Motivation and contributions	The Model	UIP via BSDEs	European payoffs

Utility indifference valuation for non-smooth payoffs on a market with some non tradable assets

- Joint work with G. Benedetti (Paris-Dauphine, CREST) -

Luciano Campi

Université Paris 13, FiME and CREST (soon at LSE)

Focus Program on Commodities, Energy and Environmental Finance

- Fields Institute, August 2013 -

A (1) < A (2) < A (2) </p>

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Contents			

- 2 The Model
- 3 UIP via BSDEs
 - Existence result
- 4 European payoffs
 - Existence and regularity result

< 回 > < 回 > < 回 >

Utility indifference pricing (UIP): Motivation

- Goal: pricing in incomplete markets introducing agent's risk aversion.
- Focus on non-smooth payoffs. The motivation comes from structural models for energy markets: e.g., in Aïd, Campi and Langrené (2012) the spot price essentially is

$$P_{\mathcal{T}} = g(\overline{C}_{\mathcal{T}} - D_{\mathcal{T}}) \sum_{1}^{d} h_i S_{\mathcal{T}}^i \mathbf{1}_{\{\sum_{1}^{i-1} C_{\mathcal{T}}^j \leq D_{\mathcal{T}} \leq \sum_{1}^{i} C_{\mathcal{T}}^j\}}$$

where $g(x) = (1/\epsilon)\mathbf{1}_{x \leq \epsilon} + (1/x)\mathbf{1}_{x \geq \epsilon}$ (i.e. capped above for x > 0 small).

Other important example: call options on spread
 (P_T - h_iSⁱ_T - K)₊, building blocks for power plant evaluation
 using real option approach.

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Motivation			

- Incomplete market, thus need for pricing/hedging criterion.
- local risk minimization in Aïd, Campi, Langrené (MF, 2012)
- We focus on exponential UIP, i.e. $U(x) = -e^{-\gamma x}$, $\gamma > 0$.
- In stock markets (with non-traded assets): El Karoui-Rouge, Davis, Becherer, Henderson, Hobson, Monoyios, Imkeller, Ankirchner, Frei, Schweizer and many others (survey by Henderson & Hobson (2009) for more info on UIP).
- In energy market literature, see Benth et al. (2008) for certainty equivalent principle, without trading on fuel markets.
- In our case, the payoff may depend on both assets, quite unusual in the UIP literature for markets with traded and non-traded assets.
- Sircar and Zariphopoulou (2005) deal with $f(S_T, X_T)$, but with f smooth and both S and X univariate

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Motivation			

- Incomplete market, thus need for pricing/hedging criterion.
- local risk minimization in Aïd, Campi, Langrené (MF, 2012)
- We focus on exponential UIP, i.e. $U(x) = -e^{-\gamma x}$, $\gamma > 0$.
- In stock markets (with non-traded assets): El Karoui-Rouge, Davis, Becherer, Henderson, Hobson, Monoyios, Imkeller, Ankirchner, Frei, Schweizer and many others (survey by Henderson & Hobson (2009) for more info on UIP).
- In energy market literature, see Benth et al. (2008) for certainty equivalent principle, without trading on fuel markets.
- In our case, the payoff may depend on both assets, quite unusual in the UIP literature for markets with traded and non-traded assets.
- Sircar and Zariphopoulou (2005) deal with $f(S_T, X_T)$, but with f smooth and both S and X univariate

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Motivation			

- Incomplete market, thus need for pricing/hedging criterion.
- local risk minimization in Aïd, Campi, Langrené (MF, 2012)
- We focus on exponential UIP, i.e. $U(x) = -e^{-\gamma x}$, $\gamma > 0$.
- In stock markets (with non-traded assets): El Karoui-Rouge, Davis, Becherer, Henderson, Hobson, Monoyios, Imkeller, Ankirchner, Frei, Schweizer and many others (survey by Henderson & Hobson (2009) for more info on UIP).
- In energy market literature, see Benth et al. (2008) for certainty equivalent principle, without trading on fuel markets.
- In our case, the payoff may depend on both assets, quite unusual in the UIP literature for markets with traded and non-traded assets.
- Sircar and Zariphopoulou (2005) deal with $f(S_T, X_T)$, but with f smooth and both S and X univariate

