Modelling electricity futures by ambit fields

Almut E. D. Veraart

Imperial College London

Joint work with Ole E. Barndorff-Nielsen (Aarhus University), Fred Espen Benth (University of Oslo)

Workshop on Electricity, Energy and Commodities Risk Management Fields Institute, Toronto 14–16 August 2013

Futures contract

A futures contract maturing at time T on an asset S is a traded asset with "price" $F(t, T)$ such that the futures contract can be entered at zero cost at any time; a holder of the contract receives payments corresponding to the price changes of $F(t, T)$. At maturity T, $F(T, T) = S_T$.

Let t denote the current time and \bar{T} the time of maturity/delivery. How can we model the futures/forward price $F(t, T)$?

➤ **Spot-based approach**: Let S denote the underlying spot price. Then

 $F(t, T) = \mathbb{E}^{\mathsf{Q}}(\mathsf{S}_{T}|\mathcal{F}_{t}).$

➤ **Reduced-form modelling**: As in the Heath-Jarrow-Morton (HJM) framework, one can model $F(t, T)$ directly.

- ➤ Non-Gaussian, (semi-) heavy-tailed distribution
- ➤ Volatility clusters and time-varying volatility
- ➤ Strong seasonality (over short and long time horizons)
- ➤ Presence of the "Samuelson effect": Volatility of the futures contract increases as time to delivery approaches.
- ➤ Electricity is essentially not storable ➠ spikes, negative prices in the spot
- ► High degree of idiosyncratic risk ► use random fields!
- ➤ Non-Gaussian, (semi-) heavy-tailed distribution
- ➤ Volatility clusters and time-varying volatility
- ➤ Strong seasonality (over short and long time horizons)
- ➤ Presence of the "Samuelson effect": Volatility of the futures contract increases as time to delivery approaches.
- ➤ Electricity is essentially not storable ➠ spikes, negative prices in the spot
- ► High degree of idiosyncratic risk ► use random fields!

Use **ambit fields** to model electricity futures!

- ➤ Name for the theory and applications of ambit fields and ambit processes
- ▶ Probabilistic framework for tempo-spatial modelling
- ➤ Introduced by O. E. Barndorff-Nielsen and J. Schmiegel in the context of modelling **turbulence** in physics.

What is an ambit field?

- ► Aim: Model real-valued tempo-spatial object $Y_t(x)$, where $t \in \mathbb{R}$ is the temporal and $x \in \mathbb{R}^d$ the spatial variable ($d \in \mathbb{N}$).
- ➤ "**ambit**" from Latin ambire or ambitus: border, boundary, sphere of influence etc.
- \blacktriangleright Define **ambit set** $A_t(x)$: Intuitively: **causality cone**.

► Ambit fields: Stochastic integrals with respect to an independently scattered, infinitely divisible random measure L:

$$
Y_t(x) = \int_{A_t(x)} h(x, t; \xi, s) \sigma(\xi, s) L(d\xi, ds)
$$

✲

Integration in the L^2 -sense as described in Walsh (1986).

The integrator L is chosen to be a Lévy basis

► Notation: $\mathcal{B}(\mathbb{R})$ Borel sets of \mathbb{R} ; $\mathcal{B}_h(S)$ bounded Borel sets of $S \in \mathcal{B}(\mathbb{R})$.

Definition 1

A family $\{L(A) : A \in \mathcal{B}_b(S)\}$ of random variables in **R** is called an **R**-valued **Lévy basis** on S if the following three properties hold:

- **1** The law of $L(A)$ is infinitely divisible for all $A \in \mathcal{B}_h(S)$.
- **2** If A_1, \ldots, A_n are disjoint subsets in $\mathcal{B}_b(S)$, then $L(A_1), \ldots, L(A_n)$ are independent.
- 3 If $A_1, A_2, ...$ are disjoint subsets in $\mathcal{B}_b(S)$ with $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}_b(S)$, then $L(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} L(A_i)$, a.s., where the convergence on the right hand side is a.s.
- ➤ Conditions (2)&(3) define an **independently scattered random measure**.

