Modelling electricity futures by ambit fields

Almut E. D. Veraart

Imperial College London

Joint work with Ole E. Barndorff-Nielsen (Aarhus University), Fred Espen Benth (University of Oslo)

Workshop on Electricity, Energy and Commodities Risk Management Fields Institute, Toronto 14–16 August 2013

Futures contract

A futures contract maturing at time T on an asset S is a traded asset with "price" F(t, T) such that the futures contract can be entered at zero cost at any time; a holder of the contract receives payments corresponding to the price changes of F(t, T). At maturity $T, F(T, T) = S_T$.

Let *t* denote the current time and *T* the time of maturity/delivery. How can we model the futures/forward price F(t, T)?

Spot-based approach: Let S denote the underlying spot price. Then

 $F(t,T) = \mathbb{E}^{\mathsf{Q}}(\mathsf{S}_{T}|\mathcal{F}_{t}).$

Reduced-form modelling: As in the Heath-Jarrow-Morton (HJM) framework, one can model F(t, T) directly.

- Non-Gaussian, (semi-) heavy-tailed distribution
- Volatility clusters and time-varying volatility
- Strong seasonality (over short and long time horizons)
- Presence of the "Samuelson effect": Volatility of the futures contract increases as time to delivery approaches.
- Electricity is essentially not storable spikes, negative prices in the spot
- ► High degree of idiosyncratic risk → use random fields!

- Non-Gaussian, (semi-) heavy-tailed distribution
- Volatility clusters and time-varying volatility
- Strong seasonality (over short and long time horizons)
- Presence of the "Samuelson effect": Volatility of the futures contract increases as time to delivery approaches.
- Electricity is essentially not storable spikes, negative prices in the spot
- ► High degree of idiosyncratic risk → use random fields!

Use ambit fields to model electricity futures!

Ambit stochastics

- Name for the theory and applications of ambit fields and ambit processes
- Probabilistic framework for tempo-spatial modelling
- Introduced by O. E. Barndorff-Nielsen and J. Schmiegel in the context of modelling turbulence in physics.

What is an ambit field?

- ▶ Aim: Model real-valued tempo-spatial object $Y_t(x)$, where $t \in \mathbb{R}$ is the temporal and $x \in \mathbb{R}^d$ the spatial variable $(d \in \mathbb{N})$.
- "ambit" from Latin ambire or ambitus: border, boundary, sphere of influence etc.
- > Define **ambit set** $A_t(x)$: Intuitively: **causality cone**.

Ambit fields: Stochastic integrals with respect to an independently scattered, infinitely divisible random measure L:

$$Y_t(\mathbf{x}) = \int_{\mathcal{A}_t(\mathbf{x})} h(\mathbf{x}, t; \xi, s) \sigma(\xi, s) L(d\xi, ds)$$

> Integration in the L^2 -sense as described in Walsh (1986).

The integrator *L* is chosen to be a Lévy basis

▶ Notation: $\mathcal{B}(\mathbb{R})$ Borel sets of \mathbb{R} ; $\mathcal{B}_b(S)$ bounded Borel sets of $S \in \mathcal{B}(\mathbb{R})$.

Definition 1

A family $\{L(A) : A \in \mathcal{B}_b(S)\}$ of random variables in \mathbb{R} is called an \mathbb{R} -valued **Lévy basis** on S if the following three properties hold:

1 The law of L(A) is infinitely divisible for all $A \in \mathcal{B}_b(S)$.

- If A₁,..., A_n are disjoint subsets in B_b(S), then L(A₁),..., L(A_n) are independent.
- **3** If $A_1, A_2, ...$ are disjoint subsets in $\mathcal{B}_b(S)$ with $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}_b(S)$, then $L(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} L(A_i)$, *a.s.*, where the convergence on the right hand side is *a.s.*.
- Conditions (2)&(3) define an independently scattered random measure.