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Motivation			

- Incomplete market, thus need for pricing/hedging criterion.
- local risk minimization in Aïd, Campi, Langrené (MF, 2012)
- We focus on exponential UIP, i.e. $U(x) = -e^{-\gamma x}$, $\gamma > 0$.
- In stock markets (with non-traded assets): El Karoui-Rouge, Davis, Becherer, Henderson, Hobson, Monoyios, Imkeller, Ankirchner, Frei, Schweizer and many others (survey by Henderson & Hobson (2009) for more info on UIP).
- In energy market literature, see Benth et al. (2008) for certainty equivalent principle, without trading on fuel markets.
- In our case, the payoff may depend on both assets, quite unusual in the UIP literature for markets with traded and non-traded assets.
- Sircar and Zariphopoulou (2005) deal with $f(S_T, X_T)$, but with f smooth and both S and X univariate

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Our contributions			

- In a multivariate Markovian model with B&S tradable and mean-reverting non-tradable assets,
- we give a characterization of UIP of some *f* as the solution *Y* to a BSDE beyond the usual assumptions of boundedness and ∃ of exp moments.
- It's nonetheless difficult to interpret the Z of this BSDE as the optimal hedging strategy.
- To do that, we consider European claims $f(S_T, X_T)$, under some growth conditions on f and its derivatives.
- We deduce from it some asymptotic expansions for prices and strategies.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Model: Dynamics of tradable assets

Let (Ω, \mathbb{F}, P) be a filtered prob space where $\mathbb{F} = (\mathcal{F}_t)_{t \in [0, T]}$ is the natural filtration generated by a (n+d)-dim BM $W = (W^S, W^X)$.

Tradable assets

The tradable assets S^i , i = 1, ..., n have dynamics

$$\frac{dS_t^i}{S_t^i} = \mu_i dt + \sigma_i dW_t^S, \quad 1 \le i \le n$$
(1)

In a more compact way

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t^S, \tag{2}$$

where W^S is a *n*-dim BM, σ is a $n \times n$ invertible vol matrix. In this (sub-)market, \exists a unique EMM $Q^0 \sim P$ for S.

L. Campi

Motivation and contributions	The Model	UIP via BSDEs	European payoffs

The Model: Dynamics of non tradable assets

Nontradable assets

They follow (generalized) OU processes

$$dX_t^i = (b_t^i - \alpha_i(t)X_t^i)dt + \beta_i(t)dW_t^X.$$

for i = 1, ..., d. We denote β_i the *i*-th column of the matrix β .

The agent wealth process is

$$V_t^{v}(\pi) = v + \int_0^t \pi'_u(\mu du + \sigma dW_u^{\mathcal{S}}) = v + \int_0^t \pi'_u \sigma(\theta du + dW_u)$$

where $\theta = \sigma^{-1}\mu$. We define the sets

$$\mathcal{H} = \{\pi : V^0(\pi) \text{ is a } Q - \text{supermartingale } \forall Q \in \mathcal{M}^a_E\}$$

 $\mathcal{H}_b = \{\pi : V^0(\pi) \text{ is uniformly bdd below by a constant}\}$

where \mathcal{M}_E^a is the set of all abs cont MM with finite entropy for S.

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Definition of LIIP			

Definition

Let $f \in L^0(\mathcal{F}_T)$. The buyer UIP p of f is the solution to

$$\sup_{\pi} E\left[-e^{-\gamma\left(V_T^{\nu-p}(\pi)+f\right)}\right] = \sup_{\pi} E\left[-e^{-\gamma V_T^{\nu}(\pi)}\right]$$
(3)

where the sup is over \mathcal{H} or \mathcal{H}_b (cf Owen & Zitkovic (09)). The optimal hedging strategy Δ is the difference between the max $\hat{\pi}^f$ and $\hat{\pi}^0$ in resp. the LHS and RHS of (3), i.e. $\Delta = \hat{\pi}^f - \hat{\pi}^0$.

Main example : Forward contracts on the spot

$$f = P_T = g(\overline{C}_T - D_T) \sum_{i=1}^n h_i S_T^i \mathbf{1}_{\{\sum_{l=1}^{i-1} C_T^l \le D_T \le \sum_{l=1}^{i} C_T^l\}}$$

which is not bounded nor smooth. Usually f is bounded or has exponential moments (BSDE) or it is smooth (PDE).

UIP & BSDE : bounded payoffs

Set $Z = (Z^S, Z^X)$ and consider the pricing BSDE

$$Y_t = f - \int_t^T \left(\frac{\gamma}{2} \|Z_s^X\|^2 + \mu' \sigma^{-1} Z_s^S\right) ds - \int_t^T Z_s dW_s \quad (4)$$

A starting point

Suppose f is bounded. Then $p = Y_0$, where (Y, Z) is the unique solution of BSDE (4) satisfying

$$E\left[\sup_{0\leq t\leq T}|Y_t|^2+\int_0^T\|Z_t\|^2dt\right]<\infty$$

Moreover, the optimal hedging strategy is given by $\Delta_t = -\sigma^{-1}Z_t^S$.