Cumulant function

► The a cumulant function of a *homogeneous* Lévy bases is given by

$$
C(\zeta, L(A)) = \text{Log}(\mathbb{E}(\exp(i\zeta L(A)))
$$

= $\left[i\zeta a - \frac{1}{2}\zeta^2 b + \int_{\mathbb{R}} \left(e^{i\zeta z} - 1 - i\zeta z I_{[-1,1]}(z)\right) \nu(dz)\right] \text{leb}(A),$

where $\textsf{leb}(\cdot)$ denotes the Lebesque measure, and where $a \in \mathbb{R}$, $b \geq 0$ and ν is a Lévy measure on \mathbb{R} .

[The logarithm above should be understood as the distinguished logarithm, see e.g. Sato (1999).]

- \blacktriangleright The characteristic quadruplet associated with L is given by (a, b, v, leb) .
- \triangleright We call an infinitely divisible random variable L' with characteristic triplet given by (a, b, v) the Levy seed associated with L.
- Note: $L((0, t]) = L_t$ is a a Lévy process (for a hom. Lévy basis).

The model

- ► Consider a market with finite time horizon $[0, T^*]$ for some $T^* \in (0, \infty)$.
- ➤ Need to account for a delivery period: Model the futures price at time $t\geq 0$ with delivery period $[T_1,\,T_2]$ for $t\leq T_1\leq T_2\leq T^*$ say.
- \triangleright Model the futures price with delivery period $[T_1, T_2]$ by

$$
F_t(T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} F(t, T) dT, \qquad (1)
$$

where $F(t, T)$ is the instantaneous futures price.

The model

- ► Consider a market with finite time horizon $[0, T^*]$ for some $T^* \in (0, \infty)$.
- ➤ Need to account for a delivery period: Model the futures price at time $t\geq 0$ with delivery period $[T_1,\,T_2]$ for $t\leq T_1\leq T_2\leq T^*$ say.
- \triangleright Model the futures price with delivery period $[T_1, T_2]$ by

$$
F_t(T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} F(t, T) dT, \qquad (1)
$$

8 / 25

where $F(t, T)$ is the instantaneous futures price.

Model definition under risk neutral probability measure

Under the assumptions (**A**.1) - (**A**.7):

$$
F(t, T) = \Lambda(T) + \int_{A_t} k(T; \xi, s) \sigma(\xi, s) L(d\xi, ds).
$$
 (2)

Musiela parametrisation with $x = T - t$ and $f_t(x) = F(t, x + t)$:

$$
f_t(x) = \Lambda(t + x) + \int_{A_t} k(x + t; \xi, s) \sigma(\xi, s) L(d\xi, ds).
$$
 (3)

Model assumptions

- A.1 L is a a homogeneous, square-integrable Lévy basis on \mathbb{R}^2 , which has zero mean; its characteristic quadruplet is denoted by (a, b, *ν*, leb).
- A.2 The filtration $\{\mathcal{F}_t\}_{t\in[-T^*,T^*]}$ is initially defined by $\mathcal{F}_t = \bigcap_{n=1}^{\infty} \mathcal{F}^0_{t+1/n}$, where $\mathcal{F}_{t}^{0} = \sigma\{L(\mathcal{A}, \mathbf{s}): \mathcal{A} \in \mathcal{B}_{b}([0, T^{*}]), -T^{*} \leq \mathbf{s} \leq t\}$, which is right-continuous by construction and then enlarged using the *natural* enlargement.
- A.3 The positive random field $\sigma = \sigma(\xi, s) : \Omega \times \mathbb{R}^2 \to (0, \infty)$ denotes the so-called stochastic volatility field and is assumed to be independent of the Lévy basis L .
- A.4 The function $k: [0, T^*] \times [0, T^*] \times [-T^*, T^*] \to [0, \infty)$ denotes the so-called weight function;
- A.5 For each $T \in [0, T^*]$, the random field (k(T; *^ξ*, ^s)*σ*(*ξ*, ^s))(*ξ*,s)∈[0,T∗]×[−^T [∗],^T [∗]] is assumed to be predictable and to satisfy the following integrability condition:

$$
\mathbb{E}\left[\int_{[-T^*,T^*]\times[0,T^*]}k^2(T;\xi,s)\sigma^2(\xi,s)\,d\xi ds\right]<\infty.
$$
 (4)

