : the modeling and control of energy
production and storage.

I Pure profit optimization : attempt to play storage and variable
prices at their best. No risk management per se.

I Complex optimization problems : optionnality, stochastic state
variables, multiscale seasonalities, long-term decisions.
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Project Overview

I Development of a dynamic programming approach based on
simulations and regressions.

I The techniques of DP with simulations and regression have
become central in financial engineering to solve financial
option problems.

I We’re valuing an energy instrument that is a set of dependent
options ; and to value it, we need to time the sale decisions at
best.
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Project Overview

Focus here on one application (hydropower) and two state
variables : the exogenous spot price of power, and the endogenous
water level.

I The endogenous (control-dependent) variable is a key point.
I Two main ideas :

I Graft the endogenous state variable onto the simulation paths
of the exogenous state variable, building paths of “optimal”
water levels.

I Apply a “backwash” technique to both deal with operational
limits and avoid clustering in the endogenous variable space.
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Related literature

Closely related literature, on gas storage.

I Boogert and De Jong (2008) : probably the first
simulations-and-regressions approach to gas storage, but the
endogenous variable is discretized.

I Carmona and Ludkowski (2010) : “quasi-simulation” of the
endogenous variable.

I Nascimento and Powell (2013) : A.D.P. (approximate dynamic
programming, or forward D.P.) approach.
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Setting the problem

The simple setup, discussed today, includes

I a hydro power production facility which includes storage ;

I the possibility to buy or sell a limited but fixed amount of
power at each period ;

I purchases of power increase the water level (see below) ;

I all transactions are at the spot price, which is stochastic ;

I storage is of course bounded above and below.
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Setting the problem

A more complete problem setup would include

I a variable local demand at a constant price, which must be
satisfied ;

I purchases and sales are on a neighbour market, with
stochastic prices ;

I purchases of power help keep water behind the dam (but
don’t actually increase the level) ;

I water inflows are stochastic.
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Setting the problem as a dynamic program

I The goal is to maximize expected net profit over a finite
horizon [0,T ].

I Natural setup for dynamic programming : knowing the optimal
policy from t + 1 to T , find the optimal policy from t to T by
identifying the best policy between t and t + 1.

I Backward solution is then possible, from time T to time 0,
given the final boundary condition.
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The Endogenous Variable and the State Equation

I The water level is an endogenous state variable : the
production decision at t changes the state of the system at
t + 1.

I Compare : the american option has only an exogenous state
variable, the stock price.

I The water levels follow the state equation

Lt+1 = h(ut ; Lt);

where u is a sales decision and Lt is the water level at time t.
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Dynamic programming recursion

Thanks to the optimality principle of dynamic programming, we
can compute the value function recursively as

Vt(St , Lt) = sup
ut∈U(S,L,t)

{
πt
(
ut ;St , Lt

)
+ Et

{
Vt+1(St+1, h(ut ; Lt))

}}
where u is the decision variable, πt is the payoff function on the

period from t to t + 1, the expectation is conditional on time t
information.

(The value function is the (monetary) value of being in a certain state at

a certain time, assuming that the best non-anticipative decisions will be

made until the end of time.)
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Traditional solution approach for the recursion equation

I The traditional way to solve the continuous time, continuous
state variables DP is to discretize all state variables and time.

I This is the technique we use for benchmarking.

I Subject to the curse of dimensionality : beyond a few state
variables, the technique is very time-consuming, or even
untractable.
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A simulations-and-regressions approach

For its simplicity, flexibility and ability to handle greater numbers
of state variables, we prefer the dynamic programming approach of
Monte Carlo simulations and (simple linear) regressions.

I Monte Carlo simulations are used to generate ahead of time a
set of scenarios for the exogenous stochastic variable
(e.g. spot price)

I Decisions are discretized.

I For each decision, the profit function is approximated by
regressing the profits on the state variable values (for all
paths).

What about the endogenous variable (water level) ?
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Solution through simulations-and-regressions

Let the value function be known at t + 1

Vt+1

(
S

(k)
t+1, L

(k)
t+1

)
for each spot price path k ∈ 1, . . . ,K .
Define the backward state equation

←−
h (ut ; Lt+1) = Lt

and the water level at time t which depends on ut

L
(k)
t (ut) =

←−
h

(
ut ; L

(k)
t+1

)
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We can regress

πt

(
ut ;S

(k)
t , L

(k)
t (ut)

)
+ Vt+1

(
S

(k)
t+1, L

(k)
t+1

)
on
(
S

(k)
t , L

(k)
t (ut)

)
for each possible decision ut . Note that the “antecedent levels”

L
(k)
t (ut) are functions of the decision.

We obtain a regression surface for each possible discrete decision.
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t t+1

V*(. ; t+1)
known

Time

Water 
level

What is an adequate path-k,
       time-t water level  L      ?        t

        (k)

Lt+1
(k)
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Creating Paths of Water Levels

I Endogenous water level variable cannot be simulated ahead of
time, like the spot prices.