Cumulant function

(

> The a cumulant function of a *homogeneous* Lévy bases is given by

$$\mathbb{C}(\zeta, L(A)) = \mathrm{Log}(\mathbb{E}(\exp(i\zeta L(A))))$$
$$= \left[i\zeta a - \frac{1}{2}\zeta^2 b + \int_{\mathbb{R}} \left(e^{i\zeta z} - 1 - i\zeta z\mathbb{I}_{[-1,1]}(z)\right)\nu(dz)\right] leb(A),$$

where $leb(\cdot)$ denotes the Lebesgue measure, and where $a \in \mathbb{R}$, $b \ge 0$ and ν is a Lévy measure on \mathbb{R} .

[The logarithm above should be understood as the distinguished logarithm, see e.g. Sato (1999).]

- > The characteristic quadruplet associated with *L* is given by (a, b, v, leb).
- We call an infinitely divisible random variable L' with characteristic triplet given by (a, b, v) the Lévy seed associated with L.
- > Note: $L((0, t]) = L_t$ is a a Lévy process (for a hom. Lévy basis).

The model

- ➤ Consider a market with finite time horizon $[0, T^*]$ for some $T^* \in (0, \infty)$.
- Need to account for a *delivery period*: Model the futures price at time t ≥ 0 with delivery period [T₁, T₂] for t ≤ T₁ ≤ T₂ ≤ T* say.
- > Model the futures price with delivery period $[T_1, T_2]$ by

$$F_t(T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} F(t, T) dT,$$
(1)

where F(t, T) is the instantaneous futures price.

The model

- ➤ Consider a market with finite time horizon $[0, T^*]$ for some $T^* \in (0, \infty)$.
- Need to account for a *delivery period*: Model the futures price at time t ≥ 0 with delivery period [T₁, T₂] for t ≤ T₁ ≤ T₂ ≤ T* say.
- > Model the futures price with delivery period $[T_1, T_2]$ by

$$F_t(T_1, T_2) = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} F(t, T) dT,$$
(1)

(2)

where F(t, T) is the instantaneous futures price.

Model definition under risk neutral probability measure

Under the assumptions (A.1) - (A.7):

$$F(t,T) = \Lambda(T) + \int_{A_t} k(T;\xi,s)\sigma(\xi,s)L(d\xi,ds).$$

Musiela parametrisation with x = T - t and $f_t(x) = F(t, x + t)$:

$$f_t(\mathbf{x}) = \Lambda(t+\mathbf{x}) + \int_{\mathcal{A}_t} k(\mathbf{x}+t;\xi,\mathbf{s})\sigma(\xi,\mathbf{s})L(d\xi,d\mathbf{s}).$$

Model assumptions

- A.1 *L* is a a homogeneous, square-integrable Lévy basis on \mathbb{R}^2 , which has zero mean; its characteristic quadruplet is denoted by (a, b, v, leb).
- A.2 The filtration $\{\mathcal{F}_t\}_{t\in[-T^*,T^*]}$ is initially defined by $\mathcal{F}_t = \bigcap_{n=1}^{\infty} \mathcal{F}_{t+1/n}^0$, where $\mathcal{F}_t^0 = \sigma\{L(A, s) : A \in \mathcal{B}_b([0, T^*]), -T^* \le s \le t\}$, which is right-continuous by construction and then enlarged using the *natural enlargement*.
- A.3 The positive random field $\sigma = \sigma(\xi, s) : \Omega \times \mathbb{R}^2 \to (0, \infty)$ denotes the so-called *stochastic volatility field* and is assumed to be independent of the Lévy basis *L*.
- A.4 The function $k : [0, T^*] \times [0, T^*] \times [-T^*, T^*] \rightarrow [0, \infty)$ denotes the so-called *weight function*;
- A.5 For each $T \in [0, T^*]$, the random field $(k(T; \xi, s)\sigma(\xi, s))_{(\xi,s)\in[0,T^*]\times[-T^*,T^*]}$ is assumed to be predictable and to satisfy the following integrability condition:

$$\mathbb{E}\left[\int_{[-T^*,T^*]\times[0,T^*]} k^2(T;\xi,s)\sigma^2(\xi,s)\,d\xi ds\right] < \infty. \tag{4}$$

Model assumptions cont'd

A.6 We call the set

$$A_{t} = [0, T^{*}] \times [-T^{*}, t] = \{(\xi, s) : 0 \le \xi \le T^{*}, -T^{*} \le s \le t\}$$

$$\subseteq [0, T^{*}] \times [-T^{*}, T^{*}]$$
(5)

Recap: The model

Let $0 \le t \le T \le T^*$. Under the assumptions (A.1) - (A.7) the futures price under the risk-neutral probability measure is defined as the ambit field given by

Important properties of the model

Proposition 2

For $T \in [0, T^*]$, the stochastic process $(F(t, T))_{0 \le t \le T}$ is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t \in [0,T]}$.