Model assumptions cont'd

A.6 We call the set

$$
A_t = [0, T^*] \times [-T^*, t] = \{(\xi, s) : 0 \le \xi \le T^*, -T^* \le s \le t\}
$$

\n
$$
\subseteq [0, T^*] \times [-T^*, T^*]
$$
\n(5)

Recap: The model

Let $0 \leq t \leq T \leq T^*$. Under the assumptions (**A**.1) - (**A**.7) the futures price under the risk-neutral probability measure is defined as the ambit field given by

Important properties of the model

Proposition 2

For $\mathcal{T} \in [0,T^*],$ the stochastic process $(\mathcal{F}(t,T))_{0 \leq t \leq \mathcal{T}}$ is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\in[0,T]}.$

Important properties of the model

Proposition 2

For $\mathcal{T} \in [0,T^*],$ the stochastic process $(\mathcal{F}(t,T))_{0 \leq t \leq \mathcal{T}}$ is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\in[0,T]}.$

Proposition 3

For $\mathcal{G}_t = \sigma \{ \sigma(\xi, s), (\xi, s) \in A_t \}$, the conditional cumulant function we have

$$
C^{\sigma}(\zeta, f_t(x)) := \text{Log} (\mathbb{E} (\exp(i\zeta f_t(x)) | \mathcal{G}_t))
$$

= $i\zeta \Lambda(t + x) + \int_{A_t} C (\zeta k(x + t; \zeta, s) \sigma(\zeta, s), L') d\zeta ds,$

where L' is the Lévy seed associated with L .

Important properties of the model

Proposition 2

For $\mathcal{T} \in [0,T^*],$ the stochastic process $(\mathcal{F}(t,T))_{0 \leq t \leq \mathcal{T}}$ is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\in[0,T]}.$

Proposition 3

For $\mathcal{G}_t = \sigma \{ \sigma(\xi, s), (\xi, s) \in A_t \}$, the conditional cumulant function we have

$$
C^{\sigma}(\zeta, f_t(x)) := \text{Log} (\mathbb{E} (\exp(i\zeta f_t(x)) | \mathcal{G}_t))
$$

= $i\zeta \Lambda(t + x) + \int_{A_t} C (\zeta k(x + t; \zeta, s) \sigma(\zeta, s), L') d\zeta ds,$

where L' is the Lévy seed associated with L .

Example 4

If L is a homogeneous Gaussian Lévy basis, then we have

$$
C\left(\zeta k\left(x+t;\xi,s\right)\sigma\left(\xi,s\right),L'\right)=i\zeta\Lambda(t+x)-\frac{1}{2}\zeta^{2}k^{2}\left(x+t;\xi,s\right)\sigma^{2}\left(\xi,s\right).
$$

Correlation structure

- ➤ Note that our new model does not only model one particular futures contract, but it models the entire futures curve at once.
- Example Let $0 \leq t \leq t + h \leq T^*$ and $0 \leq x, x' \leq T^*$, then

$$
Cor(f_t(x), f_{t+h}(x'))
$$

= $K^{-1} \int_{A_t} k(x+t, \xi, s) k(x'+t+h, \xi, s) \mathbb{E} \left(\sigma^2(\xi, s) \right) d\xi ds,$

where

 $K = \sqrt{\frac{2}{\pi}}$ \mathcal{A}_t $k^2(x+t,\xi,s)\mathbb{E}\left(\sigma^2(\xi,s)\right)d\xi ds$ $\cdot \sqrt{ }$ \mathcal{A}_t $k^2(x'+t+h,\xi,s)\mathbb{E}\left(\sigma^2(\xi,s)\right)d\xi ds$

Examples of weight functions

▶ Consider weight functions which factorise as

$$
k(x+t;\xi,s)=\Phi(\xi)\Psi(x+t,s),\qquad \qquad (7)
$$

for suitable functions Ψ and Φ . [In the case that $\Phi \equiv 1$ and there is no stochastic volatility we essentially get be back the classical framework.]