I However, the value expectations must rely on optimal paths.

I We build water level paths backwards, using the regression
surfaces.

I These water level paths are not actual simulations, but each
is matched with a spot price path.
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Creating Paths of Water Levels : forward-optimal paths

I So, which time-t water level Lt is the “right” level, given a
time-(t+1) water level Lt+1 ?

I Certainly not the level with the highest value, that would be
“backward optimal”.

I We need a time-t level that “forward optimally” leads to the
(known) time-(t+1) level.

I The regression surfaces are computed already, so just use
them repeatedly (small numerical overhead)
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Clusters, Bounds and Backwash

Two problems crop up with this “fausse-simulation” technique.

I Problem 1 : little control over the building of the water level
paths, so water levels can go out-of-bounds (leakage) and can
cluster. (And they do !)

I Problem 2 : need to take account of the water level
operational bounds wisely. We do need information about
crossing the bounds.

I Solution :
I Add a penalty term for violations of the dam upper and lower

levels.
I Let water level paths go out-of-bounds, and use that info in

the regressions.
I When a path goes too far out-of-bounds, backwash it

randomly to the feasible area, thereby smoothing clusters.
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Clusters, Bounds and Backwash

Solution :

I Add a penalty term for violations of the dam upper and lower
levels.

I Let water level paths go out-of-bounds, and use that info in
the regressions. This takes care of problem 2.

I When a path goes too far out-of-bounds, backwash it
randomly to the feasible area, thereby smoothing clusters.
This takes care of problem 1.
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Summary of the algorithm

Initialization :

1. Choose a set of basis functions for the state variables, St and
Lt ;

2. Randomly generate K paths for the exogenous variable St ,
(t = 0, 1, . . . ,T ) ;

3. Randomly generate K time-T levels of the endogenous
variable LT , within the range [Lmin, Lmax] ;

4. Compute time-T values according to a boundary condition.
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Backward recursion : for all times from t = T − 1 to t = 0 :

1. Compute the regression surfaces Ṽ u(S , L), u ∈ {+1,0,-1}
using a payoff with penalty for going out of bounds.

2. For each of the 3K candidate levels L
(k)
t , compute a

forwardoptimal decision.

3. Associate a level L
(k)
t for each path k, according to the

decisions in the above step. If L
(k)
t is too far out of bounds,

randomly reassign it to a random, acceptable water level (the
backwash technique)

4. Compute the K values Vt

(
S

(k)
t , L

(k)
t

)
as a sum of payoffs until

time T along path (k). In the case of paths whose level has
been reassigned in step 3, use instead the value on the
regression surface.

Out-of-sample tests : retain solely the regression parameters.
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Convergence ?

I Sources of approximations come from the simulation, the
regression on basis, the backwash.

I Tsitsiklis-Van Roy vs Longstaff-Schwartz approaches.

I Given the backwash procedure, this algorithm is in fact hybrid
of TVR and LS.
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Illustration with a simple example

We consider a simple but interesting case of four half-days.

I Average price is 50$, except during the 2nd and 5th periods
(average of 30$). Prices are serially independent.

I Three regimes : buy, sell, do nothing.

I Number of simulations in the learning phase : 50 000.

I Comparison is done with a fully discretized DP as benchmark.
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Benchmark policies vs Simulation and Regression policies
Spot prices on x-axis ; water levels on y-axis.
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Numerical results on a larger model

I Algorithm is run on a problem with the same state variables
(price and water level) but 16 weeks long at two periods per
day (224 time steps)

I Spot price follows a geometric brownian motion (we want to
benchmark !)

I Daily, weekly, monthly seasonalities on the spot prices.
I We do out-of-sample testing against a finely discretized

dynamic program. The benchmark value is 247 500 $.
I Obtain results within two percent of the optimal value :

Npath Mean Stdv

25000 242 765 $ 277 $
50000 242 897 $ 161 $
75000 242 900 $ 128 $
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Numerical results : pretty good or pretty bad ?

Pretty good or pretty bad ? Well, both...

I The quality of the results (sim-and-reg vs benchmark) is
influenced by the bases and by the backwash procedure.

I Polynomial bases do their best, but are clearly imperfect. This
is however could be rather good news for the backwash
technique.

I Note that sim-and-reg and benchmark results are similarly
impacted by the discretization of the decision.
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Conclusions

I The classical simulations-and-regressions technique is
extended to a more general problem with an endogenous
(control-dependent) state variable.

I Neither the exogenous nor the endogenous variables are
discretized.

I Simulation based, so very flexible with respect to the modeling
of the exogenous, stochastic variables.
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Future and on-going work

I Introduce more exogenous and endogenous variables.

I Introduce decisions that kick in only after a number of periods.

I Risk management.

I Non-energy applications.
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