Important properties of the model

Proposition 2

For $T \in [0, T^*]$, the stochastic process $(F(t, T))_{0 \le t \le T}$ is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t \in [0,T]}$.

Proposition 3

For $\mathcal{G}_t = \sigma\{\sigma(\xi, \mathbf{s}), (\xi, \mathbf{s}) \in \mathbf{A}_t\}$, the conditional cumulant function we have

$$C^{\sigma}(\zeta, f_t(x)) := \text{Log}\left(\mathbb{E}\left(\exp(i\zeta f_t(x))|\mathcal{G}_t\right)\right)$$
$$= i\zeta\Lambda(t+x) + \int_{\mathcal{A}_t} C\left(\zeta k\left(x+t; \xi, s\right)\sigma\left(\xi, s\right), L'\right) d\xi ds,$$

where L' is the Lévy seed associated with L.

Important properties of the model

Proposition 2

For $T \in [0, T^*]$, the stochastic process $(F(t, T))_{0 \le t \le T}$ is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t \in [0,T]}$.

Proposition 3

For $\mathcal{G}_t = \sigma\{\sigma(\xi, \mathbf{s}), (\xi, \mathbf{s}) \in \mathbf{A}_t\}$, the conditional cumulant function we have

$$C^{\sigma}(\zeta, f_t(\mathbf{x})) := \text{Log}\left(\mathbb{E}\left(\exp(i\zeta f_t(\mathbf{x})) \mid \mathcal{G}_t\right)\right)$$
$$= i\zeta \Lambda(t + \mathbf{x}) + \int_{\mathcal{A}_t} C\left(\zeta k\left(\mathbf{x} + t; \xi, \mathbf{s}\right) \sigma\left(\xi, \mathbf{s}\right), L'\right) d\xi d\mathbf{s},$$

where L' is the Lévy seed associated with L.

Example 4

If L is a homogeneous Gaussian Lévy basis, then we have

$$C\left(\zeta k\left(x+t;\xi,s\right)\sigma\left(\xi,s\right),L'\right)=i\zeta\Lambda(t+x)-\frac{1}{2}\zeta^{2}k^{2}\left(x+t;\xi,s\right)\sigma^{2}\left(\xi,s\right).$$

Correlation structure

- Note that our new model does not only model one particular futures contract, but it models the entire futures curve at once.
- ▶ Let $0 \le t \le t + h \le T^*$ and $0 \le x, x' \le T^*$, then

$$Cor(f_t(\mathbf{x}), f_{t+h}(\mathbf{x}')) = \mathcal{K}^{-1} \int_{\mathcal{A}_t} k(\mathbf{x} + t, \xi, \mathbf{s}) k(\mathbf{x}' + t + h, \xi, \mathbf{s}) \mathbb{E}\left(\sigma^2(\xi, \mathbf{s})\right) d\xi d\mathbf{s},$$

where

 $\begin{aligned} \mathcal{K} &= \sqrt{\int_{\mathcal{A}_t} k^2 (\mathbf{x} + t, \xi, s) \mathbb{E} \left(\sigma^2(\xi, s) \right) d\xi ds} \\ &\cdot \sqrt{\int_{\mathcal{A}_t} k^2 (\mathbf{x}' + t + h, \xi, s) \mathbb{E} \left(\sigma^2(\xi, s) \right) d\xi ds} \end{aligned}$

Examples of weight functions

Consider weight functions which factorise as

$$k(\mathbf{x} + t; \boldsymbol{\xi}, \mathbf{s}) = \Phi(\boldsymbol{\xi}) \Psi(\mathbf{x} + t, \mathbf{s}), \tag{7}$$

for suitable functions Ψ and Φ . [In the case that $\Phi \equiv 1$ and there is no stochastic volatility we essentially get be back the classical framework.]