► OU-type weight function: $\Psi(x + t, s) = \exp(-\alpha(x + t - s))$, for some $\alpha > 0$.

- ► CARMA-type weight function: $\Psi(x+t-s) = b' \exp(A(x+t-s))e_p$;
- ► Bjerksund et al. (2010)-type weight function: $\Psi(x + t, s) = \frac{a}{x+t-s+b}$, for $a, b > 0$
- ➤ Audet et al. (2004)-type weight function:
	- $\Psi(x+t,s) = \exp(-\alpha(x+t-s))$ **for** $\alpha > 0$ **,**

$$
\;\;\Leftrightarrow\;\Phi(\xi)=\text{exp}(-\beta\xi),\,\text{for}\;\beta>0
$$

Example: Gaussian ambit fields

(c) Bjerksund et al.-type weight function

(d) Gamma-type weight function

Implied spot price

► By the no-arbitrage assumption, the futures price for a contract which matures in zero time, $x = 0$, has to be equal to the spot price, that is, $f_t(0) = S_t$. Thus,

$$
S_t = \Lambda(t) + \int_{A_t} k(t; \xi, s) \sigma(\xi, s) L(d\xi, ds).
$$

Implied spot price

► By the no-arbitrage assumption, the futures price for a contract which matures in zero time, $x = 0$, has to be equal to the spot price, that is, $f_t(0) = S_t$. Thus,

$$
S_t = \Lambda(t) + \int_{A_t} k(t; \xi, s) \sigma(\xi, s) L(d\xi, ds).
$$

➤ In the Gaussian case, we get the following result:

$$
S_t \stackrel{\text{law}}{=} \Lambda(t) + \int_{-T^*}^t \Psi(t; s) \omega_s dW_s,
$$

assuming that $k(x + t; \xi, s) = \Phi(\xi) \Psi(x + t, s)$, $ω_s^2 = \int_0^{T^*} \Phi^2(\xi) \sigma^2(\xi, s) d\xi$ and where *W* is a Brownian motion.

➤ Null-spatial case of ambit field: Volatility modulated Volterra process, Lévy semistationary process. (Fit energy spot prices very well!)

Simulated futures curve

(e) Ambit field without stochastic volatility

−4 −2 0 2 4

t $\tilde{ }$ 49 50 51 52 53

(f) Stochastic volatility field

 $\tilde{}$

t

(h) Seasonality field

(g) Ambit field with stochastic volatility

Simulated futures curve cont'd

(i) Futures price without stochastic volatility (j) Futures price with stochastic volatility

Samuelson effect

- ➤ Samuelson effect: The volatility of the futures price increases when the time to delivery approaches zero.
- ➤ Also, the volatility of the futures converges to the volatility of the spot price.
- \blacktriangleright The weight function k plays the role of a damping function and is therefore non-increasing in the first variable and ensures that the Samuelson effect can be accounted for in our model.

Proposition 5

Under suitable conditions (given in our paper) the variance of the futures price $f_t(x)$, given by

$$
v_t(x):= \text{Var}(f_t(x))=c\int_{A_t} k^2(x+t;\xi,s)\mathbb{E}\left(\sigma^2(\xi,s)\right)d\xi ds,
$$

is monotonically non-decreasing as $x \downarrow 0$. Further, the variance of the futures converges to the variance of the implied spot price.