Ref. Rouge and El Karoui (2000), or adapting Hu et al. (2005).

Motivation and con	ntributions	The Model	UIP via BSDEs ■	European payoffs
UIP & B	SDE : unbou	nded payoffs		

Assume that the claim f satisfies

$$V_T^{\nu_1}(\pi^1) \le f \le V_T^{\nu_2}(\pi^2), \quad v_i \in \mathbb{R}, \pi^i \in \mathcal{H}.$$
(5)

with $V_T^{v_i}(\pi^i) \in L^1(Q^0)$.

Proposition

Under Assumption (5) the pricing BSDE above admits a solution. Moreover, if

$$\sup_{Q\in\mathcal{M}_{E}^{a}}E^{Q}[f_{n}-f]\rightarrow0,\quad\inf_{Q\in\mathcal{M}_{E}^{a}}E^{Q}[f_{n}-f]\rightarrow0$$

where $f_n = (-n) \vee f \wedge n$, then $p = Y_0$.

The condition above is in our case easy to handle thanks to the product structure of \mathcal{M}_E^a (recall independence of S and X).

L. Campi

Utility indifference valuation

Motivation and contributions	The Model	UIP via BSDEs	European payoffs

UIP & BSDE II : unbounded payoffs

The proof is based on the following steps (based on Briand and Hu (2007)) :

Consider the pricing BSDE under Q⁰ with f_n = f ∧ n ∨ (−n) instead of f

$$Y_t = f_n + \int_t^T g(Z_s) ds - \int_t^T Z_s dW_s^0, \quad g(z) = -\gamma/2 \|z^X\|^2,$$

which admits a bounded solution (Y^n, Z^n) .

- Using our super/sub-hedging bounds on f, prove that $|Y^n| \le L$ for some cont mart L.
- With this bound, define τ_k = inf{t : L_t > k} ∧ T and proceed as in Briand and Hu (2005), i.e. paste the solutions on each (τ_k, τ_{k+1}].
- Last part by using Owen/Zitkovic (2009).

(本語) (本語) (本語) (二語)

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
_			

European payoff case: heuristics

To get more info on the process Z (thus on the hedging strategy), we consider European payoffs.

Notation: A = (S, X) for processes and a = (s, x) for their values.

Since $f = f(S_T, X_T)$ we look for a solution to (4) of the form $Y_t = \varphi(t, A_t)$ where φ solves

$$\begin{cases} \mathcal{L}\varphi - \frac{\gamma}{2} \sum_{i=1}^{d} (\beta'_{.i}\varphi_{x})^{2} = 0\\ \varphi(T, a) = f(a) \end{cases}$$
(6)

with

$$\mathcal{L}\varphi = \varphi_t + (b - \alpha x)\varphi_x + \frac{1}{2}\sum_{i,j=1}^n \sigma_i \sigma'_j s^i s^j \varphi_{s^i s^j} + \frac{1}{2}\sum_{i,j=1}^d \beta_i \beta'_j \varphi_{x^i x^j}.$$

If f is regular enough (not too much) we expect $\Delta \propto Z^{S} \propto \varphi_{s}$.

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Assumptions on f			

Two types of assumptions for $f = f(S_T, X_T)$.

Continuous non-smooth payoffs (CONT)

- f is continuous and
- a.e. differentiable with left and right derivatives growing polynomially in *s*, uniformly in *x*.

Discontinuous payoffs (DISC)

- f is bdd below.
- Finitely many discontinuities (only wrt x).
- f is a.e. differentiable such that:
- f_{s^i} is bdd and $f_{s^i} = O(1/s^i)$ for s^i large, uniformly in x.
- $|f_{x^j}(s,x)| \le C(1+\|s\|^q)$ for some $q \ge 0$, for all j, for some constant C independent of x.

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
The main result			

Theorem

Under (CONT) or (DISC) the price φ of the claim f is viscosity solution of

$$\mathcal{L} arphi - rac{\gamma}{2} \sum_{j=1}^{d} (eta'_{.j} arphi_{\mathsf{x}})^2 = 0, \quad arphi(\mathsf{T},\mathsf{a}) = f(\mathsf{a})$$

on [0, T) × ℝⁿ₊ × ℝ^d, which is also differentiable wrt (s, x).
The optimal hedging strategy is given by

$$\Delta_t = -\sigma^{-1} Z_t^S = -\sigma^{-1} \sigma(S_t) \varphi_s(t, A_t),$$

where (Y, Z) is solution to the pricing BSDE, $\sigma(S)$ is the matrix whose *i*-th row is $\sigma_i S^i$.