> OU-type weight function: $\Psi(x + t, s) = \exp(-\alpha(x + t - s))$, for some $\alpha > 0$.

- > CARMA-type weight function: $\Psi(x + t s) = \mathbf{b}' \exp(\mathbf{A}(x + t s))\mathbf{e}_{\rho}$;
- > Bjerksund et al. (2010)-type weight function: $\Psi(x + t, s) = \frac{a}{x+t-s+b}$, for a, b > 0
- Audet et al. (2004)-type weight function:
 - $\Psi(\mathbf{x} + t, \mathbf{s}) = \exp(-\alpha(\mathbf{x} + t \mathbf{s}))$ for $\alpha > 0$,

$$\implies \Phi(\xi) = \exp(-\beta\xi), \text{ for } \beta > 0$$

Example: Gaussian ambit fields

(c) Bjerksund et al.-type weight function (d) Gamma-type weight function

Implied spot price

> By the no-arbitrage assumption, the futures price for a contract which matures in zero time, x = 0, has to be equal to the spot price, that is, $f_t(0) = S_t$. Thus,

$$\mathbf{S}_t = \Lambda(t) + \int_{\mathbf{A}_t} k(t;\xi,\mathbf{s}) \sigma(\xi,\mathbf{s}) L(d\xi,d\mathbf{s}).$$

Implied spot price

> By the no-arbitrage assumption, the futures price for a contract which matures in zero time, x = 0, has to be equal to the spot price, that is, $f_t(0) = S_t$. Thus,

$$S_t = \Lambda(t) + \int_{A_t} k(t;\xi,s)\sigma(\xi,s)L(d\xi,ds).$$

In the Gaussian case, we get the following result:

$$S_t \stackrel{\textit{law}}{=} \Lambda(t) + \int_{-T^*}^t \Psi(t; s) \omega_s dW_s,$$

assuming that $k(x + t; \xi, s) = \Phi(\xi)\Psi(x + t, s)$, $\omega_s^2 = \int_0^{T^*} \Phi^2(\xi)\sigma^2(\xi, s)d\xi$ and where *W* is a Brownian motion.

 Null-spatial case of ambit field: Volatility modulated Volterra process, Lévy semistationary process. (Fit energy spot prices very well!)

Simulated futures curve

(e) Ambit field without stochastic volatility

- 2

(g) Ambit field with stochastic volatility

(f) Stochastic volatility field

(h) Seasonality field

Simulated futures curve cont'd

(i) Futures price without stochastic volatility (j) Futures price with stochastic volatility

Samuelson effect

- Samuelson effect: The volatility of the futures price increases when the time to delivery approaches zero.
- Also, the volatility of the futures converges to the volatility of the spot price.
- The weight function k plays the role of a damping function and is therefore non-increasing in the first variable and ensures that the Samuelson effect can be accounted for in our model.

Proposition 5

Under suitable conditions (given in our paper) the variance of the futures price $f_t(x)$, given by

$$v_t(\mathbf{x}) := \operatorname{Var}(f_t(\mathbf{x})) = c \int_{\mathcal{A}_t} k^2(\mathbf{x} + t; \xi, \mathbf{s}) \mathbb{E}\left(\sigma^2(\xi, \mathbf{s})\right) d\xi d\mathbf{s},$$

is monotonically non-decreasing as $x \downarrow 0$. Further, the variance of the futures converges to the variance of the implied spot price.