Samuelson effect: Example for different choices of the weight function

Example 6

Suppose the weight function factorises as mentioned before and there is no stochastic volatility. Then the variance of the futures price is given by

$$
v_t(x) = c' \int_{-T^*}^t \Psi^2(x+t,s) ds, \quad \text{where } c' = c \int_0^{T^*} \Phi^2(\xi) d\xi.
$$

This implies that in the context an exponential weight, we get

$$
v_t(x) = c' \frac{1}{2\alpha} \left(e^{-2\alpha x} - e^{-2\alpha(x+t+T^*)} \right),
$$

and in the context of the Bjerksund et al. (2010) model we have

$$
v_t(x) = c'a^2 \left(\frac{1}{x+b} - \frac{1}{x+t+T^*+b} \right).
$$

➤ Next we do a change of measure from the risk-neutral pricing measure to the physical measure.

Proposition 7

Define the process

$$
M_t^{\theta} = \exp\left(\int_{A_t} \theta(\xi, s) L(d\xi, ds) - \int_{A_t} C(-i\theta(\xi, s), L') d\xi ds\right).
$$
 (8)

The deterministic function θ : $[0, T^*] \times [-T^*, T^*] \mapsto \mathbb{R}$ is supposed to be integrable with respect to the Lévy basis L in the sense of Walsh (1976). Assume that

$$
\mathbb{E}\left(\exp\left(\int_{A_t} C(-i\theta(s,\xi),L')\,d\xi\,ds\right)\right)<\infty,\,\,\text{for all}\,\,t\in\mathbb{R}_{T^*}.\tag{9}
$$

Then M_t^{θ} is a martingale with respect to \mathcal{F}_t with $\mathbb{E}[M_0^{\theta}] = 1$.

Change of measure cont'd

 \blacktriangleright Define an equivalent probability P by

$$
\left. \frac{dP}{dQ} \right|_{\mathcal{F}_t} = M_t^{\theta}, \tag{10}
$$

for $t > 0$, where the function θ is an additional parameter to be modelled and estimated, which plays the role as the market price of risk

 \triangleright We compute the characteristic exponent of an integral of L under P.

Proposition 8

For any $v \in \mathbb{R}$, and Walsh-integrable function g with respect to L, it holds that

LogE_P
$$
\left[\exp\left(i\nu \int_{A_t} g(\xi, s) L(d\xi, ds)\right)\right]
$$

= $\int_{A_t} \left(C(vg(\xi, s) - i\theta(\xi, s), L') - C(-i\theta(\xi, s), L')\right) d\xi ds.$

Summary of key results

- ➤ Use ambit fields to model electricity futures.
- ➤ Our model ensures that the futures price is a martingale under the risk-neutral measure.
- ➤ Studied relevant examples of model specifications.
- ➤ New modelling framework accounts for the key stylised facts observed in electricity futures.
- ➤ Futures and spot prices can be linked to each other within the ambit field framework (Samuelson effect).
- ▶ Change of measure.

Further results not mentioned today:

- ▶ Geometric modelling framework
- ➤ Option pricing based on Fourier techniques.
- ➤ Simulation methods for ambit fields.

▶ Detailed empirical studies.

➤ Inference methods for ambit fields.

➤ Need for more efficient simulation schemes.

- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2011), Ambit processes and stochastic partial differential equations, in G. Di Nunno and B. Øksendal, eds, 'Advanced Mathematical Methods for Finance', Springer, pp. 35–74.
- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2012), Recent advances in ambit stochastics. Preprint: arXiv:1210.1354.
- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2013a), 'Modelling energy spot prices by volatility modulated Volterra processes', Bernoulli. Vol:19, pp. 803-845.
- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2013b), Modelling electricity futures by ambit fields. Preprint.
- Barndorff-Nielsen, O. E. and Schmiegel, J. (2007), Ambit processes: with applications to turbulence and cancer growth, in F. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal and T. Zhang, eds, 'Stochastic Analysis and Applications: The Abel Symposium 2005', Springer, Heidelberg, pp. 93–124.
- Walsh, J. (1986a), An introduction to stochastic partial differential equations, in R. Carmona, H. Kesten and J. Walsh, eds, 'Lecture Notes in Mathematics 1180', Ecole d'Eté de Probabilités de Saint–Flour XIV — 1984, Springer.