Motivation and contributions	s	The Model	UIP via BSDEs	European payoffs

Step 1 : an auxiliary problem with compact controls

• Consider this problem first :

$$-\mathcal{L}\varphi + h^{m}(\beta'\varphi_{x}) = 0, \quad \varphi(T, a) = f(a)$$

with $h^{m}(q) = \sup_{\delta \in \mathcal{B}^{m}(\mathbb{R}^{d})} \left\{ -q\delta - \frac{1}{2\gamma} \|\delta\|^{2} \right\}, \ m > 0.$

When $m \to \infty$ this PDE becomes the one we are interested in.

• The associated BSDE under Q^0 is

$$Y_{t}^{m} = f - \int_{t}^{T} h^{m}(Z_{r}^{X,m}) dr - \int_{t}^{T} Z_{r}^{m} dW_{r}^{0}$$
(7)

(日)

C+ 1	· · · · · · · · · · · · · · · · · · ·	·	
Motivation and contributions	The Model	UIP via BSDEs	European payoffs

Step 1 : an auxiliary problem with compact controls

- When f is smooth (or non-smooth with poly growth), we can prove ∃ of a classical (viscosity) solution to the PDE such that:
- Probabilistic representation of the spacial derivatives of φ^m (as in Zhang (2005))

$$\varphi_a^m(t,a) = E_{t,a}^0 \left[f(A_T) N_T - \int_t^T h^m(Z_r^{X,m}) N_r dr \right] \quad (8)$$

where N is a process depending only on the forward dynamics, it is very simple in our case.

In particular, φ^m is differentiable wrt spacial variables.

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Step 2 : $m \to \infty$			

- When f smooth, one can prove (as in Pham (2002)) that our PDE admits a classical solution, which is the UIP.
- When f is non-smooth satisfying e.g. (CONT), take $f' \to f$ $(I \to \infty)$ with f' smooth. Taking f' as terminal cond in our PDE, we get a classical sol $\varphi' = \lim_{m \to \infty} \varphi^{m,l}$ (as before).
- We want to pass to the limit in Zhang's representation as $m, l \to \infty$ to get the differentiability of φ viscosity sol of our PDE.
- To do so, we use the (uniform) estimates inherited from (CONT):

$$|\varphi_{s^i}^{m,l}(t,a)| + |\varphi_{x^j}^{m,l}(t,a)| \le C \|s\|^q,$$

allowing dom convergence to get the differentiability of $\varphi.$

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Discontinuous payoffs

Idea: approximate f with a smooth sequence f', and prove that the derivatives of the price φ' will not explode for t < T. Example: digital payoff $f(x) = \mathbf{1}_{[0,\infty)}(x)$ no traded assets. Setting $\alpha = 0$ we have $\varphi'_x(T - t, x) \to g(t, x)$, where g solves the Burgers' equation

$$g_t + \gamma g_x g = \frac{1}{2} \beta^2 g_{xx}$$

which has the solution

$$g(t,x) = \frac{\beta e^{-\frac{x^2}{2\beta^2 t}} (1 - e^{-\frac{\gamma}{\beta^2}})}{\gamma \sqrt{2\pi t} \left[(e^{-\frac{\gamma}{\beta^2}} - 1) \Phi\left(\frac{x}{\beta \sqrt{t}}\right) + 1 \right]}$$

We deduce $\varphi'_x(T - t, x) \leq \frac{C}{\sqrt{T-t}}$, uniformly in *I*. BUT not applicable with traded assets!

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Stop 2 + the optim	mal stratomy		

- Step 3 : the optimal strategy
 - Approximate f again with a sequence f^{I} , bdd for each I.
 - The corresponding optimal strategies with the claims f' are given by $\hat{\pi}'_t = -\sigma^{-1}\sigma(S_t)\varphi'_s(t, A_t) + \frac{1}{\gamma}\sigma^{-2}\mu$ and the value functions are

$$u'(t, v, a) = E_{t,a}\left[-e^{-\gamma\left(V_T^{v}(\hat{\pi}')+f'\right)}
ight].$$

• By the growth assumptions in s (uniform in x) we deduce from previous results that $u^{l} \rightarrow u$ where

$$u(t, v, a) = E_{t,a} \left[-e^{-\gamma \left(V_T^{v}(\hat{\pi}) + f \right)} \right]$$

for some optimal $\hat{\pi}$. We would like to identify $\hat{\pi}$ with $\tilde{\pi}_t := -\sigma^{-1}\sigma(S_t)\varphi_s(t, A_t) + \frac{1}{\gamma}\sigma^{-2}\mu$.