Samuelson effect: Example for different choices of the weight function

Example 6

Suppose the weight function factorises as mentioned before and there is no stochastic volatility. Then the variance of the futures price is given by

$$v_t(\mathbf{x}) = \mathbf{c}' \int_{-T^*}^t \Psi^2(\mathbf{x} + t, \mathbf{s}) d\mathbf{s}, \qquad ext{where } \mathbf{c}' = \mathbf{c} \int_0^{T^*} \Phi^2(\xi) d\xi.$$

This implies that in the context an exponential weight, we get

$$v_t(\mathbf{x}) = \mathbf{c}' \frac{1}{2\alpha} \left(\mathbf{e}^{-2\alpha \mathbf{x}} - \mathbf{e}^{-2\alpha(\mathbf{x}+t+T^*)} \right),$$

and in the context of the Bjerksund et al. (2010) model we have

$$v_t(x) = c'a^2\left(\frac{1}{x+b} - \frac{1}{x+t+T^*+b}\right)$$

Next we do a change of measure from the risk-neutral pricing measure to the physical measure.

Proposition 7

Define the process

$$M_t^{\theta} = \exp\left(\int_{A_t} \theta(\xi, s) L(d\xi, ds) - \int_{A_t} C(-i\theta(\xi, s), L') d\xi ds\right).$$
 (8)

The deterministic function θ : $[0, T^*] \times [-T^*, T^*] \mapsto \mathbb{R}$ is supposed to be integrable with respect to the Lévy basis L in the sense of Walsh (1976). Assume that

$$\mathbb{E}\left(\exp\left(\int_{\mathcal{A}_{t}} C(-i\theta(s,\xi),L') \, d\xi \, ds\right)\right) < \infty, \text{ for all } t \in \mathbb{R}_{T^{*}}.$$
(9)

Then M_t^{θ} is a martingale with respect to \mathcal{F}_t with $\mathbb{E}[M_0^{\theta}] = 1$.

Change of measure cont'd

Define an equivalent probability P by

$$\left. \frac{dP}{dQ} \right|_{\mathcal{F}_t} = M_t^{\theta} \,, \tag{10}$$

for $t \ge 0$, where the function θ is an additional parameter to be modelled and estimated, which plays the role as the *market price of risk*

> We compute the characteristic exponent of an integral of *L* under *P*.

Proposition 8

For any $v \in \mathbb{R}$, and Walsh-integrable function g with respect to L, it holds that

$$\log \mathbb{E}_{P} \left[\exp \left(i v \int_{A_{t}} g(\xi, s) L(d\xi, ds) \right) \right]$$

=
$$\int_{A_{t}} \left(C(vg(\xi, s) - i\theta(\xi, s), L') - C(-i\theta(\xi, s), L') \right) d\xi ds .$$

Summary of key results

- > Use ambit fields to model electricity futures.
- Our model ensures that the futures price is a martingale under the risk-neutral measure.
- > Studied relevant examples of model specifications.
- New modelling framework accounts for the key stylised facts observed in electricity futures.
- Futures and spot prices can be linked to each other within the ambit field framework (Samuelson effect).
- Change of measure.

Further results not mentioned today:

- Geometric modelling framework
- > Option pricing based on Fourier techniques.
- Simulation methods for ambit fields.

> Detailed empirical studies.

Inference methods for ambit fields.

> Need for more efficient simulation schemes.

- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2011), Ambit processes and stochastic partial differential equations, *in* G. Di Nunno and B. Øksendal, eds, 'Advanced Mathematical Methods for Finance', Springer, pp. 35–74.
- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2012), Recent advances in ambit stochastics. Preprint: arXiv:1210.1354.
- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2013a), 'Modelling energy spot prices by volatility modulated Volterra processes', *Bernoulli*. Vol:19, pp. 803–845.
- Barndorff-Nielsen, O. E., Benth, F. E. and Veraart, A. E. D. (2013b), Modelling electricity futures by ambit fields. Preprint.
- Barndorff-Nielsen, O. E. and Schmiegel, J. (2007), Ambit processes: with applications to turbulence and cancer growth, *in* F. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal and T. Zhang, eds, 'Stochastic Analysis and Applications: The Abel Symposium 2005', Springer, Heidelberg, pp. 93–124.
- Walsh, J. (1986a), An introduction to stochastic partial differential equations, *in* R. Carmona,
 H. Kesten and J. Walsh, eds, 'Lecture Notes in Mathematics 1180', Ecole d'Eté de Probabilités de Saint–Flour XIV 1984, Springer.