(1日) (1日) (日) (日) (日)

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Step 3 : the optim	al strategy		

• By the reverse Fatou's Lemma

$$\limsup_{I} E_{t,a} \left[-e^{-\gamma \left(V_{T}^{\vee}(\hat{\pi}^{I}) + f^{I} \right)} \right] \leq E_{t,a} \left[\lim_{I} -e^{-\gamma \left(V_{T}^{\vee}(\hat{\pi}^{I}) + f^{I} \right)} \right]$$

where the limit on the LHS is in probability.

- V^v_T(π̂^I) → V^v_T(π̂) in L²(Ω, P), hence in probability. In the same way, f^I → f in probability.
- Therefore

$$E_{t,a}\left[-e^{-\gamma\left(V_{T}^{\nu}(\hat{\pi})+f\right)}\right] \leq E_{t,a}\left[-e^{-\gamma\left(V_{T}^{\nu}(\tilde{\pi})+f\right)}\right]$$

implying that $\tilde{\pi}$ is indeed optimal (remark that it is in $\mathbb{H}^2(\mathbb{R}^n, Q)$ for any $Q \in \mathcal{M}_V$, therefore it lies in \mathcal{H}_M).

・ 回 ト ・ ヨ ト ・ ヨ ト …

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
A cumpatatic over	aion. Tha nui		

Asymptotic expansion: The price

Reformulating a result in Monoyios (2012), we get under (CONT) or (DISC)

$$\varphi(t,a) = p^0(t,a) - \frac{\gamma}{2} E^0_{t,a} \left[\int_t^T \|\beta p^0_x\|^2(s,A_s) ds \right] + O(\gamma^2)$$

where $p^0(t, a) = E^0_{t,a}[f(A_T)]$ is the price under the MMM Q^0 .

Remark

The zero-th order term is the price we obtained via the local risk min approach. It has been computed for many power derivatives in Aïd et al. (2012).

We computed explicitly the first order term in the expansions above for forward contracts.

< 日 > < 同 > < 三 > < 三 > <

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Asymptotic expan	sions: The op	t hedging strat	tegy

Under (CONT) and assuming f_x bounded, we have the following expansions for the derivatives of φ :

$$\begin{split} \varphi_{x^{i}}(t,a) &= E_{t,a}^{0} \left[f_{x^{i}}(A_{T}) \right] - \gamma E_{t,a}^{0} \left[f_{x^{i}}(A_{T}) \int_{t}^{T} \beta \varphi_{x}^{0} dW_{u}^{X} \right] + O(\gamma^{2}) \\ \varphi_{s^{i}}(t,a) &= E_{t,a}^{0} \left[f_{s^{i}}(A_{T}) \right] - \gamma E_{t,a}^{0} \left[f_{s^{i}}(A_{T}) \int_{t}^{T} \beta \varphi_{x}^{0} dW_{u}^{X} \right] + O(\gamma^{2}) \\ \text{where } \varphi_{x^{i}}^{0}(t,a) &= E_{t,a}^{0} \left[f_{x^{i}}(A_{T}) \right]. \end{split}$$

Expansions for the optimal hedging strategy can be derived from these results.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Model

UIP via BSDEs

European payoffs

Example

Forward contract with one fuel f(s, c) = sg(c), where c: OU process for difference between demand and capacity, and $g(c) = \min(M, \frac{1}{c}) \mathbf{1}_{\{c>0\}} + M \mathbf{1}_{\{c\leq 0\}}$. No-arbitrage price of a forward contract at a given time to maturity T - t = 0.5. Parameter values: $\sigma = \beta = 0.3$, $\alpha = 0.2$, $\frac{1}{M} = 0.8$.

Motivation and contributions	The Model	UIP via BSDEs	European payoffs
Example			

Absolute difference in the price (left) and hedging strategy (right), under no-arbitrage and utility indifference evaluation (with $\gamma = 5$) of a forward contract.

Motivation and contributions	The Model	UIP via BSDEs	European payoffs

Thanks for your attention!

Utility indifference valuation

(1日) (1日) (1日)